
Counterexample Simplification for Liveness

Property Violation

Gianluca Barbon1, Vincent Leroy2, and Gwen Salaün1

1 Univ. Grenoble Alpes, CNRS, Inria, Grenoble INP, LIG, 38000 Grenoble, France
2 Univ. Grenoble Alpes, CNRS, Grenoble INP, LIG, 38000 Grenoble, France

Abstract. Model checking techniques verify that a model satisfies a
given temporal property. When the model violates the property, the
model checker returns a counterexample, which is a sequence of actions
leading to a state where the property is not satisfied. Understanding this
counterexample for debugging the specification is a complicated task be-
cause the developer has to understand by manual analysis all the steps
(possibly many) that have provoked the bug. The objective of this work is
to improve the comprehension of counterexamples and thus to simplify
the detection of the source of the bug. Given a liveness property, our
approach first extends the model with prefix / suffix information w.r.t.
that property. This enriched model is then analysed to identify specific
states called neighbourhoods. A neighbourhood consists of a choice be-
tween transitions leading to a correct or incorrect part of the model. We
exploit this notion of neighbourhood to highlight relevant parts of the
counterexample, which makes easier its comprehension. Our approach is
fully automated by a tool that we implemented and that was validated
on several real-world case studies.

1 Introduction

Recent computing trends promote the development of hardware and software
applications that are intrinsically parallel, distributed, and concurrent. This is
the case of service-oriented computing, cloud computing, cyber-physical systems
or the Internet of Things. Designing and developing distributed software in this
context is a tedious and error-prone task, and the ever increasing software com-
plexity is making matters even worse. Although we are still far from proposing
techniques and tools avoiding the existence of bugs in a software under devel-
opment, we know how to automatically chase and find bugs that would be very
difficult, if not impossible, to detect manually.

Model checking [1] is an established technique for automatically verifying
that a behavioural model, e.g., a Labelled Transition System (LTS), satisfies a
given temporal formula written with temporal logic. When the model violates
the property, the model checker returns a counterexample, which is a sequence
of actions leading to a state where the property is not satisfied. Understand-
ing this counterexample for debugging the specification is a complicated task
for several reasons: (i) the counterexample can contain many actions, (ii) the

2 Gianluca Barbon, Vincent Leroy, and Gwen Salaün

debugging task is mostly achieved manually, and (iii) the actions in the coun-
terexample seem to have the same importance even if it is not the case. Note that
in this work, we have a specific focus on liveness properties, and more precisely
inevitability properties which are one of the classes of liveness properties most
used by developers in practice [9].

Our goal in this paper is to simplify the debugging of concurrent systems
whose specification compiles into a behavioural model. To do so, we propose a
novel approach for improving the comprehension of counterexamples by high-
lighting some of the actions in the counterexample that are of prime importance,
that is, actions that make the specification go from a (potentially) correct be-
haviour to an incorrect one. These parts of the model correspond to decisions or
choices that are of particular interest because they might explain the source of
the bug. Once these specific actions have been identified, they can be used for
building a simplified version of the counterexample, keeping only actions that
are relevant from a debugging perspective.

Our approach takes as input a behavioural model (LTS) describing all pos-
sible executions of a system. This LTS can be obtained by compilation from a
higher-level textual specification language such as process algebra. Given such
an LTS and a liveness property, in a first step, we enhance each state of the
LTS model with prefix/suffix information about the actions belonging to the
property that have already been or remain to be executed. This enriched LTS
is then analysed to identify specific states called neighbourhoods. A neighbour-
hood consists of a choice between transitions leading to a correct or incorrect
part of the model. Those states identify specific parts of the specification that
may explain the appearance of the bug and are therefore meaningful from a
debugging perspective. Several simplification techniques can be defined on top
of this notion of neighbourhood, which aim at removing irrelevant parts of the
counterexample and highlighting relevant ones to simplify its comprehension.
Our approach is fully automated by a tool that we implemented. This tool was
applied on several real-world case studies for evaluation purposes.

The paper is organized as follows. Section 2 introduces behavioural model
and model checking. Section 3 presents the technique for computing the LTS
enriched with prefix/suffix information. This information is then used for identi-
fying neighbourhoods and building counterexample abstractions from them. Sec-
tion 4 illustrates our approach on two real-world case studies. Section 5 overviews
related work and Section 6 concludes this paper.

2 Preliminaries

In this work, we adopt Labelled Transition System (LTS) as behavioural model
of concurrent programs. An LTS consists of states and labelled transitions con-
necting these states.

