
Asynchronous Synthesis Techniques for Coordinating

Autonomic Managers in the Cloud

Rim Abid, Gwen Salaün, Noel De Palma

University of Grenoble Alpes, LIG, CNRS, France

Abstract

Cloud computing allows the delivery of on-demand computing resources over
the internet on a pay-for-use basis. From a technical point of view, cloud
applications usually consist of several software components deployed on re-
mote virtual machines. Managing such applications is a challenging problem
because manual administration is no longer realistic for these complex dis-
tributed systems. Thus, autonomic computing is a promising solution for
monitoring and updating these applications automatically. This is achieved
through the automation of administration functions and the use of control
loops called autonomic managers. An autonomic manager observes the en-
vironment, detects changes, and reconfigures dynamically the application.
Multiple autonomic managers can be deployed in the same system and must
make consistent decisions. Using them without coordination may lead to
inconsistencies and error-prone situations. In this article, we first present a
simple language for expressing coordination constraints given a set of auto-
nomic managers. Second, given a coordination expression written with that
language, we propose new synthesis techniques for automatically generating
an asynchronous controller. These synthesis techniques work in two steps
by successively generating a model of the controller and a Java object cor-
responding to this model. This Java code is finally used for deploying the
generated controller. As far as evaluation is concerned, we validated our
approach by using it for coordinating real-world cloud applications.

Key words: Asynchronous Coordination, Autonomic Managers,
Distributed Cloud Applications, Synthesis Techniques

Preprint submitted to Science of Computer Programming May 24, 2017

1. Introduction

Managing complex distributed applications is a challenging problem be-
cause manual administration is no longer realistic for complex systems. Au-
tonomic computing is a promising solution for automating the administra-
tion functions, which focus particularly on replicating virtual machines, de-
stroying or adding them, and handling virtual machine failures in the cloud.
These operations are executed by different autonomic managers considered
as control loops. Each manager observes the application execution, ensures a
continuous monitoring, and immediately reacts to changes by automatically
executing reconfiguration tasks. Several managers can be deployed to super-
vize the same application and must make consistent decisions. Nonetheless,
using them without coordination may lead the system into inconsistencies
and error-prone situations (e.g., removing a server that is necessary). As a
consequence, the use of multiple managers (e.g., self-repair and self-sizing
managers) implemented in the same system requires taking globally consis-
tent decisions. Hence, a manager should be aware of decisions of all managers
before reacting.

We present in this article our synthesis techniques for generating a con-
troller, which aims at coordinating several managers. The generated con-
troller prevents every manager from violating global objectives of all the
managers. Figure 1 shows an example with two managers (M1 and M2)
administrating an application. The right hand part of this figure particu-
larly illustrates the interest of the controller for taking globally consistent
decisions (by filtering some event for instance as shown in this example).

Figure 1: Administration tasks without or with coordination

2

Our controller synthesis techniques assume that all participants (man-
agers and generated controller) interact using asynchronous communication
semantics. This means that all the messages transmitted from/to the man-
agers (controller, resp.) are stored/consumed into/from FIFO buffers. It
is worth emphasizing that our approach is twice asynchronous in the sense
that it applies on asynchronous systems (no global clock) and it relies on
asynchronous communication semantics (communication via buffers).

Let us now present our solution with more details, as depicted in Fig-
ure 2, which gives an overview of our approach. We consider as input a set
of autonomic managers. Each manager is described using a formal model,
namely a Labelled Transition System (LTS). As a first contribution, we de-
fine a set of reaction rules and regular expressions to specify the coordina-
tion requirements and interaction constraints. This simple language aims at
expressing in an abstract way the relationship between the managers and
the behaviour we expect from the controller to be generated. Given a set
of manager LTSs and the coordination requirements, we propose synthesis
techniques for generating an abstract model (LTS) for our controller. To
do so, we rely on an encoding of our inputs (LTS models and coordination
requirements) into the LNT specification language [7]. LNT is expressive
enough for representing all the inputs and the way they interact together.
Moreover, LNT is equipped with a rich toolbox, called CADP [16], that is
used for automatically obtaining an LTS model from the LNT specification.
The generated LTS corresponds to all possible executions of the controller. It
is worth noting that since we rely on formal techniques and tools, all the veri-
fication techniques available in the CADP toolbox can be used for validating
the generated controller. Once we have synthesized the controller LTS, a
Java program is obtained using a code generator we developed. This Java
program is necessary to finally deploy and use the synthesized controller for
coordinating real applications. In this article, we present a typical example
of a N-tier Web application for illustration purposes. We have validated our
approach on several variants of this distributed application involving several
instances of autonomic managers, such as self-sizing or self-repair managers.
Note that our approach covers the whole development process from the ex-
pression of the requirements to the final implementation and deployment of
our solution.

This article is an extended version of a conference paper published in [2].

3

Figure 2: Overview of our approach

The key additions of this journal version are as follows: (i) a more in-depth
presentation of the process algebra encoding, (ii) a refined description of the
controller LTS and of its generation process, and (iii) the full development
of our approach on a real-world case study.

The rest of this article is structured as follows. In Section 2, we introduce
our formal model for autonomic managers and the coordination language.
In Section 3, we present our synthesis techniques that mainly rely on an en-
coding into process algebra and on LTS manipulations. Section 4 introduces
the code generation techniques for obtaining Java code from controller mod-
els. Section 5 illustrates our approach on a multi-tier Web application. We
discuss related work in Section 6 and we conclude in Section 7.

2. Formal Models

In this section, we first introduce the abstract model that we used to
represent an autonomic manager. Second, we propose reaction rules and
regular expressions for specifying how the involved managers are supposed
to interact together through the controller that we want to generate. The
models of the managers and the coordination expression are used as input to
the synthesis techniques introduced in Section 3.

2.1. Autonomic Manager Model

Autonomic managers (also called administration loops) describe the causal
ordering of events raised and emitted to the system. Such a behaviour is

4

described using Labelled Transition System (LTS) because this is a simple
and graphical model for specifying sequential behaviour, non-deterministic
choice, and loops. Each autonomic manager is modelled as an LTS, which
consists of a set of states and a set of transitions that connect those states.
Formally, an LTS is defined as follows:

Definition 1. A Labelled Transition System is a tuple defined as a tuple
(Q,A, T, q0) where Q is a finite set of states, A = A! ∪ A? is an alphabet
partitioned into a set of send and received messages, T ⊆ Q × A × Q is a
transition relation, and q0 ∈ Q is the initial state.

A send message m ∈ A! is written m! and corresponds to a message
destinated to another manager or to the controller. A received message
m ∈ A? is written m? and corresponds to a message to be consumed by the

actual manager. A transition relating two states is represented as q
l−→ q′ ∈ T

where q, q′ ∈ Q and l ∈ A. We assume that managers are deterministic, which
can be easily obtained using standard determinization algorithms [20].

Given a set of manager LTSs defined as (Qi, Ai, Ti, q
0
i), we assume that

each message should have a unique sender and a unique receiver: ∀i, j ∈ 1..n,
i 6= j, A!

i∩A!
j = ∅ and A?

i ∩A?
j = ∅. Furthermore, each message is exchanged

between two different managers: A!
i ∩ A?

i = ∅ for all i. The uniqueness of
messages can be achieved via renaming.

