
Asynchronous Coordination of Stateful
Autonomic Managers in the Cloud

Rim Abid, Gwen Salaün, Noel De Palma, and Soguy Mak-Kare Gueye

University of Grenoble Alpes, Inria, LIG, CNRS, France

Abstract. Cloud computing is now an omnipresent paradigm in mod-
ern programming. Cloud applications usually consist of several software
components deployed on remote virtual machines. Managing such ap-
plications is a challenging problem because manual administration is
no longer realistic for these complex distributed systems. Thus, auto-
nomic computing is a promising solution for monitoring and updating
these applications automatically. This is achieved through the automa-
tion of administration functions and the use of control loops called au-
tonomic managers. An autonomic manager observes the environment,
detects changes, and reconfigures dynamically the application. Multiple
autonomic managers can be deployed in the same system and must make
consistent decisions. Using them without coordination may lead to in-
consistencies and error-prone situations. In this paper, we present our
approach for coordinating stateful autonomic managers, which relies on
a simple coordination language, new techniques for asynchronous con-
troller synthesis and Java code generation. We used our approach for
coordinating real-world cloud applications.

1 Introduction

Autonomic computing [17] is increasingly used to solve complex systems, since it
reduces human errors [19]. It has become popular especially in cloud applications
where the management is a crucial feature. Autonomic computing is based on
the use of autonomic managers [18]. An autonomic manager is built as a control
loop. It observes the application execution, ensures a continuous monitoring,
and reacts to events and changes by automatically reconfiguring the application.
The increasing complexity of cloud applications implies the use of various and
heterogeneous autonomic managers, such as self-healing and self-protecting [5],
with the objective to reconfigure automatically themselves.

When multiple autonomic managers monitor the same system, they should
take globally coherent decisions. Hence, a manager should be aware of decisions
of other managers before reacting. When it reacts without taking into account
decisions of other managers handling the same application, error-prone situa-
tions may occur (e.g., removing a server that will be needed). In order to avoid
performance degradation and system consistency problems, and also to limit
energy consumption it is necessary to coordinate all autonomic managers.

2 Rim Abid, Gwen Salaün, Noel De Palma, and Soguy Mak-Kare Gueye

In this paper, we present our approach, whose main goal is to synthesize a
controller that monitors and orchestrates the reconfiguration operations of the
involved managers. The controller also prevents a manager from violating global
objectives of the managers. All participants involved in the application interact
asynchronously with the controller and messages are stored/consumed into/from
FIFO buffers.

More precisely, an autonomic manager is described using a formal model,
namely a Labelled Transition System (LTS). We used reaction rules and regular
expressions to specify coordination requirements and interaction constraints. As
a consequence, each manager is not only able to manage its internal behaviour
but also its relationship with other autonomic managers, which is achieved in
accordance with the specification of the coordination requirements. As shown
in Figure 1, we propose controller synthesis techniques for asynchronously com-
municating managers. These techniques rely on an encoding of our inputs (LTS
models and coordination requirements) into the LNT process algebra [6]. LNT
is one of the input languages of the CADP toolbox [11], a state-of-the-art verifi-
cation toolbox for concurrent systems. CADP compilers and minimization tools
are particularly useful for generating a reduced LTS from the LNT specification.
The generated LTS corresponds to all possible executions of the controller. It is
worth noting that since we rely on formal techniques and tools, all the verifica-
tion techniques available in the CADP toolbox can be used for validating the
generated controller.

Once we have synthesized the controller LTS, Java code is generated using a
code generator we developed. This Java code is finally deployed and used for co-
ordinating real applications. We validated our approach on several variants of a
N-tier Web application involving several autonomic managers, such as self-sizing
or self-repair managers. We emphasize that our approach covers the whole devel-
opment process from expression of the requirements to the final implementation
and deployment of the solution.

Fig. 1. Overview of our approach

Asynchronous Coordination of Stateful Autonomic Managers in the Cloud 3

The rest of this paper is structured as follows. In Section 2, we introduce our for-
mal model for autonomic managers, the coordination language, and our running
example (a multi-tier Web application). In Section 3, we present our synthesis
techniques that mainly rely on an encoding into process algebra and on LTS ma-
nipulations. Section 4 introduces the code generation techniques for obtaining
Java code from controller models. We discuss related work in Section 5 and we
conclude in Section 6.

2 Models

In this section, we first present the abstract model used to represent autonomic
managers. In a second step, we introduce reaction rules and regular expressions
for specifying how the involved managers are supposed to interact together.
Manager models and coordination expressions are used as input to our synthesis
techniques (Section 3). At the end of this section, we introduce a typical example
of distributed cloud application that we use as running example.

2.1 Autonomic Manager

Each autonomic manager is modelled as a Labelled Transition System, which is
defined as follows:

Definition 1. A Labelled Transition System (LTS) is a tuple defined as LTS =
(Q,A, T, q0) where Q is a finite set of states, A = A! ∪ A? is an alphabet parti-
tioned into a set of send and receive messages, T ⊆ Q×A×Q is the transition
relation, and q0 is the initial state.