Definition 1. (LTS) An LTS is a tuple M = (S, s0, Σ, T) where S is a finite
set of state identifiers; s0 ∈ S is the initial state identifier; Σ is a finite set of
labels; T ⊆ S ×Σ × S is a finite set of transitions.

Counterexample Simplification for Liveness Property Violation 3

A transition is represented as s
l
−→ s′ ∈ T , where l ∈ Σ. An LTS is produced

from a higher-level specification of the system described with a process algebra
for instance. Specifications can be compiled into an LTS using specific compilers.
In this work, we use LNT [6] and LOTOS [5] as specification languages and com-
pilers from the CADP toolbox [10] for obtaining LTSs from these specifications.
However, our approach is generic in the sense that it applies on LTSs produced
from any specification language and any compiler/verification tool. An LTS can
be viewed as all possible executions of a system. One specific execution is called
a trace.

Definition 2. (Trace) Given an LTS M = (S, s0, Σ, T), a trace of size n ∈ N

is a sequence of labels l1, l2, . . . , ln ∈ Σ such that s0
l1−→ s1 ∈ T, s1

l2−→

s2 ∈ T, . . . , sn−1

ln−→ sn ∈ T . A trace is either infinite because of loops or the
last state sn has no outgoing transitions. The set of all traces of M is written
as t(M).

Model checking consists in verifying that an LTS model satisfies a given
temporal property ϕ, which specifies some expected requirement of the system.
Temporal properties are usually divided into two main families: safety and live-
ness properties [1]. In this work, we focus on a class of liveness properties, called
inevitable execution properties. Most of the patterns that commonly occur in the
specification of liveness properties make use of the inevitable executions. This
is the case of the Response Property Pattern, that is the most common pattern
in [9]. An inevitable execution property states that, given an LTS M and an ac-
tion l, every trace from the initial state inM presents a transition with the action
l. In this work we support nested inevitable executions. For instance, a property
with two nested actions l1 and l2 states that every trace in a given model must
exhibit the action l1 later followed by the action l2. Note that the two actions do
not need to be contiguous in traces. To express nested inevitable executions we
define a nested inevitability operator using the Action-based Computation Tree
Logic (ACTL) [8]:

Definition 3. (Nested Inevitability Operator) Given a sequence of labels
l1, . . . ln, the nested inevitability operator is defined as

Inev(l1, l2, . . . ln) = A[truetrueUl1A[truetrueUl2 . . . A[truetrueUlntrue] . . .]]

where A and U denote the ACTL operators along All paths and Until, resp.

A nested inevitable execution property can be semantically characterised by
a possibly infinite set of traces tϕ, corresponding to the traces that comply with
the property ϕ in an LTS. If the LTS model does not satisfy the property, the
model checker returns a counterexample, which is one of the traces characterised
by t(M) \ tϕ.

Definition 4. (Counterexample) Given an LTS M = (S, s0, Σ, T) and a prop-
erty ϕ, a counterexample is any trace which belongs to t(M) \ tϕ. A counterex-
ample can be in the form of an elementary trace, which is a trace where states

4 Gianluca Barbon, Vincent Leroy, and Gwen Salaün

are pairwise distinct, or a lasso, which is a trace s0
l1−→ s1 ∈ T, . . . , sn−2

ln−1

−−−→

sn−1 ∈ T, sn−1

ln−→ sn ∈ T , such that s0
l1−→ s1 ∈ T, . . . , sn−2

ln−1

−−−→ sn−1 ∈ T is
an elementary trace and sn = si for some 0 ≤ i < n.

3 Counterexample Simplification

In this section we discuss in detail our approach to simplify counterexamples.
Section 3.1 presents the notions of prefixes and suffixes. Section 3.2 describes the
algorithm to compute them and enrich the initial LTS. In Section 3.3 we identify
transitions and we introduce the neighbourhood notion. Section 3.4 presents
simplification techniques, focusing on one of them.

3.1 Prefixes and Suffixes

An LTS M is a model representing all possible executions of a system. Given
an inevitable execution property ϕ, our goal is to analyse each state s in M to
understand whether all the traces that pass through s satisfy the sequence of
actions expressed by ϕ. To do this we compare the prefixes of traces that reach
the state to prefixes of the given sequence. Similarly we compare the suffixes of
traces that start from the state to suffixes of the given sequence. Note that in
this work we use the symbol “ ·” to denote the concatenation operator for labels
and sequences of labels.

Definition 5. (Sequence of Inevitable Actions) Given an inevitable execution
property p = Inev(l1, . . . , ln), the sequence of concatenated labels k = l1 · l2 ·
. . . · ln of size n ∈ N is the sequence of inevitable actions that respect the order
defined by the nested inevitability operator.