2.2. Coordination Requirements Specification

Our approach aims at generating a controller that acts as an orchestrator
for coordinating the execution of the autonomic managers. In the coordi-
nated system, all the messages emitted by the managers are caught by the
controller, which can take global decisions for the whole system. In order
to describe the behaviour one expects from the controller, we use a simple
coordination language, which consists of reaction rules and regular expres-
sions with their basic operators (sequence, choice, and iteration). We define
a reaction rule as a set of receive messages followed by a set of send messages.

Definition 2. Given a set of managers {M1, . . . ,Mn}, Mi = (Qi, Ai, Ti, q
0
i),

a reaction rule R is defined as a1?, ..., am? → b1!, ..., bp! where aj (1 6 j 6
m) corresponds to a message received from a manager Mi (aj ∈ A!

i because
this message is emitted by Mi) and bk (1 6 k 6 p) corresponds to a message
emitted to a manager Ml (bk ∈ A?

l because this message is received by Ml).

5

Informal semantics. Such a rule expresses that when the controller re-
ceives a set of messages from the managers within a certain period of time,
it must send all the messages specified in the second set, once the period is
expired. A rule is triggered when the received messages match the exact set
of input messages (left part of a rule). If there are two rules with the same
left part, this introduces some non-deterministic behaviour in the system. If
there is no rule with the set of received messages as left part, no rule is trig-
gered. All the messages involved in those rules are prefixed by the manager
identifier for avoiding name clashes. Note that the period is implicit in these
rules. The real period will be chosen during the deployment phase.

Example. Let us imagine the following example of reaction rule: m1 msg1?,
m2 msg2? → m3 msg3!. This rule indicates that when the controller to be
generated receives a message msg1 from manager m1 and a message msg2
from manager m2 within a same period of time, then it reacts by emitting a
message msg3 to manager m3. It is worth emphasizing that these messages
are reversed in the controller with respect to the managers. As an example
message msg1 is a send message (msg1!) in the m1 LTS model whereas this
is a receive message in the controller model (msg1?).

In some cases, one may want to specify a specific order of application of
those rules. This can be achieved in our coordination language using regular
expressions of reaction rules. Thus, the specification of the behaviour one
expects from the controller is expressed using a coordination expression C
defined as follows:

Definition 3. A coordination expression C is a regular expression over re-
action rules R:

C ::= R | C1.C2 | C1 + C2 | C∗
where C1.C2 represents a coordination expression C1 followed by C2, C1 +C2

represents the choice between C1 and C2, and C∗ presents a repetition of C
zero or several times.

Note that all the participants, namely the autonomic managers and the
controller to be generated, communicate asynchronously exchanging mes-
sages via FIFO buffers [8]. Each participant is equipped with one input
buffer. This buffer stores all the messages sent to that participant. There-
fore, a participant consumes messages from its buffer and sends messages
that are added to the input buffers of the message’s recipients. Once the
controller is generated (as described in Section 3) and is part of the system,

6

all the managers communicate through it. This means that the controller
acts as a centralized orchestrator for the whole system, as shown in Figure 1.
Last but not least, we assume reliable communication, that is, messages are
guaranteed to reach their destination (no message loss), in the order they
were sent. We use the same communication model in all the steps of our
approach (synthesis, implementation, deployment) presented in the rest of
this article.

Our main motivation for the coordination language we propose in this
section was simplicity. This is why we chose message matching and regular
expressions. We validated the usability of this formalism by asking engi-
neers with cloud computing background to use our language on real-world
examples. The language turned out to be intuitive and simple enough for
specifying coordination requirements for those real-world systems.

In the next section, we will show how, from such an abstract specifica-
tion of the coordination requirements, we automatically generate an abstract
model of the corresponding controller.

3. Asynchronous Synthesis Techniques

In this section, we present new asynchronous controller synthesis tech-
niques, which rely on an encoding of our models (aut format 1) and coor-
dination requirements into the LNT specification language. From this LNT
specification, we can generate the corresponding LTS model of the controller
using CADP compilers, hiding, and reduction techniques. We also use CADP
verification tools to validate the generated controller. All the steps presented
in this section are fully automated using a tool that we developed in Python.
This tool generates the LNT code as well as SVL scripts that are used for
invoking CADP exploration and reduction tools, which finally results in the
generation of the controller LTS.

3.1. Process Algebra Encoding

We present successively in this section the encoding into LNT of the dif-
ferent parts of our system, i.e., autonomic managers, coordination require-
ments, and architecture. We chose LNT for several reasons. First, LNT is an
expressive behavioural specification language with user-friendly syntax and

1The aut format is the textual format used to represent automata in the CADP toolbox,
see http://cadp.inria.fr/man/aut.html

7

operational semantics. Second, LNT is supported by CADP [16], a toolbox
that provides optimized state space exploration techniques and verification
tools. CADP tools allow us to compile the LNT specification into an LTS,
which represents all the possible executions of the corresponding specifica-
tion.

The behavioural part of the LNT specification language consists of the
following constructs: action with input/output parameters, assignment (:=),
sequential composition (;), conditional structure (if), loop (loop), parallel
composition (par), non-deterministic choice (select), and empty statement
(null). Each process defines an alphabet of actions, a list of typed parame-
ters, and a behaviour built using the aforementioned operators. Communica-
tion is carried out by rendezvous on actions with bidirectional transmission of
multiple values. The parallel composition explicitly declares the set of actions
on which processes must synchronize. If the processes evolve independently
from one another (interleaving), this set is empty. For details about the LNT
syntax and semantics, the reader may refer to [7].

Autonomic manager encoding. An LNT process is generated for
each state in the manager LTS. Each process is named using the identifier of
the corresponding state. The alphabet of the process consists of the set of
send and receive messages appearing on the LTS transitions. The behaviour
of the process encodes all the transitions of the LTS going out from the
corresponding state and if necessary calls the processes encoding the target
states of those transitions. If there is no such transition, the body of the
process is the null statement. If there is a single transition, the body of the
process corresponds to the message labelling this transition, followed by a call
to the process encoding the target state of the transition. Finally, if there
is more than one transition, we use the select operator, which corresponds
to a non-deterministic choice between several possible behaviours (similarly
to ’+’ or ’[]’ in the CCS [23] and CSP [19] process algebras, resp.). Let us

assume that two transitions q
l−→ q’, q

l′−→ q’’ ∈ T have the same source state
q. The behaviour of the process encoding q in LNT is:

select l; q’ [...] [] l’; q’’[...] end select

where select encodes a choice between l and l’, and q’ and q’’ are two
processes encoding the behaviour of both target states.

Since a message name can be used in different autonomic manager LTSs,
each message is prefixed with the manager name to avoid further name
clashes. We encode emitted messages (received messages, resp.) with a

8

EM (REC, resp.) suffix. These suffixes are necessary because LNT symbols !
and ? are used for the data transfer only. As an example, m1 ∈ A! is encoded
as m1 EM, and m2 ∈ A? is encoded as m2 REC.

message0 !

message1 ?

message2 !

message20 !