We write m! for a send message m ∈ A! and m? for a receive message m ∈ A?. A

transition is represented as q
l−→ q� ∈ T where l ∈ A. We assume that managers

are deterministic, which can be easily obtained using standard determinization
algorithms [16]. Given a set of manager LTSs (Qi, Ai, Ti, q

0
i), we assume that

each message has a unique sender and a unique receiver: ∀i, j ∈ 1..n, i �= j,
A!

i ∩A!
j = ∅ and A?

i ∩A?
j = ∅. Furthermore, each message is exchanged between

two different managers: A!
i ∩ A?

i = ∅ for all i. Uniqueness of messages can be
achieved via renaming.

2.2 Coordination Requirements

In order to coordinate multiple autonomic managers, we use reaction rules and
regular expressions with their basic operators (sequence, choice, iteration) to
describe the behaviour one expects from the controller. The generated controller
aims at orchestrating the execution of the managers. A reaction rule consists of a
set of receptions followed by a set of emissions. Basically, it expresses that when
the controller receives a set of messages from managers within a certain period
of time (left hand part), it must send all the messages specified in the second

4 Rim Abid, Gwen Salaün, Noel De Palma, and Soguy Mak-Kare Gueye

set (right hand part) once the period is expired. Note that the real period will
be chosen during the deployment phase and both sets of actions can be received
and emitted in any order.

Definition 2. Given a set of managers {M1, . . . ,Mn} with Mi = (Qi, Ai, Ti, q
0
i),

a reaction rule R is defined as a1, ..., am → b1, ..., bp where aj ∈ A?
i and bk ∈ A!

i

for 1 � j � m and 1 � k � p.

The specification of the behaviour one expects from the controller is expressed
using a coordination expression.

Definition 3. A coordination expression C is a regular expression over reaction
rules R:

C ::= R | C1.C2 | C1 + C2 | C∗
where C1.C2 is a coordination expression C1 followed by C2, C1+C2 is a choice
between C1 and C2, and C∗ is a repetition of C zero or several times.

It is worth noting that all participants, namely the autonomic managers
and the controller to be generated, communicate asynchronously using message
passing via FIFO buffers. Each participant is equipped with one input buffer.
Therefore, it consumes messages from its buffer and sends messages to the input
buffer of the message recipient. Once generated and added to the system, all
managers communicate through the controller, which means that the controller
acts as a centralized orchestrator for the whole system.

2.3 Running Example

Our running example is a JEE multi-tier application (Fig. 2) composed of an
Apache Web server, a set of replicated Tomcat servers, a MySQL proxy server,
and a set of replicated MySQL databases. The Apache server receives incoming
requests and distributes them to the replicated Tomcat servers. The Tomcat
servers access the database through the MySQL proxy server that distributes
fairly the SQL queries to a tier of replicated MySQL databases.

Fig. 2. A multi-tier application

Asynchronous Coordination of Stateful Autonomic Managers in the Cloud 5

The autonomic manager architecture is based on the MAPE-K (Monitor Analyse
Plan Execute - Knowledge) reference model [17]. We describe this architecture
using several LTS models. First, we model the behaviour of the monitor, analyse,
and execute functions of the managers by what we call the application manager
(Fig. 3, right), which sends messages when a change occurs in the system and
receives messages indicating actual administrative changes to perform on the
application. As for the plan functions, we use two models called self-sizing and
self-repair managers, resp. The self-sizing manager (Fig. 3, middle) is in charge
of adapting dynamically the number of replicated servers by sending the mes-
sage add! (remove!, resp.) to the system when detecting an overload (underload,
resp.). The overload (underload, resp.) is detected when the average of the load
exceeds (is under, resp.) a maximum (minimum, resp.) threshold. We associate
one instance of the self-sizing manager to the Tomcat servers and another in-
stance to the MySQL databases. The self-repair manager (Fig. 3, left) asks the
system to repair a failure by creating a new instance of the failed server. We
have four instances of the self-repair manager, one per tier.

Fig. 3. (left) Self-repair manager LTS, (middle) Self-sizing manager LTS, (right) Ap-
plication manager LTS

The absence of coordination between these managers may lead the whole
system to some undesired situation such as adding two new servers whereas one
was enough as a result of a server failure. More precisely, when the self-repair
manager repairs a failure, the other replicated servers receive more requests than
before the failure, which causes an overload and therefore the addition of another
(unnecessary) server by the self-sizing manager.

We present below an excerpt of the requirements for the controller we want to
generate for our running example. These rules ensure that all managers globally
satisfy the coordination objectives. Each line presents the actions that can be
received by the controller in a period T (left parts of reactions rules). At the
end of each period, if the received messages match the left part of one fireable
rule, it reacts by emitting the messages appearing in the right part of that rule.
All messages are prefixed by the manager name (app stands for the application
manager) and suffixed by the name of the tier to which is associated the manager.