The sequence of inevitable actions may represent non-contiguous transitions
in the model. In order to match traces and prefixes (suffixes, resp.) of traces with
the sequence of inevitable actions, we define a matching operator as follows:

Definition 6. (Matching Operator) Given an LTS M = (S, s0, Σ, T), a se-
quence of labels j = a1 · a2 · . . . · an, a sequence of contiguous transitions

z = s1
l1−→ s2 ∈ T, s2

l2−→ s3 ∈ T, . . . , sm−1

lm−1

−−−→ sm ∈ T , z is said to match
j, written j ≺ z, if there exists integers 1 ≤ i1 < i2 < . . . < in ≤ m such that
a1 = li1 , a2 = li2 , . . . , an = lin .

We assign to each state of the LTS the prefixes of the sequence of inevitable
actions k obtained up to the state under analysis. To do this, we introduce the
notions of max prefix and common prefix, w.r.t. k. The max prefix is the longest
prefix of the k sequence among the prefixes of traces that end in a given state.
The common prefix is the longest prefix of the k sequence that is common to all
the prefixes of traces that end in a given state. We define Te

s as the set of all the
prefixes of traces that end in s and P

k as the set of all the prefixes of k.

Counterexample Simplification for Liveness Property Violation 5

Definition 7. (Max and Common Prefix) Given an LTS M = (S, s0, Σ, T),
a sequence of inevitable actions k, the set P

k of all the prefixes of k, a state
s ∈ S, the max prefix, defined as mps, is the longest element in P

k such that
∃t ∈ T

e
s, mps ≺ t. The common prefix, defined as cps, is the longest element in

P
k such that ∀t ∈ T

e
s, cps ≺ t.

In a similar way we assign to each state of the LTS the suffixes of the sequence
of inevitable actions k that will be completed starting from s. We introduce the
notions of max suffix and common suffix, w.r.t. k. The max suffix is the longest
suffix of the k sequence among the suffixes of traces that start from a given state.
The common suffix is the longest suffix of the k sequence that is common to all
the suffixes of traces that start from a given state. We define T

o
s as the set of all

the suffixes of traces that start from s and S
k as the set of all the suffixes of k.

Definition 8. (Max and Common Suffix) Given an LTS M = (S, s0, Σ, T),
a sequence of inevitable actions k, the set S

k of all the suffixes of k, a state
s ∈ S, the max suffix, defined as mss, is the longest element in S

k such that
∃t ∈ T

o
s, mss ≺ t. The common suffix, defined as css, is the longest element in

S
k such that ∀t ∈ T

o
s, css ≺ t.

The example given in Figure 1 shows the max/common prefixes and suffixes
calculated on each state of an LTS for a given sequence of inevitable actions
k = A · Y . Let us take a look at state 8: the cp value shows that the action A
exists in every prefix of k produced by prefixes of traces that end in state 8.
Conversely, the cs value in state 8 is empty while the ms value is A ·Y , meaning
that the suffix A·Y is not contained in every suffix of traces that starts in state 8.
As a matter of fact, we can see that the only suffix of traces that respects the k

sequence is the one that begins with the transition 9
C
−→ 10 ∈ T .

Fig. 1. Max / common prefixes and suffixes

In some cases inevitable execution properties might not be satisfied because
of loops in which the execution of the system can remain infinitely. Our notion
of suffix allows us to discover such loops and understand whether they prevent
the satisfaction of the property. One of these loops is present in the example

6 Gianluca Barbon, Vincent Leroy, and Gwen Salaün

in Figure 1 and is composed of states 4, 5, 6, 8, 9 and 12. These loops are
treated in the next section by extracting the Strongly Connected Components
(SCCs) [17] from the LTS. The LTS with the max/common prefixes (suffixes,
resp.) computed for each state is called enriched LTS.

Definition 9. (Enriched LTS) Given an LTS M = (S, s0, Σ, T) and a sequence
of inevitable actions k, the enriched LTS is a tuple Mk

E = (SE , s
0

E , ΣE , TE)
such that each state sE ∈ SE is a tuple sE = (s,mps, cps,mss, css), where
s ∈ S, mps, cps ∈ P

k
s , mss, css ∈ S

k
s ; s0E = (s0,mps0 , cps0 ,mss0 , css0);

ΣE = Σ; TE ⊆ SE × ΣE × SE, where ∀s
l
−→ s′ ∈ T, (s,mps, cps,mss, css)

l
−→

(s′,mps′ , cps′ ,mss′ , css′) ∈ TE.