Process P0 [M1message0_EM: any, M1message1_REC: any,
 M1message2_EM: any, M1message20_EM: any] is
 select
 M1message0_EM;
 P0 [M1message0_EM, M1message1_REC,
 M1message2_EM, M1message20_EM]
 []
 M1message1_REC;
 P1 [M1message0_EM, M1message1_REC,
 M1message2_EM, M1message20_EM]
 end select
end process

P0

P1

P2

Figure 3: Example of a manager modelled as an LTS (left), and the LNT process encoding
the initial state (right)

Figure 3 shows the LTS model of a manager example, as well as the
encoding of its initial state P0 into the LNT process algebra. We observe
that the process name is the same as the identifier of that state, whereas
the process alphabet is composed of all the messages appearing in the LTS,
prefixed with the name of the manager (M1) and suffixed by EM in the case of
a send message and by REC in the case of a receive message. As far as process
alphabets are concerned, they consist of all messages appearing in the LTS
because, for each state there is a call to the target state. This means that
from any state you need in the alphabet all messages reachable from that
state, and since in most cases managers are encoded as looping behaviours,
we need to have all messages in the alphabet of each process.

Coordination requirements encoding. The coordination require-
ments specified using reaction rules and regular expressions give an abstract
view of the controller to be generated. These requirements are encoded into
an LNT process called coordination. The process alphabet is composed of all
the messages exchanged between the controller and the involved managers,
that is, all the messages appearing in the reaction rules. The body of this

9

process encodes the regular expression of reaction rules. Each reaction rule
is translated to LNT separating both sides of the rule (i.e., left hand part
and right hand part) using the LNT sequential composition (;). In order to
make explicit in the controller LTS the logical interval of time that will be
chosen at the implementation step and during which the controller receives
messages, the left hand part of the reaction rule starts with an action TBEGIN

and ends with an action TEND. Those time delimiters are used by the con-
troller to give the pace at which the coordinator reacts. The left hand part of
the rule (inside TBEGIN and TEND) is translated using the par operator with-
out synchronization (pure interleaving) since all the messages can be received
in any order (see Fig. 4). After the execution of the TEND action, the right
hand part of the reaction rule is translated using the sequential composition
to avoid unnecessary interleavings of actions, which would result in larger
LTSs.

As far as the regular expression is concerned, a sequence (.) of rules is en-
coded using the sequential composition (;) and a choice (+) between several
rules is translated using the select construct. An iteration (∗) is encoded
using the loop operator as follows, where “...” stands for the translation of
the expression on which the operator “*” applies:

loop L1 in
select break L1 [] ... end select

end loop

Architecture encoding. In this section, we present how all the partici-
pants, i.e., managers and coordination expression, are composed altogether.
The communication between them is achieved asynchronously. The coordi-
nation expression represents an abstract description of the future controller
that we aim to generate, and all the messages must go through this controller,
which acts as a centralized orchestrator. Each participant is equipped with an
input FIFO buffer. When a participant wants to read a message, it consumes
the oldest message from its buffer. When it sends a message to another par-
ticipant, the message is stored in the input buffer of that participant. LNT
functions are used to describe basic operations on these buffers (e.g., addi-
tion and retrieval of messages). We present below, an example of function
that removes a message from a FIFO buffer (i.e., from the beginning).

10

Process coordination [message1_REC: any,
 message1_EM: any, message2_REC: any,
 message2_EM: any] is
 Loop L1 in
 select
 break L1
 []
 TBEGIN;
 message1_REC;
 TEND; message1_EM
 []
 TBEGIN;
 par
 message2_REC
 ||
 message1_REC
 end par;
 TEND; message2_EM
 end select
 end loop
end process

 (message1_REC -> message1_EM

 +

 message2_REC, message1_REC ->message2_EM) *

Figure 4: Example of coordination requirements encoded into an LNT process

function remove_MSG (q: TBUFFER): TBUFFER is
case q in

var hd: TMessage, tl: TBUFFER in
nil -> return nil

| cons(hd,tl) -> return tl

end case
end function

The function takes as input a buffer (q) of type TBuffer, which consists
of a list of messages (TMessage). If the buffer is empty, nothing happens. If
it is not empty, the first message is removed.

It is worth noting that our synthesis techniques allow one to choose buffer
bounds. One can either decide to fix an arbitrary bound for buffers or to
use unbounded buffers. In the first case, the only constraint is that the same
buffer bound should be used when deploying the controller. Otherwise if
at some point it must be changed (e.g., after a modification in memory re-
quirements), unexpected behaviours and erroneous situations may occur. In
the second case (unbounded buffers), the risk is to attempt to generate a
controller whose corresponding state space is infinite [5]. As an intermedi-
ate solution, one can use the recent results presented in [3] for identifying
whether the interactions between managers with unbounded buffers can be

11

mimicked with bounded buffers. If this is the case, the lower bound returned
by these techniques should be used as the minimum buffer bound for both
our synthesis techniques and the deployment of the application.

We remind that parallel composition in LNT is described using the par

construct. This operator consists of a set of messages (mi below) on which
processes (pj) in parallel must synchronize:

par m1, ..., mn in
p1 [...] || ... || pk [...]

end par

A buffer in LNT is first encoded using an LNT list and classic operations
on it. Then, for the behavioural part, a buffer is encoded using a process
with a buffer data type as parameter. This process can receive messages
from the other participants, and synchronizes with its own participant when
that one wants to read a message. We generate a process encoding each
couple (participant, buffer) that corresponds to a parallel composition (par)
of the participant with its buffer. The synchronization set contains messages
consumed by the participant from its buffer.

Finally, the whole system (main process in LNT, see below) consists of the
parallel composition of the couple (coordination, buffer) with all the couples
(manageri, bufferi) generated for all the managers. Note that since auto-
nomic managers communicate via the controller, they evolve independently
one from another and are therefore composed using the par operator with-
out synchronizations. In contrast, the couple (coordination, buffer) must
synchronize with all the other couples on all send messages from the man-
agers/to the buffers, and this is made explicit in the corresponding synchro-
nization set of this parallel composition (messagep, .., messagek).

process main [message1:any, ..., messagen:any] is
par messagep, ..., messagek in
couple_buffer_coordination [...]

||

par
couple_buffer_manager1 [...]

|| ... ||

couple_buffer_managern [...]

end par
end par

end process

12

3.2. Controller Generation and Verification

Generation of the controller LTS. The controller model is an LTS
consisting of messages to be consumed from its buffer and messages to be sent
to the other participants. The controller LTS also keeps track of the messages
received by its own local buffer. This information is useful in some specific
cases (non-determinism for instance) in which the controller can execute
different actions and, depending on the buffer content, it will decide what
behaviour must be executed. By looking at the buffer content, the controller
can make the right decision and avoid engaging in a branch that may lead
to an erroneous execution of the whole system (impossibility to read some
action for example).

Definition 4. A controller LTS is a tuple (S, s0,Σ, T) where: S is a set
of states, s0 ∈ S is the initial state, Σ = Σ! ∪ Σ? ∪ ΣB is a finite alphabet
partitioned into a set Σ! (Σ?, resp.) of send (receive, resp.) messages and a
set of messages received by its buffer ΣB, and T ⊆ S×Σ×S is the transition
function.