(app_failure_apache? -> repair_failure_apache! (➊)

+ app_overload_tomcat? -> sizing_overload_tomcat! (➋)

6 Rim Abid, Gwen Salaün, Noel De Palma, and Soguy Mak-Kare Gueye

+ app_failure_apache?, app_underload_tomcat?-> repair_failure_apache!(➌)

+ app_failure_tomcat?, app_overload_tomcat? -> repair_failure_tomcat!(➍)

+ ...) *

We distinguish two kinds of rules: (1) those where a unique message appears
in the left part of the reaction rule (see, e.g., ➊, ➋). In that case, the correspond-
ing controller immediately transfers that message to the manager; (2) those en-
coding the coordination we want to impose on managers, e.g., rule ➍ permits to
generate a controller that can avoid to add two Tomcat servers by forwarding
only one of the two received messages on a same period of time. Last, since there
is no specific order between all these rules, we use a simple regular expression
where all rules can be fired at any time (combination of + and * operators).

3 Synthesis

In this section, we present our asynchronous controller synthesis techniques,
which rely on an encoding of our models and of the coordination requirements
into the LNT specification language. From this LNT specification, we can gener-
ate the corresponding LTS model using CADP compilers, hiding, and reduction
techniques. Validation of the generated controller is also possible using CADP
verification tools. This section ends with an illustration of all these techniques on
our running example. All the steps presented in this section are fully automated
by a tool that we developed in Python. This tool generates the LNT code as well
as SVL scripts [11] that are used for invoking CADP exploration and reduction
tools, which finally results in the generation of the controller LTS.

3.1 Process Algebra Encoding

The backbone of our solution is an encoding of all managers and of the coordina-
tion requirements into the LNT process algebra. The choice of LNT is motivated
by several reasons. First, LNT is an expressive behavioural specification language
which has a user-friendly syntax and provides expressive operators. Second, LNT
is supported by CADP [11], a toolbox that contains optimized state space ex-
ploration techniques and verification tools. CADP tools allow to compile the
LNT specification into an LTS, which enumerates all the possible executions of
the corresponding specification. Third, CADP is a verification toolbox dedicated
to asynchronous systems consisting of concurrent processes interacting via mes-
sage passing. It provides many tools that can be used to make different kinds of
analysis, such as model checking.

The behavioural part of the LNT specification language consists of the fol-
lowing constructs: action with input/output parameters, assignment (:=), se-
quential composition (;), conditional structure (if), loop (loop), parallel com-
position (par), nondeterministic choice (select), and empty statement (null).
Each process defines an alphabet of actions, a list of typed parameters, and a
behaviour built using the aforementioned operators. Communication is carried

Asynchronous Coordination of Stateful Autonomic Managers in the Cloud 7

out by rendezvous on actions with bidirectional transmission of multiple values.
The parallel composition explicitly declares the set of actions on which pro-
cesses must synchronize. If the processes evolve independently from one another
(interleaving), this set is empty.

In the rest of this section, we successively present the encoding into LNT of
the different parts of our system.

Autonomic Manager An LNT process is generated for each state in the man-
ager LTS. Each process is named using the state identifier. The alphabet of the
process contains the set of messages appearing on the LTS transitions. The be-
haviour of the process encodes all the transitions of the LTS going out from the
corresponding state. If there is no such transition, the body of the process is
the null statement. If there is a single transition, the body of the process corre-
sponds to the message labelling this transition, followed by a call to the process
encoding the target state of the transition. If there is more than one transition,

we use the select operator. Let us assume that two transitions q
l−→ q’, q

l�−→
q’’ ∈ T have the same source state q. The behaviour of the process encoding q

in LNT is select l; q’[...] [] l’; q’’ end select, where the LNT operator
select encodes a nondeterministic choice between l and l’.

Since a message name can be used in different autonomic manager LTSs,
each message is prefixed with the manager name to avoid further name clashes.
We encode emitted messages (received messages, resp.) with a EM (REC, resp.)
suffix. These suffixes are necessary because LNT symbols ! and ? are used for the
data transfer only. As an example, m1 ∈ A! is encoded as m1 EM , and m2 ∈ A?

is encoded as m2 REC.

Coordination Requirements The coordination requirements specified using
reaction rules and regular expressions correspond to an abstract version of the
controller to be generated. These requirements are encoded into an LNT process
called coordination. The process alphabet is composed of all received and emitted
messages appearing in the reaction rules. The body of this process encodes the
regular expression of reaction rules. Each reaction rule is translated to LNT
separating both sides of the rule using the sequential composition construct (;).
In order to make explicit in the controller LTS the logical interval of time that will
be chosen in the implementation step and during which the controller receives
messages, the left hand part of the reaction rule starts with an action TBEGIN

and ends with an action TEND. The left hand part is translated using the par

operator without synchronization since all messages can be received in any order.
After execution of the TEND action, the right hand part of the reaction rule is
translated using the parallel composition too, to express that all emissions can be
sent in any order. As far as the regular expression is concerned, a sequence (.) of
rules is encoded using the sequential composition, a choice (+) between several
rules is translated using the select construct and an iteration (∗) is encoded
using the loop operator.