3.2 Prefixes and Suffixes Calculation

This section presents the computation of the prefixes and suffixes defined in
Section 3.1. In order to handle cycles in an LTS we use the notion of SCC, that
is a partition of an LTS where every state is reachable from any other state. Note
that every SCC in an LTS is also a Maximally Strongly Connected Component,
since an SCC cannot be subsumed by a larger SCC by definition. To detect
all the SCCs in an LTS we use the Tarjan’s SCCs algorithm [17]. Given an
LTS M = (S, s0, Σ, T), the algorithm allows the detection of all the SCCs in
linear time, with a cost of O(|S|+ |T |). Given a sequence of inevitable actions k,
our approach considers each SCC of the LTS, and computes the max/common
prefixes and suffixes for every state in the SCC. Note that we start computing
prefixes for states in a given SCC only when all its predecessors SCCs have been
computed (in the case of suffixes we first compute all the successors).

We now introduce some notions related to the SCCs that we will use through-
out the whole section. Given an LTS M = (S, s0, Σ, T) and an SCC G in M ,
where the sets of states and transitions in G are defined as SG and TG, respec-
tively, we denote as Se

G ⊆ SG the set of initial states of G, such that, given a

transition s
l
−→ s′ ∈ T , the state s /∈ SG and s′ ∈ Se

G. The transition s
l
−→ s′ ∈ T

is defined as incoming transition and the set of incoming transitions is written as
T e
G. Similarly, we denote as So

G ⊆ SG the set of outgoing states such that, given a

transition s
l
−→ s′ ∈ T , the state s ∈ So

G and s′ /∈ SG. The transition s
l
−→ s′ ∈ T

is defined as an outgoing transition and the set of outgoing transitions is written
as T o

G. We denote as GM the component graph [7] of an LTS M where the states
are given by SCCs of M . The SCC containing the initial state s0 of the LTS
M does not have any predecessors and it is defined as G0. By definition, since
all cycles are contained in SCCs, GM is a directed acyclic graph. The rest of
this section presents the computation of the max prefix (suffix, resp.) and of the
common prefix (suffix, resp.) for states of an SCC.

Max Prefix Calculation. The max prefix inside an SCC is computed by first
extracting the longest max prefix among the incoming states of the SCC. Second,
the incoming max prefix is extended with actions contained inside the SCC to
produce the longest (possible) prefix of k. Note that the max prefix is the same

Counterexample Simplification for Liveness Property Violation 7

for all the states of an SCC. The cost of the computation for an SCC G is
O(|T e

G| + |TG| + |k|), since we first have to explore all the incoming transitions
to compute the initial max prefix, and second we have to collect all the actions
in the SCC that are also present in k. Let us consider the SCC composed of
states 1, 2 and 3 in Figure 2 (note that SCCs in states 0, 4 and 5 are trivial).
Given k = A ·B ·C, the initial max prefix for the SCC is A, since the transition
from state 0 to state 1 is the only incoming transition and it contains the first
action of the k sequence. One can notice that by looping inside the SCC it is
possible to complete the k sequence, since the SCC contains also actions B and
C. Consequently, the max prefix in each state of the SCC (states 1, 2 and 3) is
equivalent to the k sequence.

Fig. 2. Prefix and suffix calculation on an SCC

Max Suffix Calculation. The max suffix is computed similarly to the max
prefix, by considering suffixes of successors instead of prefixes of predecessors.
In the example in Figure 2 the max suffix for every state in the SCC is B · C,
since they are the only two actions contained in the SCC that also exist in k.

Common Prefix Calculation. We describe here the computation of the com-
mon prefix for each state in an SCC. The pseudo-code of this procedure is de-
tailed in Algorithm 1. The algorithm is divided into two main steps: initialisation
and internal transitions computation.

Initialisation step. Given an SCC G the algorithm initialises the common prefix
of states in G to k (Line 3). There are two exceptions to this rule. First, the
initial state of the LTS s0 is initialised to the empty sequence since it has no
predecessors. Second, if s is an initial state of G, cps is initialised with the
common prefixes of its incoming transitions (Line 7). Let us take a look at the
example in Figure 2. The initialisation step assigns cp = A ·B ·C to states 2 and
3, while it assigns cp = A to state 1, which is the only initial state of the SCC.