Once all the inputs (models and coordination requirements) are encoded
into LNT, we can use compilers available in the CADP tools to obtain the
controller LTS corresponding to all behaviours of the LNT specification.
More precisely, we preserve local send/receive messages from the coordina-
tion expression point of view (messages shown in the dashed grey rectangle
in Fig. 5) and the receive messages from all the managers. To do so, we hide
all message exchanges corresponding to consumptions of the managers from
their buffers. All these messages are replaced by internal actions τ . Then,
we use the reduction techniques available in CADP for getting rid of internal
actions, removing duplicated paths, and determinizing the final LTS. The
reductions can be achieved using on-the-fly techniques modulo: (1) strong
equivalence for replacing duplicated sequences of transitions by a single se-
quence and (2) weak trace equivalence for determinizing the generated LTS.

Verification of the generated controller. Since the writing of the
coordination expression is achieved manually by a designer, this step of our
approach may lead to an error-prone controller. Indeed, the designer can pro-
vide a wrong specification of the coordination requirements, which does not

13

Figure 5: Exchange of messages between the coordination expression and the managers

satisfy the global objectives of all the managers. However, we can take advan-
tage of the encoding into LNT to analyze and validate either the controller
LTS alone (and thus the coordination expression) or the LTS corresponding
to the final system (i.e., the composition of all the participants). To do so,
one can use the CADP model checker (Evaluator), which takes as input an
LTS model and temporal properties specified in MCL [22]. We distinguish
two types of properties:

1. properties which depend on the application, e.g., the controller must
eventually transmit a specific message to a certain manager;

2. properties which do not depend on the application, e.g., checking the
absence of deadlock.

We would like to recall that actions TBEGIN and TEND are parts of both the
controller LTS and of the LTS corresponding to the whole system. Therefore,
one can also verify properties using those specific actions. For instance, one
can formalize in the MCL logic properties such as ”there is never two actions
A and B in sequence without an action TEND in-between” or “an action
C is always systematically followed by an action TEND”. Those kinds of
properties are useful if the designer wants to check that some situation will
never occur (safety properties) or will eventually occur (liveness properties).

Another source of error may occur when one action appears unexpectedly
between TBEGIN and TEND. In that case, no reaction rule would match the
exact set of events, resulting in a deadlocking behaviour. This erroneous case
can be detected using verification techniques by checking for the presence of
deadlock in the controller LTS. Once detected, the solution for solving this

14

problem is to add a reaction rule to the coordination expression for handling
this specific case.

4. Java Code Generation and Deployment

We present in this section our techniques for automatically generating
the Java code, which corresponds to the controller LTS obtained during the
synthesis phase (see Section 3.2). This Java code is generated without human
intervention and allows one to deploy controllers in the context of real-world
applications as we will show in Section 5.

4.1. Java Code

Our Java code generation techniques are based on the use of object-
oriented programming. They take as input the controller LTS synthesized
beforehand and automatically generate all Java classes, methods, and types
necessary for deploying it. The controller LTS is encoded as an instance
of a Java class LTS. This class relies on two classes, namely a class State

and a class Transition representing the transitions between the states. The
LTS class also defines an attribute cstate representing the current active
state in the controller model. This variable is initialized with the LTS initial
state. Some additional Java code is necessary to interface the controller
with the running application. We particularly define a method called react

that takes as input a list of messages received within a period of time and
triggers successive moves in the controller according to the current state of the
controller and to the received messages. This method computes the messages
that the controller has to send as a reaction to these received messages and
updates the current state of the controller.

4.2. Deployment

Our generated Java code can be deployed and applied on concrete appli-
cations using the event-based programming paradigm. The period of time
described using special actions TBEGIN and TEND in the controller LTS has to
be instantiated with a real value. The choice of this period cannot be made
during the synthesis phase and is achieved just before deployment. This pe-
riod is computed using sampling techniques and implemented using the sleep
method in the LTS class introduced previously. By sampling techniques, we
mean simulation and empirical study in order to determine the best period
of time with respect to the application being monitored. The choice of this

15

period mainly depends on the occurrence rate of events raised by the system.
The goal of this step is to find the best trade-off between stability and reac-
tivity. To put it another way, the more unstable the system is, the shortest
the period of time should be. If two events appear one after the other very
closely but on two periods of time whereas we would like to catch them on
a same period, we will miss the problem and eventually add then remove an
unnecessary server for instance. However, these boundary cases do not occur
frequently if the period is chosen as explained above and for those cases our
approach converges quickly to a stable situation. Convergence is ensured if
the coordination expression also takes the original automomic manager be-
haviours into account, that is, allows the managers to behave as originally
designed without coordination. In that case, the system will work, not opti-
mally from a reconfiguration point of view (possible addition of unnecessary
servers for instance), but it will make the required modification imposed by
the (uncoordinated) managers.

The main behaviour of the controller (run method) consists of an infi-
nite reactive loop, which successively receives events from the application
and computes reactions (messages to be sent by the controller). The result
produced by each call of the run method (i.e., controller reactions) has to
be interpreted and executed. Therefore, all the messages returned by that
method are encoded as events too. A part of the Java program is dedicated
to handling the events raised by the application by converting them into the
input format of the react method, and conversely handling the output of the
react method by translating it into a list of events executed by the system.
Each event contains the corresponding message and additional information,
for instance, a failure event also has as parameter the impacted server and
further information (identifier, port, etc.). Therefore, all the messages re-
ceived/emitted by the generated controller are related to the corresponding
events. As far as asynchronous communication is concerned, different exist-
ing software can be used, such as RabbitMQ, which is a classic industrial
solution for implementing message queuing interactions.

5. A Multi-tier Application Supervised by Autonomic Managers

We introduce in this section a JEE multi-tier application supervised by
two sorts of autonomic managers, namely a self-repair and a self-sizing man-
ager. We illustrate our approach on this example, by presenting successively

16

the application, the coordination requirements, the encoding into LNT, the
controller model generation, and the final deployment of the controller.

5.1. Multi-Tier Application

The JEE multi-tier application (Fig. 6) consists of an Apache Web server,
a set of replicated Tomcat servers, a MySQL proxy server, and a set of
replicated MySQL databases. The Apache server receives incoming requests
and distributes them to the replicated Tomcat servers. The Tomcat servers
access the database through the MySQL proxy server that distributes the
SQL queries to a tier of replicated MySQL databases fairly.

Figure 6: A multi-tier application

5.2. The Managers Role

The dynamic sizing plays an important role in the load balancing and en-
ergy consumption of the replicated servers on this type of application. When
starting the application, it is difficult to predict the number of requests and
to estimate the number of required servers. Therefore, adjusting dynami-
cally the number of replicated servers according to the number of requests
is necessary. Moreover, once a server fails, the failure must be immediately
detected and repaired in order to preserve the application consistency. Man-
agers are used to optimize the load balancing and preserve the application
consistency. To sum up, a self-sizing manager handles the dynamic sizing of
the application and a self-repair manager is in charge of detecting failures
and repairing them.

Figure 7 shows how the architecture of the managers is based on the
MAPE-K model (Monitor Analyse Plan Execute - Knowledge). For instance,

17

the self-sizing manager continuously observes a load of replicated servers
through the Monitor function. It computes the average of the load and
detects the presence of an overload or an underload through the Analyze
function. Once an overload (underload, resp.) is detected, the manager
makes a decision about the addition or removal of a server through the Plan
function. This decision is executed by the Execute function.