8 Rim Abid, Gwen Salaün, Noel De Palma, and Soguy Mak-Kare Gueye

Architecture In this section, we present how all participants (managers and
coordination expression) are composed together. The communication between
them is achieved asynchronously. The coordination expression represents an ab-
stract description of the future controller, and all messages must go through this
controller, which acts as a centralized orchestrator. Each participant is equipped
with an input FIFO buffer. When a participant wants to read a message, it reads
the oldest message in its buffer. When a participant sends a message to another
participant, it sends the message to the input buffer of that participant. LNT
functions are used to describe basic operations on these buffers (e.g., adding and
retrieving messages). We present below, an example of function that removes a
message from a FIFO buffer (i.e., from the beginning).

function remove_MSG (q: TBUFFER): TBUFFER is
case q in

var hd: TMessage, tl: TBUFFER in
nil -> return nil

| cons(hd,tl) -> return tl

end case
end function

It is worth noting that our synthesis techniques allow one to choose buffer
bounds. One can either decide to fix an arbitrary bound for buffers or to use
unbounded buffers. In the first case, the only constraint is that the same buffer
bound should be used when deploying the controller, otherwise unexpected be-
haviours and erroneous situations may occur. In the second case (unbounded
buffers), the risk is to attempt to generate a controller whose corresponding state
space is infinite [3]. As an intermediate solution, one can use the recent results
presented in [2] for identifying whether the interactions between managers with
unbounded buffers can be mimicked with bounded buffers. If this is the case, the
lower bound returned by these techniques is used as the minimum buffer bound
for both synthesis techniques and the deployment of the application.

A buffer in LNT is first encoded using an LNT list and classic operations on it.
Then, for the behavioural part, a buffer is encoded using a process with a buffer
data type as parameter. This process can receive messages from the other partic-
ipants, and can synchronize with its own participant when that one wants to read
a message. We generate a process encoding each couple (participant, buffer) that
corresponds to a parallel composition (par) of the participant with its buffer.
The synchronization set contains messages consumed by the participant from its
buffer.

Finally, the whole system (main process in LNT, see below) consists of the
parallel composition of all these couples. It is worth noting that since autonomic
managers communicate via the controller, they evolve independently from one
another and are therefore composed using the par operator without synchro-
nizations. In contrast, the couple (coordination, buffer) must synchronize with
all couples (manager, buffer) on all emissions from/to the managers, and this is
made explicit in the corresponding synchronization set of this parallel composi-
tion.

Asynchronous Coordination of Stateful Autonomic Managers in the Cloud 9

process main [message1:any, ..., messagen:any] is
par messagep, ..., messagek in

couple_buffer_coordination [...]

||

par
couple_buffer_manager1 [...]

|| . . . ||

couple_buffer_managern [...]

end par
end par

end process

3.2 Compilation and Verification

Now that we have encoded our inputs (models and coordination requirements)
into LNT, we can use compilers to obtain the LTS corresponding to all be-
haviours of the LNT specification. In order to keep only the behaviour corre-
sponding to the most permissive controller [26], we need to hide message ex-
changes corresponding to consumptions of the managers from their buffers and
emissions from managers to the coordination expression buffer. All these mes-
sages are replaced by internal actions. We use minimization techniques available
in CADP for eliminating all internal actions, removing duplicated paths, and
determinizing the final LTS. Finally, we preserve only local emissions/receptions
from the coordination expression point of view (messages shown in the dashed
grey rectangle in Fig. 4). Transitions figuring in the final LTS are labelled with
the messages corresponding to the process alphabet of the couple (coordination,
buffer).

Fig. 4. Exchange of messages between the coordination expression and the managers

Last but not least, let us stress that, since the writing of the coordination
expression is achieved manually by a designer, this step of our approach may
lead to an error-prone expression. However, we can take advantage of the en-
coding into LNT to check either the controller LTS (and thus the coordination

10 Rim Abid, Gwen Salaün, Noel De Palma, and Soguy Mak-Kare Gueye

expression) or the LTS corresponding to the composition of all participants. To
do so, one can use the CADP model checker, which takes as input an LTS model
and a temporal property specified in MCL [20]. We distinguish two types of
properties: (i) those that depend on the application (e.g., the controller must
eventually transmit a specific message to a certain manager), (ii) those that do
not depend on the application (e.g., checking the absence of deadlock).