Internal transitions computation step. After the initialisation step, there may still
be paths withinG that can produce a prefix smaller than the ones in initial states.
This step deals with internal transitions to detect smaller prefixes. First of all, we
use Q (Line 8) as sorted set to order by increasing common prefix size the states
in SG. When modifying the common prefix of a state s, UpdatePosition(Q, s)
updates the position of s in Q. The loop of Line 9 iterates on Q, removing

8 Gianluca Barbon, Vincent Leroy, and Gwen Salaün

the first element s at each iteration. The common prefix of all successors s′ of s
within G is updated using a function LCP, which computes the longest common
prefix between two sequences of actions. When producing a smaller prefix, the
position of s′ in Q is updated. Let us consider again the SCC in Figure 2. The
internal transitions computation step corrects the values of cp in states 2 and 3,
assigning respectively cp = A and cp = A ·B. The value of cp in state 1 remains
the same, since it was already the lower one among all the states of the SCC.

Correctness and complexity. The common prefix algorithm behaves similarly to
the Dijkstra’s algorithm that deals with the single-source shortest-paths problem
in weighted directed graphs (in particular, to the implementation which uses a
Fibonacci heap as priority queue). The complexity of the algorithm is O(|T e

G|+
|TG|+ |SG| log |SG|) because the while loop performs exactly |SG| iterations and
the cost of inserting an element to Q and updating its position is O(log |Q|).

Algorithm 1 Common Prefix Computation

1: procedure CommonPrefix(G, k)
2: for all s ∈ SG do

3: cps ← k
4: if s = s0 then cps ← ∅
5: else if s ∈ Se

G then

6: for all s′
l
−→ s ∈ExtractIncomingTrans(s) do

7: if s′ /∈ SG then cps ← LCP(cps, cps′ · l)

8: Q← SG

9: while Q 6= ∅ do
10: s← PopFirst(Q)

11: for all s
l
−→ s′ ∈ TG do

12: t← LCP(cps · l, cps′)
13: if |t| < |cps′ | then cps′ ← t ; UpdatePosition(Q, s′)

Common Suffix Calculation. The common suffix calculation is similar to the
prefix case, but it differs in the initialisation step. In the suffix case the execution
may loop into the current SCC and never go through an outgoing transition, and
a state may thus have a smaller common suffix than all states from its successor
SCCs. This initialisation step is presented in Algorithm 2. In the case of a final
state, the suffix is empty (Line 3). Otherwise, the common suffix is initialised to
the smallest suffix of k traversed by a loop from s to itself (Line 4). In the absence
of loops (SCC with single state and no self-loop), MinSuffixLoop returns k.
The remainder of the computation is similar to Algorithm 1, using a function
LCS, which computes the longest common suffix, instead of LCP. Searching
the smallest-suffix loop for each state is done by iteratively removing labels from
k and looking for isolated vertices. Hence, the overall cost of the computation
is O(|T o

G| + |k| × (|TG| + |SG|) + |SG| log |SG|). Let us consider the example in
Figure 2. The initialisation step assigns cs = B · C to state 1, which is the
smallest suffix of k that can be produced inside the SCC starting from state 1.

Counterexample Simplification for Liveness Property Violation 9

It then assigns the empty sequence and cs = C to states 2 and 3, since they are
outgoing states. The algorithm will later update the value of cs in state 1 to the
empty sequence with the internal transitions computation step.

Algorithm 2 Common Suffix Computation (Initialisation Step)

1: procedure CommonSuffixInit(G, k)
2: for all s ∈ SG do

3: if 6 ∃s
l
−→ s′ then css ← ∅

4: else css ← MinSuffixLoop(s, k,G)
5: if s ∈ So

G then

6: for all s
l
−→ s′ ∈ExtractOutgoingTrans(s) do

7: if s′ /∈ SG then css ← LCS(css, l · css′)

Order of Calculation. So far, we have considered the computation of prefixes
and suffixes for the states of an SCC. However, evaluating prefixes requires that
the prefixes of all predecessor states of an SCC are correct (successors states
in case of suffixes). It is thus important to execute our approach on SCCs in
an appropriate order. Since by definition there are no cycles in GM, we can
define the depth of an SCC as 0 for the SCC that contains s0, and 1 plus the
maximum depth of predecessor SCCs otherwise. Our approach computes prefixes
in SCCs by increasing depth, and suffixes by decreasing depth, ensuring the
presence of the necessary information. Given the costs of computing prefixes
and suffixes in each SCC, the total cost of the calculation of the enriched LTS
is O(|k| × (|T |+ |S|) +

∑
G∈GM

(|SG| log |SG|)).

3.3 Neighbourhoods

The enriched LTS with max/common prefixes and suffixes can now be used to
characterise its transitions. A transition is typed as correct if it always leads to
a correct part of the model, as incorrect if it always leads to an incorrect part
of the model, as neutral if none of the previous cases apply.