Figure 7: Architecture of the self-sizing (left) and of the self-repair (right) manager

5.3. The Managers Models

We describe the managers behaviours using several LTS models. First,
we model the behaviour of the Monitor, Analyse, and Execute functions of
the managers by what we call the application manager (Fig. 8, right), which
sends messages when a change occurs in the system and receives messages
indicating actual administrative changes to perform on the application. As
for the Plan functions, we use two models called self-sizing and self-repair
managers, resp. The generated controller aims at coordinating the messages
transmitted from the Analyze function to the Plan function and from the
Plan function to the Execute function.

The self-sizing manager. The self-sizing is in charge of adapting
the number of replicated servers dynamically by sending the message add!

(remove!, resp.) to the system when detecting an overload (underload,

18

Figure 8: (left) Self-repair manager LTS, (middle) Self-sizing manager LTS, (right) Appli-
cation manager LTS

resp.). The overload (underload, resp.) is detected when the average of
the load exceeds (is under, resp.) a maximum (minimum, resp.) threshold
(Fig. 8, middle). We associate one instance of the self-sizing manager to the
Tomcat servers and another instance to the MySQL databases. We distin-
guish these two instances of the same manager as follows: both models have
the same states and transitions as the LTS shown in Figure 8 (middle), but
suffixed by tc (mq, resp.) when the instance is associated with the Tomcat
servers (MySQL databases, resp.).

The self-repair manager. The self-repair manager detects failures and
requires the creation of new instances of the failed servers (Fig. 8, left). We
have four instances of the self-repair manager, one per tier. Therefore, we
consider here that we have four managers. All the models have the same
states and transitions as the LTS shown in Figure 8 (left), but suffixed by
ap (tc, pq, mq, resp.) when the instance is associated to the Apache server

(Tomcat servers, MySQL proxy server, MySQL databases, resp.).

5.4. Coordination Problems

The absence of coordination between these managers may lead the whole
system to some undesired situation such as adding two new servers whereas
one was enough or removing a server that is needed as a result of a server
failure. We distinguish two types of problems: those occurring in the same
tier (i.e., the replicated servers) and those occurring in different tiers.

Coordination problems in the same tier. A failure of a server in a
set of replicated servers triggers an overload of the remaining servers. When
the self-repair manager receives a message indicating the detection of this
failure, it sends a message to the application manager requesting it to repair
the failure by creating a new replica. Before completion of this repair phase,
the other replicated servers receive more requests than before the failure,
which causes an overload. Upon reception of this overload detection from

19

the application manager, the self-sizing manager sends a message back asking
the addition of another server. In this scenario, as a result of a server failure,
two new servers are added to the application whereas one was enough.

Coordination problems in different tiers. A failure of a server,
which is hosted on the first tier and connected to other servers hosted on
another tier, triggers an underload in the second tier. When the self-repair
manager receives a message indicating the detection of this failure, it sends
a message to the application manager requesting it to repair the failure by
creating a new replica. Before completion of this reparation, the servers
hosted on the second tier receive fewer requests than before the failure, which
causes an underload. Upon reception of this underload detection from the
application manager, the self-sizing manager sends a message back calling
for the removal of a server. Then, once the failed server is repaired, the
servers hosted on the second tier receive more requests than before the server
reparation, which causes an overload and therefore the addition of another
server by the self-sizing manager. Therefore two unnecessary reconfiguration
operations (removal and addition of a server) are executed as a result of a
server failure in that example.

5.5. Managers Coordination

We present below an excerpt of the requirements for the controller we
want to generate for our example. These rules ensure that all the managers
globally satisfy the coordination objectives. Each line presents the actions
that can be received by the controller in a period T (left parts of reactions
rules). At the end of each period, if the received messages match the left
part of one fireable rule, it reacts by emitting the messages appearing in the
right part of that rule. All the messages are prefixed by the manager name
(app stands for the application manager) and suffixed by the name of the
tier to which is associated the manager.

(app_failure_ap? -> repair_failure_ap! (Ê)
+ app_failure_tc? -> repair_failure_tc! (Ë)
+ app_overload_tc? -> sizing_overload_tc! (Ì)
+ app_underload_tc? -> sizing_underload_tc! (Í)
+ app_failure_mysql? -> repair_failure_mysql! (Î)
+ app_failure_px? -> repair_failure_px! (Ï)
+ app_failure_ap?, app_underload_tc? -> repair_failure_ap! (Ð)
+ app_failure_tc?, app_overload_tc? -> repair_failure_tc! (Ñ)
+ ...) *

20

We distinguish two kinds of rules:

1. those where a unique message appears in the left part of the reaction
rule (see, e.g., Ê, Ë). In that case, the corresponding controller trans-
fers that message to the manager;

2. those encoding the coordination we want to impose on managers, e.g.,
rule Ñ permits to generate a controller that can avoid to add two Tom-
cat servers by forwarding only one of the two received messages on a
same period of time.

Last, since there is no specific order between all these rules, we use a simple
regular expression where all the rules can be fired at any time (combination
of + and * operators).

5.6. Encoding into LNT

Let us first show some excerpts of LNT obtained when calling our LNT
code generator on this example. We first show the LNT processes encoding
an instance of the repair manager, which handles the tier of the Tomcat
servers. The first process has the same name as the initial state identifier
R0 tc. The process alphabet is the set of labels used in this manager LTS
(repair failure tc REC and repair repairing tc EM). Each message is
prefixed with the manager name. The body of the first process, for instance,
consists of a failure receive message (repair Failure tc REC) followed by a
call to the process encoding the target state, that is, R1 tc.

process R0_tc [repair failure tc REC: any,
repair repairing tc EM: any] is

repair failure tc REC;

R1_tc [repair failure tc REC, repair repairing tc EM]

end process

process R1_tc [repair failure tc REC: any,
repair repairing tc EM: any] is

repair repairing tc EM;

R0 tc [repair failure tc REC, repair repairing tc EM]

end process

We show now an example of process encoding a couple (manager, buffer),
particularly the couple corresponding to the repair manager handling the

21

tier of the Tomcat servers. This manager synchronizes with its buffer on
the repair failure tc REC message, which is emitted by the buffer and
received by the manager. Note that the buffer process (buffer repair tc)
is equipped with a parameter corresponding to the buffer data type, that is,
the structure where messages are stored, initialized to nil.

process couple buffer repair tc [repair failure tc REC: any,
repair repairing tc EM: any, repair failure tc EM: any] is

par repair failure tc REC is
R0 tc [repair failure tc REC, repair repairing tc EM]

||

buffer repair tc [repair failure tc EM, ...] (nil)

end par
end process

After generating all the couples (autonomic manager/buffer, applica-
tion manager/buffer, and controller/buffer), the main process is encoded
using parallel compositions. The managers do not interact directly together.
Therefore, the couples (manager, buffer) are translated using the par con-
struct without synchronization (pure interleaving). All the managers com-
municate together through the controller. These interactions are expressed
using another parallel composition where the synchronization set makes ex-
plicit all the messages sent by the managers to the controller buffer, or sent
by the controller to the managers buffers.