3.3 Running Example and Experiments

We present below an example of LNT process encoding the repair manager
shown in Figure 3 and its buffer. This manager synchronizes with its buffer on
the repair failure REC message when this message is available in the buffer.
Note that the buffer process (buffer repair) is equipped with a parameter
corresponding to the buffer data type, that is the structure where messages are
stored, initialized to nil.

process couple_buffer_repair [repair failure REC: any, repair repair EM:

any, repair failure EM: any] is
par repair failure REC is

repair R0 [repair failure REC, repair repair EM]

||

buffer repair [repair failure EM, ...] (nil)

end par

end process

From the encoded LNT specification obtained when calling the LNT code
generator, we use CADP compilers to generate the LTS describing the whole
system for our running example (consisting of 194,026,753 states and 743,878,684
transitions). Then, we use hiding and minimization techniques to generate the
LTS of the controller (consisting of 28,992,305 states and 46,761,782 transitions).
An excerpt of the controller LTS, which focuses on the failure and overload
detection in the same period of time, is shown in Figure 5. We recall that we
use specific labels (namely TBEGIN and TEND) for characterizing the messages
received during a same period of time. This LTS shows that when the controller
receives a failure and an overload message (of a Tomcat server in this example)
during a same period, it forwards only the failure message and drops the overload
message. In contrast, when the controller receives these two messages in two
different periods, it forwards them to the repair and sizing manager, resp.

We show below two examples of liveness properties, the first one is checked
on the controller LTS and the second one on the LTS of the whole system:

– The reception of a failure message by the controller is eventually followed by
an emission of a repair message

[true* .app_failure_tomcat_REC] inev (app_repair_tomcat_EM)

Asynchronous Coordination of Stateful Autonomic Managers in the Cloud 11

Fig. 5. Excerpt of the controller LTS for the running example

– The emission of an overload message by the application manager is eventually
followed by an emission of a reparation or addition message by the controller

[true* .app_overload_tomcat_EM]

inev (app_repair_tomcat_EM or app_add_tomcat_EM)

This property shows that the overload message is handled by the repair
manager when both Tomcat failure and overload occur within a same period
of time. Otherwise, it is handled by the sizing manager.

Both properties use the macro inev (M), which indicates that a transition la-
belled with M eventually occurs. This macro is defined as follows:

macro inev (M) = mu X .(< true > true and [not (M)] X) end macro

Our approach was applied for validation purposes on many illustrative ex-
amples of our dataset (managers and coordination requirements). Table 1 sum-
marizes some of our experiments. Each managed application used as input is
characterized using the number of managers and the coordination requirements.
We give the size of the LTS (states/transitions) of the whole system as well
as the controller LTS obtained after minimization (wrt. a strong bisimulation
relation). The last column gives the overall time to synthesize the controller.

|Managers| Whole system LTS Controller LTS Time
|states| |transitions| |states| |transitions| (m:s)

2 2,307 6,284 118 157 0:10
3 103,725 365,845 1,360 2,107 1:15
4 145 267 38 44 0:06
5 10,063,873 39,117,110 17,662 28,003 43:59
6 1,900 4,945 186 285 0:08
10 300,000 1,686,450 1,786 3,471 6:54

Table 1. Experimental results: LTSs size and synthesis time

12 Rim Abid, Gwen Salaün, Noel De Palma, and Soguy Mak-Kare Gueye

We observe that, for some examples (gray lines), the size of the generated
controller LTSs and the time required for generating those LTSs grow impor-
tantly when one of the managers exhibit looping behaviours, and particularly
cycles with send messages (see, e.g., the 4th example in Table 1). On a wider
scale, we note that LTS sizes and generation times increase with the number of
managers in parallel (see, e.g., the last line of Table 1).

4 Code Generation and Deployment

We present in this section our Java code generation techniques, which allow to
deploy controllers in the context of real-world applications. In particular, we
show some experimental results for our running example where the autonomic
managers are coordinated using a centralized controller generated with our ap-
proach.

4.1 Java Code Generation Techniques

Our Java code generation techniques are based on the use of object-oriented
programming. They take as input the controller LTS synthesized beforehand,
and automatically generate all java classes, methods, and types necessary for
deploying it. The controller LTS is encoded as an instance of a Java class LTS.
This class relies on two classes, namely a class State and a class transition

which represents the transitions between the states. The LTS class also defines an
attribute cstate representing the current active state in the controller model.
This variable is initialized with the LTS initial state. Some Java code is necessary
to interface the controller with the running application. We particularly define
a method called react that takes as input a list of messages received within a
period of time and applies successive moves according to the received messages,
the current state of the controller, and the behaviour of the generated controller.
This method computes the messages that the controller has to send as reaction
to these received messages, and updates the current state of the controller.

4.2 Deployment

Our generated Java code can be deployed and applied on concrete applications
using the event-based programming paradigm. The period of time described us-
ing special actions TBEGIN and TEND in the controller LTS has to be instantiated
with a real value. This period is computed using sampling techniques and im-
plemented using the sleep method in Java. The choice of this period cannot be
realized during the synthesis phase and is achieved just before deployment. A
wrong choice of this period may lead to the reception of these actions in different
periods.