More specifically, a correct transition leads to a portion of the LTS where
the sequence of actions k is always respected. To state whether a transition is a
correct one we compute the sum of the length of cp in the source state and of
cs in its destination state. Note that we also have to take into account the label
of the transition in this sum, since the concatenation of cp with the label may
produce a valid prefix of k. If the sum is equal or higher than the size of the k
sequence the transition is identified as correct.

Definition 10. (Correct Transition) Given an enriched LTS Mk
E =

(SE , s
0

E , ΣE , TE), two states sE = (s,mps, cps,mss, css) ∈ SE, s′E =

(s′,mps′ , cps′ ,mss′ , css′) ∈ SE, a correct transition is a transition sE
l
−→ s′E ∈ TE

such that cp = cps · l if cps · l is a prefix of k, cp = cps otherwise, and
|cp|+ |css′ | ≥ |k|.

10 Gianluca Barbon, Vincent Leroy, and Gwen Salaün

On the contrary, an incorrect transition is a transition that leads to a por-
tion of the LTS where the sequence of actions k is never respected. We take into
account the sum of the length of mp in the source state and of ms in its desti-
nation state. If the sum is lower than the size of the k sequence the transition is
classified as incorrect.

Definition 11. (Incorrect Transition) Given an enriched LTS Mk
E =

(SE , s
0

E , ΣE , TE) two states sE = (s,mps, cps,mss, css) ∈ SE, s′E =
(s′,mps′ , cps′ ,mss′ , css′) ∈ SE, an incorrect transition is a transition

sE
l
−→ s′E ∈ TE such that mp = mps · l if mps · l is a prefix of k, mp = mps

otherwise, and |mp|+ |mss′ | < |k|.

When a transition cannot be identified as correct nor as incorrect, it means
that it is common to both correct and incorrect behaviours. Such transition is
called a neutral transition.

The LTS where correct, incorrect and neutral transitions have been detected
allows us to recognise neighbourhoods in states in which an incoming neutral
transition is followed by a correct or an incorrect one. A neighbourhood rep-
resents a choice in the LTS between branching behaviours that directly affect
the property satisfaction, and it consists of incoming and outgoing transitions
of that state.

Definition 12. (Neighbourhood) Given an LTS Mk
E = (SE , s

0

E , ΣE , TE) where
transitions have been typed as correct, incorrect or neutral, a state s ∈ SE where

∀t = s′
l
−→ s ∈ TE, t is a neutral transition and ∃t′ = s

l
−→ s′′ ∈ TE, t′ is

a correct or an incorrect transition, the neighbourhood of state s is the set of

transitions Tnb ⊆ TE such that for each t′′ ∈ Tnb , either t′′ = s′
l
−→ s ∈ TE or

t′′ = s
l
−→ s′′′ ∈ TE.

Fig. 3. The four types of neighbourhoods.

We can identify four different types of neighbourhoods by looking at their
outgoing transitions (see Figure 3 from left to right). The first type consists of
neighbourhoods with at least one correct transition and no incorrect transitions,
and highlights a choice that can lead to behaviours that always comply with the
sequence of inevitable actions. The second type is represented by neighbourhoods
with at least one incorrect transition but no correct transitions, and highlights
a choice that can lead to behaviours that never comply with the sequence of
inevitable actions. The third and the fourth types have both at least one correct

Counterexample Simplification for Liveness Property Violation 11

and one incorrect outgoing transition, and they differ because of the presence
(or not) of one (or more) neutral outgoing transition(s).

In Figure 4 we show the example described in Section 3.1 (in Figure 1), where
the transition detection has allowed to detect neighbourhoods (states coloured
in grey). In particular state 9, where correct and neutral transitions are present,
shows a neighbourhood of the first type, where a choice that will always satisfy
the property is possible. On the contrary, states 1, 6 and 8 show neighbourhoods
of the second type, where a choice that leads to an incorrect behaviour is possible.

Fig. 4. Transitions classification and neighbourhoods

3.4 Simplification Techniques

The final step of our approach aims at simplifying the counterexample produced
from the LTS and a given property. To do so we make a joint analysis of the coun-
terexample and of the LTS enriched with neighbourhoods computed previously.
This analysis can be used for obtaining different kinds of simplifications, such as:
(i) an abstracted counterexample, that allows to remove from a counterexample
actions that do not belong to neighbourhoods (and thus represent noise); (ii) a
shortest path to a neighbourhood, which retrieves the shortest sequence of actions
that leads to a neighbourhood; (iii) improved versions of (i) and (ii), where the
user provides a pattern representing a sequence of non-contiguous actions, in
order to allow the developer to focus on a specific part of the model; (iv) tech-
niques focusing on a notion of distance to the bug in terms of neighbourhoods.
For the sake of space, we focus on the abstracted counterexample in this paper.