process main [repair failure ap REC:any, ...] is
par sys failure ap EM, sys failure tc EM, ... in
(* couple coordination/buffer *)

couple buffer coordinaiton [...]

||

par
(* couple application manager/buffer *)

couple buffer AM [...]

||

(* couple repair manager/buffer for the Apache server*)

couple buffer repair ap [...]

||

(* couple repair manager/buffer for the Tomcat servers*)

couple buffer repair tc [...]

||

22

(* couple repair manager/buffer for the MySQL proxy server*)

couple buffer repair px [...]

||

(* couple repair manager/buffer for the MySQl databases*)

couple buffer repair mq [...]

||

(* couple sizing manager/buffer for the Tomcat server *)

couple buffer sizing tc [...]

||

(* couple sizing manager/buffer for the MySQL databases *)

couple buffer sizing mq [...]

end par
end par

end process

5.7. Controller Generation and Verification
CADP compilers take as input the specification corresponding to the LNT

encoding and compute as output the corresponding LTS describing the whole
system for our example. Then, we apply hiding and minimization techniques
on that LTS to generate the LTS corresponding to the controller. The fi-
nal controller LTS consists of 28,992,305 states and 46,761,782 transitions.
An excerpt of the controller LTS, which focuses on the failure and overload
detection of a Tomcat server in the same period of time, is shown in Fig-
ure 9. We recall that we use specific labels (namely TBEGIN and TEND) for
characterizing the messages received during a same period of time. This LTS
shows that when the controller receives a failure and an overload message
(of a Tomcat server in this example) during a same period, it forwards only
the failure message and drops the overload message. In contrast, when the
controller receives these two messages in two different periods, it forwards
them to the repair and sizing manager, resp.

We use the Evaluator model checker to verify temporal properties ex-
pressed in the MCL logic. For illustration purposes, we present two examples
of liveness properties. The first one is checked on the controller LTS and the
second one holds on the LTS of the whole system:

• The reception of a failure message by the controller is eventually fol-
lowed by the sending of a repair message to the application manager
in order to request it to repair the Tomcat server

23

Figure 9: Excerpt of the controller LTS for the example

[true* .app_failure_tc_REC] inev (app_repair_tc_EM)

• The emission of an overload message by the application manager is
eventually followed by an emission of a reparation or addition message
by the controller, but not both messages

[true* .app_overload_tc_EM]

inev (app_repair_tc_EM xor app_add_tc_EM)

This property shows that the overload message is always handled, either
by the repair manager when both Tomcat failure and overload occur
within a same period of time, or by the sizing manager.

Both properties use the macro inev (M), which is used especially when spec-
ifying liveness properties that are inevitability assertions. Inevitability as-
sertions can be expressed using fixed point operators that indicate that a
transition labelled with M eventually occurs. The inev macro is defined as
follows:

macro inev (M) = mu X .(< true > true and [not (M)] X)

end macro

Our approach was applied for validation purposes on many illustrative
examples of our dataset (managers and coordination requirements). Table 1
summarizes some of our experiments. Each managed application used as
input is characterized using the number of managers and the coordination
requirements. We give the size of the LTS (states/transitions) of the whole

24

|Managers| Whole system LTS Controller LTS Time
|states| |transitions| |states| |transitions| (m:s)

2 2,424 12,518 1,124 5,140 0:10
3 103,725 365,845 9,744 31,636 2:39
4 145 267 38 44 0:06
5 10,063,873 39,117,110 85,297 621,482 389:65
6 1,900 4,945 186 285 0:08
10 300,000 1,686,450 1,786 3,471 6:54

Table 1: Experimental results: LTSs size and synthesis time

system as well as the controller LTS obtained after minimization (wrt. strong
and weak trace relations). The last column gives the overall time to synthe-
size the controller.

Let us now shortly comment on the results presented in Table 1. First of
all, when using acyclic managers (see, e.g., the 3rd example in Table 1), the
size of the generated controller LTSs and the time required for computing
those LTSs are very small. In contrast, we observe that these numbers grow
importantly for other examples (gray lines). In those cases, the increase in
LTS size and computation time is due to the presence of looping behaviours
in manager models (as those presented in Figure 7). Since we rely on enu-
merative techniques for generating LTSs, looping behaviours induce more
possible combinations of correct executions, resulting in larger LTSs than for
acyclic models. We also see that LTS sizes and generation times increase
with the number of managers in parallel (see, e.g., the last line of Table 1).

5.8. Deploying and Running the Generated Controller

In this section, we present some experiments we performed when de-
ploying and running our controller for the multi-tier application introduced
previously (see Fig 6). To do so, we use a virtualized experimental platform
based on Openstack2, which consists of six physical machines on which we
instantiate virtual machines with 1 vCPU, 2GB of memory and 8GB of disk.

The JEE multi-tier application is initially configured and deployed with
a server at each tier, i.e., an Apache Web server, a Tomcat server, a MySQL
proxy, and a MySQL database. The initial deployment phase is automated

2https://www.openstack.org/

25

using a dynamic management protocol allowing us to connect and start the
involved servers and database in the right order [1]. In a second step, we use
the Apache JMeter application to inject increasing load on the Apache server
and thus to simulate the clients that send HTTP requests on the managed
system. Once we have at least two active Tomcat servers and two MySQL
databases, we start simulating failures using a failure injector. When we start
injecting failures, we stop augmenting the workload on the Apache server
and keep the same load for the rest of the execution. The failure injector
is flexible and can be used for affecting any active server (Apache, Tomcat,
MySQL, etc.), any number of times (single failure or multiple failures of the
same or of different servers), and at any time (same period of time, different
periods of time, etc.). We conducted our experiments on applications with
or without controller. We have considered various scenarios with failures of
the Apache server and of the MySQL proxy as well as failures/load variation
of the Tomcat servers and of the MySQL databases. We made long-running
experiments for validation of our approach where we ran the application for
hours with random injection of failures.

Figure 10 shows an excerpt of the system behaviour after 500 minutes
since the application deployment. We observe that, at this moment, the
application is composed of five Tomcat servers and three MySQL databases.
Figure 10 presents several cases of failure injection. As an example, at minute
508, a failure of a replicated MySQL database causes a workload increase on
the other replicated servers. These two actions happen in the same period,
and the controller forwards only the failure detection to the repair manager.
Accordingly, a single MySQL is added by the repair manager and the work-
load returns at once to its average value.

We made several experiments in which we varied the number of fail-
ures, the Apache load, and the minimum/maximum thresholds of the Tom-
cat servers and of the MySQL databases. In all these cases, we observe
that the controller succeeds in detecting and correcting the problems while
avoiding undesired reconfiguration operations, that is, the unnecessary ad-
dition/removal of servers/databases. Figure 11 shows experimental results
obtained with different numbers of failures. For instance, we see that when
injecting 14 failures to our running application, the controller applies 18
reconfiguration operations on the system, i.e., 18 addition or removal of

26

500 510 520 530 540 550 560 570 580
time (minutes)

0

20

40

60

80

100
C

P
U

 l
o
a
d

 (
%

)
Avg cpu MySQLs
Avg cpu Tomcats

0

1

2

3

4

5

6

7

N
u

m
b

e
r

o
f

T
o
m

c
a
t

&
 M

y
S

Q
L

MySQLs active
Tomcats active

Figure 10: Tomcat and MySQL failure/overload in a coordinated environment

servers/databases. Without coordination, the number of reconfigurations for
this scenario increases to 40. This means that 22 undesired reconfiguration
operations have been avoided by using a controller-based approach.