The main behaviour of the controller (run method) consists of an infinite
reactive loop, which successively receives events from the application, computes
reactions (messages to be sent by the controller), and encodes these messages

Asynchronous Coordination of Stateful Autonomic Managers in the Cloud 13

as events too. A part of the Java program is dedicated to converting the events
raised by the application into the input format of the react method, and con-
versely translates the output of the react method into a list of events executed
by the system. Each event contains the corresponding message and additional
information, for instance a failure event has also as parameter the impacted
server and further information (identifier, port, etc.).

4.3 Experiments on our Running Example

In this section we present some experiments we performed when deploying and
running our controller for the multi-tier application introduced previously. To
do so, we used a virtualized experimental platform based on Openstack, which
consists of six physical machines on which we instantiate virtual machines.

The JEE multi-tier application is initially configured and deployed with a
server at each tier, i.e., an Apache Web server, a Tomcat server, a MySQL proxy,
and a MySQL database. The initial deployment phase is automated using a
dynamic management protocol allowing to connect and start the involved servers
and database in the right order [1, 10]. In a second step, we use jmeter to inject
increasing load on the Apache server and thus to simulate the clients that send
HTTP requests on the managed system. Once we have at least two active Tomcat
servers and two MySQL databases, we start simulating failures using a failure
injector. When we start injecting failures, we stop augmenting the workload
on the Apache server and keep the same load for the rest of the execution. The
failure injector is flexible and can be used for affecting any active server (Apache,
Tomcat, MySQL, etc.), any number of times (single failure or multiple failures of
the same or of different servers), and at any time (same period of time, different
periods of time, etc.). We conducted our experiments on applications with or
without controller. We have considered different scenarios with failures of the
Apache server and of the MySQL proxy as well as failures/load variation of the
Tomcat servers and of the MySQL databases.

Figure 6 shows an excerpt of the system behaviour after 500 minutes since
the application deployment. We observe that, at this moment, the application is
composed of five Tomcat servers and three MySQL databases. Figure 6 presents
several cases of failure injection. As an example, at minute 508, a failure of a
replicated MySQL database causes a workload increase on the other replicated
servers. These two actions happen in the same period, but the controller forwards
only the failure detection to the repair manager. Accordingly, a single MySQL
database is added by the repair manager and the workload returns at once to
its average value.

We made several experiments in which we varied the number of failures, the
Apache load, and the minimum/maximum thresholds of the Tomcat servers and
of the MySQL databases. In all these cases, we observe that the controller suc-
ceeds in detecting and correcting the problems while avoiding undesired opera-

14 Rim Abid, Gwen Salaün, Noel De Palma, and Soguy Mak-Kare Gueye

��� ��� ��� ��� ��� ��� ��� ��� ���

��������������

�

��

��

��

��

���

�
�
�
��
�
�
�
��
�
�

��������������

���������������

�

�

�

�

�

�

�

�

�
�
�
�
�
�
��
��
�
�
�
�
�
��
�
��
�
�
�
�

�������������

��������������

Fig. 6. Tomcat and MySQL failure/overload in a coordinated environment

tions, that is, the unnecessary addition/removal of VMs. Figure 7 shows exper-
imental results obtained with different number of failures. For instance, we see
that when injecting 14 failures to our running application, the controller applies
18 reconfiguration operations on the system (instead of 40 without controller),
and thus avoids 22 undesired operations.

0

20

40

60

80

100

120

140

160

3 6 10 14 21 30 36 40 50

without coordination

with coordination

undesired operations
without coordination

N
u
m
b
er
 o
f
re
co
n
fi
gu
ra
ti
o
n
 o
p
er
at
io
n
s

(a
d
d
it
io
n
 a
n
d
 r
em

o
va
l o
f
V
M
s)

Number of failures

Fig. 7. Number of reconfiguration operations with/without coordination and number
of undesired operations avoided by coordination

Asynchronous Coordination of Stateful Autonomic Managers in the Cloud 15

5 Related work

Controller synthesis for discrete event systems was originally introduced by Ra-
madge and Wonham [26, 24]. In [26], the authors present a controllable lan-
guage as a solution for the supervisory of hybrid control systems. This solution
generates controllers from a given system called plant and designed as a finite
automaton. [24] proposes a supervisor synthesis algorithm, which allows to au-
tomatically generate a controller from a plant modelled as a finite automaton
and properties to be ensured by the controller. The generated controller per-
mits all possible legal executions. This synthesis approach is based on a classical
two-person game approach. These approaches can be characterized as restrictive
because they directly influence and impact the controlled system.

In [9], the authors introduce an approach based on contract enforcement
and abstraction of components to apply a modular discrete controller synthesis
on synchronous programs. These programs are presented by Synchronous Sym-
bolic Transition Systems. The authors integrate this approach in a high-level
programming language combining data-flow and automata. Another decentral-
ized supervisory control approach for synchronous reactive systems is presented
in [25]. This work is based on finite state machines and computes local controllers
that act on the subsystems to ensure a global property. The local controllers
are automatically generated and this approach was applied to several examples
for validation purposes. This approach allows decentralized control whereas we
generate a centralized controller. Moreover, they rely on synchronous systems
and synchronous communication semantics, whereas we assume asynchronous
systems and communication, meaning that the controllability hypothesis is im-
possible in our context.