Abstracted Counterexample. This technique abstracts a counterexample keeping
only transitions that belong to neighbourhoods. The technique takes as input
an LTS M where neighbourhoods have been identified, and a counterexample
c, produced from M and from the inevitability property expressed by k. The
procedure for the abstracted counterexample first identifies in c the states that
belong to a neighbourhood in M . Second, it removes all the actions in c that
do not represent incoming or outgoing transitions of neighbourhoods identified
in the previous step. Figure 5 shows an example of a counterexample where two

12 Gianluca Barbon, Vincent Leroy, and Gwen Salaün

neighbourhoods, highlighted on the right side, have been detected and allow us
to identify actions that are preserved in the abstracted counterexample.

Fig. 5. Abstracted counterexample

4 Illustration on Case Studies

We implemented our approach in a Java tool, which consists of about 6000
lines of code. Compilers provided by the CADP toolbox [10] have been used
to transform LNT [6] and LOTOS [5] specifications into LTS models, which are
used as input format to our application. Our tool was applied to several examples
in order to validate it. We present here two of them, showing the verification of
both a simple and a nested inevitable execution property.

Sanitary Agency. We describe here the Sanitary Agency [16] case study, which
models an agency that aims at supporting elderly citizens in receiving sanitary
assistance from the public administration. The model is composed of four partic-
ipants, depicted in Figure 6: a bank to manage fees and payments; a cooperative
to provide welfare services; a citizen to perform the service requests; a sanitary
agency to manage citizens’ requests and which also contribute to the payment.
For illustration purposes, we defined a property with two nested inevitable exe-
cutions. The property states that the treatment of a citizen request by the agency
(represented by the REQ EM action) should always take place, and should always
be followed by the reception of a transport service by the citizen (represented
by the PROVT REC action).

Our tool identified five neighbourhoods in the model. We then applied the
abstracted counterexample technique to the shortest counterexample, allowing
to discover two neighbourhoods and consequently reducing the length of the
counterexample from 15 actions to 4. The top side of Figure 7 depicts the short-
est counterexample while the bottom side depicts the corresponding neighbour-
hoods. The extracted actions are relevant since the neighbourhoods to which
they belong precisely identify choices in the model that violate the property. In
this case, the first neighbourhood shows that the first action in the property is
not inevitable. The REQ EM action can take place only after an ACCEPTANCE EM ac-
tion, but the neighbourhood exhibits an incorrect transition with the REFUSAL EM

action, revealing that the citizen request can be refused and thus preventing its

Counterexample Simplification for Liveness Property Violation 13

Fig. 6. Sanitary agency models

treatment. The second neighbourhood shows that, even when the citizen request
is treated by the agency, the system does not always satisfy the nested inevitable
action, since it can also provide meal services. This is highlighted by the choice
between the correct transition with the PROVT EM action (emission of a trans-
port service) and the incorrect transition with the PROVM EM action (emission of
a meal service).

Fig. 7. Sanitary agency: shortest counterexample and neighbourhoods

Alternating Bit Protocol. We now discuss the Alternating Bit Protocol case
study, which consists of a data link layer network protocol that allows the re-
transmission of lost or corrupted messages. The version of the protocol analysed
here, available as CADP demo [12], is a variant without data values written in
LOTOS. The model is composed of four processes: a transmitter process that
acquires and sends a message; a receiver process that gets a message; medium1
and medium2 processes that represent transmission channels.

The demo is provided with an inevitable execution property that states that
a PUT action will be eventually reached from the initial state. This property is not
satisfied by the model because of the presence of loops in the specification that

14 Gianluca Barbon, Vincent Leroy, and Gwen Salaün

can lead to an infinite trace that never reaches a PUT action. More precisely, the
problem is caused by an interaction between the receiver and the medium2 pro-
cesses. When the transmitter process has not yet started the message treatment
(represented by the PUT action), the receiver might have to wait. In this case the
receiver produces a TIMEOUT action, followed by the sending of an incorrect ack
message (RACK1 action). If this ack message is lost by medium2 (LOSS action)
and the receiver is still waiting, a loop might be produced until the transmitter
starts the message treatment.

Our tool detects six neighbourhoods in the model, all with correct and neutral
transitions. Figure 8 depicts a portion of the model with these neighbourhoods,
which are located at states 0, 2, 5, 12, 13 and 23. In particular, neighbourhoods
at states 5, 12, 13, 23 present choices that make the execution of the system
remain infinitely inside the loops, preventing the satisfaction of the property by
reaching the PUT action. This is highlighted by neutral transitions containing
LOSS, RACK1 and TIMEOUT actions that repeat the cycle.