The results presented in Figure 11 were obtained by running one simula-
tion for each number of failures (3, 6, 10, 14, etc.). This figure shows that
the number of reconfiguration operations decreases importantly by using our
controller-based solution. Without coordination, the number of reconfigura-
tions is at least twice larger. However, in the coordinated case, the number
of unnecessary reconfiguration operations is not completely removed and is
therefore not optimal. Indeed, there are situations when there are several
failures in a row or when messages arrive on two periods of time as discussed
in Section 4. In those cases we cannot avoid unnecessary reconfiguration
operations and this explains the variation in our results for instance between
30 failures (about 30 reconfiguration operations in the coordinated case) and
50 failures (about 70 reconfiguration operations in the coordinated case).

27

0

20

40

60

80

100

120

140

160

3 6 10 14 21 30 36 40 50

without coordination

with coordination

undesired operations
without coordination

N
u

m
b

er
 o

f
re

co
n

fi
gu

ra
ti

o
n

 o
p

er
at

io
n

s
(a

d
d

it
io

n
 a

n
d

 r
em

o
va

l o
f

V
M

s)

Number of failures

Figure 11: Number of reconfiguration operations with/without coordination and number
of undesired operations avoided by coordination

6. Related Work

Controller synthesis techniques. Controller synthesis for discrete
event systems was originally introduced by Ramadge and Wonham [29, 27].
In [29], the authors present a controllable language as a solution for the super-
visory of hybrid control systems. This solution generates controllers from a
given system called plant and designed as a finite automaton. [27] proposes
a supervisor synthesis algorithm for automatically generating a controller
from a plant modelled as a finite automaton and properties to be ensured by
the controller. The generated controller permits all possible legal executions.
This synthesis approach is based on a classical two-person game approach.
These approaches can be characterized as restrictive because they directly
influence and impact the controlled system.

In [12], the authors introduce an approach based on contract enforce-
ment and abstraction of components to apply a modular discrete controller
synthesis on synchronous programs. These programs are presented by Syn-
chronous Symbolic Transition Systems. The authors integrate this approach
in a high-level programming language combining data-flow and automata.
Another decentralized supervisory control approach for synchronous reactive

28

systems is presented in [28]. This work is based on finite state machines and
computes local controllers that act on the subsystems to ensure a global prop-
erty. The local controllers are automatically generated and this approach was
applied to several examples for validation purposes. This approach allows de-
centralized control whereas we generate a centralized controller. Moreover,
they rely on synchronous systems and synchronous communication seman-
tics, whereas we assume asynchronous systems and communication, meaning
that the controllability hypothesis is impossible in our context.

Coordination of autonomic managers. In [25], the authors propose
a generic integration model that focuses, first, on categorizing all autonomic
loops in terms of reciprocal interference. This generic model can be used to
manage the synchronization and coordination of multiple control loops, and
it was applied to a scenario in the context of cloud computing and evalu-
ated under simulation-based experiments. This paper does not provide any
synthesis techniques for coordinating the multiple loops, and coordination is
achieved in a rather manual way.

[24] presents a framework for the coordination of multiple autonomic
managers in the cloud computing context. Managers are classified in two
categories: application-related and infrastructure-related managers. These
works use a protocol based on synchronous mechanisms and inter-manager
events and actions along with synchronization mechanisms for coordinating
these managers. The main difference compared to our work is that this pa-
per focuses on quality of service whereas we provide controller generation
techniques considering behavioural and functional aspects of the system ex-
ecution.

Other recent works [11, 17, 18] propose some techniques based on syn-
chronous discrete controller synthesis for coordinating autonomic managers,
such as self-repair and self-sizing managers. The communication between
the generated controller and the managers is synchronous and uses a syn-
chronous language BZR, which cannot impose a specific order between re-
quirements and contains multiple and complicated operations. This approach
uses a background in synchronous systems and languages, whereas we focus
on asynchronous systems and assume that communication is achieved asyn-
chronously. Our approach is thus tailored for these hypotheses.

Configuration of cloud applications. [10] presents the Aeolus com-
ponent model and explains how some activities, such as deployment, recon-
figuration, and management phases of complex cloud applications, can be

29

automated in this model. Aeolus takes as inputs high-level application de-
signs, user needs, and constraints (e.g., the number of required ports that
can be bound to a client port) to provide valid configuration environments.
This work presents some similarities with ours, but does not propose solu-
tions for verifying that the constraints are satisfied in the target configura-
tions. Beyond Aeolus, other frameworks have attempted to provide deploy-
ment and reconfiguration algorithms for distributed cloud applications, see,
e.g., [21, 15, 14, 13].

In [6], the authors present an extension of TOSCA (OASIS Topology and
Orchestration Specification for Cloud Applications) in order to model the be-
haviour of component’s management operations. More precisely, they specify
the order in which the management operations of an instantiated component
must be executed. In this work, the authors explain how management proto-
cols are described as finite state machines, where the states and transitions
are associated with a set of conditions on the requirements and capabilities
of the components.

Coordination of component-based systems. In [26], the authors
introduce AutoMate, a framework for coordinating multiple autonomic com-
ponents hosted on Grid applications, using high-level rules for their dynamic
composition. The rules are executed using a decentralized deductive engine,
called RUDDER, and composed of distributed specialized agents. RUDDER
deploys the rules and coordinates their execution. It assigns priorities to
these rules in order to resolve conflicting decisions between them. However,
it uses a manual administration to evaluate and update the interaction rules.

[4] presents an approach relying on the GCM/ProActive execution envi-
ronment, where applications are composed of distributed components com-
municating by asynchronous requests with futures. The components take
adaptation decisions and evolve in an autonomic way employing features
designed to describe their behaviours. This approach relies on loosely cou-
pled components, which communicate asynchronously by message sending
and share references for the futures. The two main differences between
this work and ours is in the communication model and in the way con-
trol/reconfiguration is implemented ([4] relies on the notion of membrane to
do so).

30

7. Conclusion

We have focused in this article on the coordination of several autonomic
managers in the context of cloud applications. We have proposed in this
article new asynchronous synthesis techniques for generating a controller al-
lowing the monitoring and orchestration of such autonomic managers. These
techniques take as input a set of abstract behavioural models for the man-
agers as well as the coordination requirements described as reaction rules.
Then, the synthesis process works in two successive steps. We first generate
a controller model using as intermediate step a process algebra encoding. Sec-
ond, we rely on Java code generation techniques for deploying the generated
controller in order to coordinate real-world applications. The generated and
deployed controller interacts asynchronously with the managers via FIFO
buffers and allows them to take globally coherent decisions.

This article shows how the approach covers the whole development pro-
cess from an expression of the requirements to the final implementation and
deployment of the synthesized controller, which helps to coordinate at run-
time real-world applications. In addition, these synthesis techniques can be
used to control other applications where components are modelled as LTSs
and communicate asynchronously. This is the case in application areas such
as Web services, multi-agent systems, or hardware protocols.