In [22], the authors propose a generic integration model that focuses terms
of reciprocal interference. This generic model can be used to manage the syn-
chronization and coordination of multiple control loops, and it was applied to
a scenario in the context of cloud computing and evaluated under simulation-
based experiments. This paper does not provide any synthesis techniques for
coordinating the multiple loops, and coordination is achieved in a rather manual
way.

[21] presents a framework for the coordination of multiple autonomic man-
agers in the cloud computing context. These works use a protocol based on
synchronous mechanisms and inter-manager events and actions along with syn-
chronization mechanisms for coordinating these managers. The main difference
compared with our work is that this paper focuses on quality of service whereas
our focus was on behavioural and functional aspects of the system execution.

Other recent works [8, 12, 13] propose some techniques based on synchronous
discrete controller synthesis for coordinating autonomic managers, such as self-
repair and self-sizing managers. The communication between the generated con-
troller and the managers is synchronous and uses a synchronous language BZR,
which cannot impose a specific order between requirements and contains multiple
and complicated operations. This approach uses a background in synchronous

16 Rim Abid, Gwen Salaün, Noel De Palma, and Soguy Mak-Kare Gueye

systems and languages, whereas our approach assumes that communication is
achieved asynchronously.

[7] presents the Aeolus component model and explains how some activities,
such as deployment, reconfiguration, and management phases of complex cloud
applications, can be automated in this model. Aeolus takes as inputs high-level
application designs, user needs, and constraints (e.g., the number of required
ports that can be bound to a client port) to provide valid configuration envi-
ronments. This work presents some similarities with ours, but does not propose
solutions for verifying that the constraints are satisfied in the target configura-
tions.

In [4], the authors present an extension of TOSCA (OASIS Topology and
Orchestration Specification for Cloud Applications) in order to model the be-
haviour of component’s management operations. More precisely, they specify the
order in which the management operations of an instantiated component must
be executed. In this work, the authors explain how management protocols are
described as finite state machines, where the states and transitions are associated
with a set of conditions on the requirements and capabilities of the components.

In [23], the authors introduce AutoMate, a framework for coordinating multi-
ple autonomic components hosted on Grid applications, using high-level rules for
their dynamic composition. The rules are executed using a decentralized deduc-
tive engine, called RUDDER, and composed of distributed specialized agents.
RUDDER deploys the rules and coordinates their execution. It assigns priorities
to these rules in order to resolve conflicting decisions between them. However,
it uses a manual administration to evaluate and update the interaction rules.

6 Conclusion

In this paper, we propose new controller synthesis techniques to generate a cen-
tralized controller that allows to orchestrate a set of autonomic managers. These
managers are modelled as LTSs and the set of coordination requirements is spec-
ified using reaction rules and regular expressions. The generated controller com-
municates with the autonomic managers asynchronously using message passing
via FIFO buffers. Our solution for controller synthesis relies on an encoding of
our models and of the coordination requirements into the LNT process algebra.
From this encoding, an LTS can be generated using CADP compilers, and hiding
and reduction techniques. This LTS exhibits all the possible executions of the
controller. One can also take advantage of this encoding to validate the gener-
ated controller with the CADP verification tools, such as the Evaluator model
checker. Indeed, since coordination requirements are written by a human being,
they can be erroneous, which results in that case in an erroneous controller as
well. Finally, we propose code generation techniques to automatically obtain the
Java code corresponding to the controller LTS. We validated our approach with
many variants of the multi-tier Web application we used as running example in
this paper.

Asynchronous Coordination of Stateful Autonomic Managers in the Cloud 17

It is worth noting that our approach covers all the development steps from
the design of the coordination requirements to the actual deployment of the syn-
thesized controller, which helps to coordinate at runtime real-world applications.
In addition, these synthesis techniques can be used to control other applications
where components are modelled as LTSs and communicate asynchronously. This
is the case in application areas such as Web services, multi-agent systems, or
hardware protocols.

A first perspective is to generate distributed controllers instead of a cen-
tralized controller. This would permit to preserve the degree of parallelism of
the system, where the involved participants could exchange messages without
systematically passing through a unique controller. Another perspective aims at
applying performance evaluation for the whole system using IMC (Interactive
Markov Chain) theory [15, 14].

Acknowledgements. This work has been supported by the OpenCloudware
project (2012-2015), which is funded by the French Fonds national pour la Société
Numérique (FSN), and is supported by Pôles Minalogic, Systematic, and SCS.

References

1. R. Abid, G. Salaün, F. Bongiovanni, and N. De Palma. Verification of a Dynamic
Management Protocol for Cloud Applications. In Proc. of ATVA’13, volume 8172
of LNCS, pages 178–192. Springer, 2013.

2. S. Basu and T. Bultan. Automatic Verification of Interactions in Asynchronous
Systems with Unbounded Buffers. In Proc. of ASE’14, pages 743–754. ACM, 2014.

3. D. Brand and P. Zafiropulo. On Communicating Finite-State Machines. J. ACM,
30(2):323–342, 1983.

4. A. Brogi, A. Canciani, J. Soldani, and P. Wang. Modelling the Behaviour of Man-
agement Operations in Cloud-based Applications. In Proc. of PNSE’15, volume
1372 of CEUR Workshop Proceedings, pages 191–205, 2015.

5. R. Buyya, R.N. Calheiros, and X. Li. Autonomic Cloud Computing: Open Chal-
lenges and Architectural Elements. In Proc. of EAIT’12, pages 3–10. IEEE Com-
puter Society, 2012.

6. D. Champelovier, X. Clerc, H. Garavel, Y. Guerte, V. Powazny, F. Lang, W. Serwe,
and G. Smeding. Reference Manual of the LOTOS NT to LOTOS Translator
(Version 5.4). INRIA/VASY, 2011.

7. R. Di Cosmo, J. Mauro, S. Zacchiroli, and G. Zavattaro. Aeolus: A Component
Model for the Cloud. Inf. Comput., 239:100–121, 2014.

8. G. Delaval, S.M.K. Gueye, E. Rutten, and N. De Palma. Modular Coordination
of Multiple Autonomic Managers. In Proc. of CBSE’14, pages 3–12. ACM, 2014.

9. G. Delaval, H. Marchand, and E. Rutten. Contracts for Modular Discrete Con-
troller Synthesis. In Proc. of LCTES’10, pages 57–66. ACM, 2010.

10. X. Etchevers, G. Salaün, F. Boyer, T. Coupaye, and N. De Palma. Reliable Self-
deployment of Cloud Applications. In Proc. of SAC’14, pages 1331–1338. ACM,
2014.

11. H. Garavel, F. Lang, R. Mateescu, and W. Serwe. CADP 2011: A Toolbox for the
Construction and Analysis of Distributed Processes. STTT, 15(2):89–107, 2013.

18 Rim Abid, Gwen Salaün, Noel De Palma, and Soguy Mak-Kare Gueye

12. S.M.K. Gueye, N. De Palma, E. Rutten, and A. Tchana. Coordinating Multiple
Administration Loops Using Discrete Control. SIGOPS Oper. Syst. Rev., 47(3):18–
25, 2013.

13. S.M.K. Gueye, E. Rutten, and A.Tchana. Discrete Control for the Coordination
of Administration Loops. In Proc. of UCC’12, pages 353–358. IEEE Computer
Society, 2012.

14. H. Hermanns. Interactive Markov Chains: And the Quest for Quantified Quality,
volume 2428 of LNCS. Springer-Verlag, 2002.

15. H. Hermanns and J.P. Katoen. Automated Compositional Markov Chain Gen-
eration for a Plain-Old Telephone System. Science of Computer Programming,
36(1):97 – 127, 2000.

16. J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages
and Computation. Addison Wesley, 1979.

17. M.C. Huebscher. and J.A. McCann. A Survey of Autonomic Computing Degrees,
Models and Applications. ACM Comput. Surv., 40, 2008.

18. J.O. Kephart. Research Challenges of Autonomic Computing. In Proc. of ICSE’05,
pages 15–22. ACM, 2005.

19. J.O. Kephart and D.M. Chess. The Vision of Autonomic Computing. Computer,
36(1):41–50, 2003.

20. R. Mateescu and D. Thivolle. A Model Checking Language for Concurrent Value-
Passing Systems. In Proc. of FM’08, volume 5014 of LNCS, pages 148–164.
Springer, 2008.

21. F.A. De Oliveira, T. Ledoux, and R. Sharrock. A Framework for the Coordination
of Multiple Autonomic Managers in Cloud Environments. In Proc. of SASO’13,
pages 179–188. IEEE, 2013.

22. F.A. De Oliveira, R. Sharrock, and T. Ledoux. Synchronization of Multiple Auto-
nomic Control Loops: Application to Cloud Computing. In Proc. of COORDINA-
TION’12, volume 7274 of LNCS, pages 29–43. Springer, 2012.

23. M. Parashar, H. Liu, Z. Li, V. Matossian, C. Schmidt, G. Zhang, and S. Hariri.
AutoMate: Enabling Autonomic Applications on the Grid. Cluster Computing,
9(2):161–174, 2006.

24. P.J.G. Ramadge and W.M. Wonham. The Control of Discrete Event Systems. Proc
of the IEEE, 77(1):81–98, 1989.

25. A. Belhaj Seboui, N. Ben Hadj-Alouane, G. Delaval, É. Rutten, and M. Yeddes. An
Approach for The Synthesis of Decentralised Supervisors for Distributed Adaptive
Systems. International Journal of Critical Computer-Based Systems, 2(3/4):246–
265, 2011.

26. W.M. Wonham and P.J.G. Ramadge. On the Supremal Controllable Sublanguage
of a Given Language. SIAM Journal on Control and Optimization, 25(3):637–659,
1987.