As far as future is concerned, we plan first to extend our coordination
language in order to specify concurrent flows (e.g., by means of fork/join
operators), which are quite common in orchestration and distributed coordi-
nation. Furthermore, our coordination expressions cannot describe specific
requirements (e.g., elastic behaviours with oscillations or cool-down peri-
ods). Expressing this type of needs requires the extension of our coordina-
tion language and LTS models with data-awareness and real-time constraints.
The addition of such numerical values and constraints may, however, result in
larger state spaces, especially when addressing more complicated applications
with an important number of managers. To tackle the state space explosion
problem and to be able to handle larger systems, we plan to integrate alterna-
tive generation and model checking techniques, such as symbolic approaches
with OBDDs and partial order reductions [9]. Another idea to reduce the
size of the generated controller is to adopt a distributed coordination solution
(divide and conquer). The main advantage of this distribution is that every
controller is much smaller in terms of states and transitions compared to a
unique centralized controller. This generation is however not that easy be-

31

cause those distributed controllers need to interact together at certain points
in time in order to apply the coordination requirements in a consistent way
from a global point of view. We plan to add these synchronization points at
the process algebra encoding level.

References

[1] R. Abid, G. Salaün, F. Bongiovanni, and N. De Palma. Verification of
a Dynamic Management Protocol for Cloud Applications. In Proc. of
ATVA’13, volume 8172 of LNCS, pages 178–192. Springer, 2013.

[2] R. Abid, G. Salaün, N. De Palma, and S. Mak Karé Gueye. Asyn-
chronous Coordination of Stateful Autonomic Managers in the Cloud.
In Proc. of FACS’15, volume 9539 of LNCS, pages 48–65. Springer, 2015.

[3] L. Akroun, G. Salaün, and L. Ye. Automated Analysis of Asyn-
chronously Communicating Systems. In Proc. of SPIN’16, volume 9641
of LNCS, pages 1–18. Springer, 2016.

[4] F. Baude, L. Henrio, and C. Ruz. Programming Distributed and
Adaptable Autonomous Components - The GCM/ProActive Frame-
work. Softw., Pract. Exper., 45(9):1189–1227, 2015.

[5] D. Brand and P. Zafiropulo. On Communicating Finite-State Machines.
J. ACM, 30(2):323–342, 1983.

[6] A. Brogi, A. Canciani, J. Soldani, and P. Wang. Modelling the Behaviour
of Management Operations in Cloud-based Applications. In Proc. of
PNSE’15, volume 1372 of CEUR Workshop Proceedings, pages 191–205,
2015.

[7] D. Champelovier, X. Clerc, H. Garavel, Y. Guerte, V. Powazny, F. Lang,
W. Serwe, and G. Smeding. Reference Manual of the LOTOS NT to
LOTOS Translator (Version 5.4). INRIA/VASY, 2011.

[8] B. Charron-Bost, F. Mattern, and G. Tel. Synchronous, Asynchronous,
and Causally Ordered Communication. Distributed Computing,
9(4):173–191, 1996.

32

[9] E.M. Clarke, W. Klieber, M. Novek, and P. Zuliani. Model Checking
and the State Explosion Problem. In B. Meyer and M. Nordio, edi-
tors, Tools for Practical Software Verification, volume 7682 of LNCS.
Springer, 2012.

[10] R. Di Cosmo, J. Mauro, S. Zacchiroli, and G. Zavattaro. Aeolus: A
Component Model for the Cloud. Inf. Comput., 239:100–121, 2014.

[11] G. Delaval, S.M.K. Gueye, E. Rutten, and N. De Palma. Modular Coor-
dination of Multiple Autonomic Managers. In Proc. of CBSE’14, pages
3–12. ACM, 2014.

[12] G. Delaval, H. Marchand, and E. Rutten. Contracts for Modular Dis-
crete Controller Synthesis. In Proc. of LCTES’10, pages 57–66. ACM,
2010.

[13] F. Durán and G. Salaün. Robust and Reliable Reconfiguration of Cloud
Applications. Journal of Systems and Software, 122:524–537, 2016.

[14] X. Etchevers, G. Salaün, F. Boyer, T. Coupaye, and N. De Palma. Reli-
able Self-deployment of Cloud Applications. In Proc. of SAC’14, pages
1331–1338. ACM, 2014.

[15] J. Fischer, R. Majumdar, and S. Esmaeilsabzali. Engage: A Deployment
Management System. In Proc. of PLDI’12, pages 263–274. ACM, 2012.

[16] H. Garavel, F. Lang, R. Mateescu, and W. Serwe. CADP 2011: A
Toolbox for the Construction and Analysis of Distributed Processes.
STTT, 15(2):89–107, 2013.

[17] S.M.K. Gueye, N. De Palma, E. Rutten, and A. Tchana. Coordinating
Multiple Administration Loops Using Discrete Control. SIGOPS Oper.
Syst. Rev., 47(3):18–25, 2013.

[18] S.M.K. Gueye, E. Rutten, and A.Tchana. Discrete Control for the Coor-
dination of Administration Loops. In Proc. of UCC’12, pages 353–358.
IEEE Computer Society, 2012.

[19] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall,
1985.

33

[20] J. E. Hopcroft and J. D. Ullman.
Introduction to Automata Theory, Languages and Computation.
Addison Wesley, 1979.

[21] C. Krause, Z. Maraikar, A. Lazovik, and F. Arbab. Modeling Dynamic
Reconfigurations in Reo Using High-Level Replacement Systems. Sci.
Comput. Program., 76(1):23–36, 2011.

[22] R. Mateescu and D. Thivolle. A Model Checking Language for Concur-
rent Value-Passing Systems. In Proc. of FM’08, volume 5014 of LNCS,
pages 148–164. Springer, 2008.

[23] R. Milner. Communication and concurrency. Prentice Hall, 1989.

[24] F.A. De Oliveira, T. Ledoux, and R. Sharrock. A Framework for the
Coordination of Multiple Autonomic Managers in Cloud Environments.
In Proc. of SASO’13, pages 179–188. IEEE, 2013.

[25] F.A. De Oliveira, R. Sharrock, and T. Ledoux. Synchronization of
Multiple Autonomic Control Loops: Application to Cloud Computing.
In Proc. of COORDINATION’12, volume 7274 of LNCS, pages 29–43.
Springer, 2012.

[26] M. Parashar, H. Liu, Z. Li, V. Matossian, C. Schmidt, G. Zhang, and
S. Hariri. AutoMate: Enabling Autonomic Applications on the Grid.
Cluster Computing, 9(2):161–174, 2006.

[27] P.J.G. Ramadge and W.M. Wonham. The Control of Discrete Event
Systems. Proc of the IEEE, 77(1):81–98, 1989.

[28] A. Belhaj Seboui, N. Ben Hadj-Alouane, G. Delaval, É. Rut-
ten, and M. Yeddes. An Approach for The Synthesis
of Decentralised Supervisors for Distributed Adaptive Sys-
tems. International Journal of Critical Computer-Based Systems,
2(3/4):246–265, 2011.

[29] W.M. Wonham and P.J.G. Ramadge. On the Supremal Controllable
Sublanguage of a Given Language. SIAM Journal on Control and
Optimization, 25(3):637–659, 1987.

34