Fig. 8. Excerpt of the Alternating Bit protocol LTS model

5 Related Work

Causality analysis aims at relating causes and effects, which can help in debug-
ging faults in (possibly concurrent) systems. This analysis relies on a notion
of counterfactual reasoning, where alternative executions of the system are de-
rived by assuming changes in the program. In [11], the authors present a general
approach for causality analysis of system failures based on component specifica-
tions and observed component traces. In [3], the authors choose the Halpern and
Pearl model to define causality checking in order to localise errors in hardware
systems by analysing counterexample traces. Our approach is complementary to
causality analysis since it helps to detect any kind of bugs and not only those
involving causality.

In [4], sequential pattern mining is applied to execution traces for revealing
unforeseen interleavings that may be a source of error, through the adoption
of the well-known mining algorithm CloSpan. CloSpan is also adopted in [14],
where the authors apply sequential pattern mining to traces of counterexamples,
in order to reveal unforeseen interleavings that may be a source of error. However,

Counterexample Simplification for Liveness Property Violation 15

reasoning on traces induces several issues. The handling of looping behaviours
is non-trivial and may result in the generation of infinite traces or of an infinite
number of traces. Coverage is another problem, since a high number of traces
does not guarantee to produce all the relevant behaviours for analysis purposes.
As a result, we decided to work on the debugging of LTS models, which represent
in a finite way all possible behaviours of the system.

In [13] the authors propose a method to interpret counterexamples traces
from liveness properties by dividing them into fated and free segments. Fated
segments represents inevitability w.r.t. the failure, pointing out progress towards
the bug, while free segments highlight the possibility to avoid the bug. The pro-
posed approach classifies states in different layers (representing distances from
the bug) and produces a counterexample annotated with segments by exploring
the model. Both our work and [13] aim at building an explanation from the
counterexample. However, our method focuses on locating branching behaviours
that affect the property satisfaction whereas their approach produces an en-
hanced counterexample where inevitable events (w.r.t. the bug) are highlighted.

Fault localisation for program debugging has been an active topic of research
for many years in the software engineering community [18]. One of the main ap-
proaches in that line of work aims at localising faults using testing approaches.
As an example, the approach presented in [15] relies on mutation testing to
locate effectively the faulty statements. Experiments carried out in [15] reveal
that mutation-based fault localisation is significantly more effective than current
state-of-the-art fault localisation techniques. Note that this work applies on se-
quential C programs whereas we focus on formal models of concurrent programs.

We published in [2] an approach for counterexample analysis of safety prop-
erty violation. [2] describes a preliminary version of neighbourhood and of the
counterexample abstraction. The algorithmic solution using prefix/suffix annota-
tions presented in Section 3 as well as the tool support and experiments presented
in Section 4 are entirely new.

6 Conclusion

In this paper, we have proposed a method for improving the comprehension of
counterexamples returned by a model checker when an inevitability property
is not satisfied on a given behavioural model. To do so, we have first defined
an algorithm to enrich the LTS that represents the model of the system with
notions of prefixes and suffixes, which express parts of the sequence of inevitable
actions. Second, we have provided a method to extract relevant portions of the
LTS, called neighbourhoods, which highlight choices between a correct and an
incorrect behaviour. Third, we have proposed a set of simplification techniques
to extract relevant information that explains the cause of the bug, exploiting
the notion of neighbourhood. All the steps of our approach are automated by a
tool we implemented. The resulting simplified counterexample gives an improved
explanation of the bug, as we have shown on experiments we carried out on real-
world examples.

16 Gianluca Barbon, Vincent Leroy, and Gwen Salaün

Acknowledgements. We are grateful to Radu Mateescu for his valuable inputs
on liveness properties.

References

1. C. Baier and J. Katoen. Principles of Model Checking. MIT Press, 2008.
2. G. Barbon, V. Leroy, and G. Salaün. Debugging of Concurrent Systems Using

Counterexample Analysis. In Proc. of FSEN’17, volume 10522 of LNCS, pages
20–34. Springer, 2017.

3. A. Beer, S. Heidinger, U. Kühne, F. Leitner-Fischer, and S. Leue. Symbolic Causal-
ity Checking Using Bounded Model Checking. In Proc. of SPIN’15, volume 9232
of LNCS, pages 203–221. Springer, 2015.

4. M. T. Befrouei, C. Wang, and G. Weissenbacher. Abstraction and Mining of Traces
to Explain Concurrency Bugs. In Proc. of RV’14, volume 8734 of LNCS, pages
162–177. Springer, 2014.

5. T. Bolognesi and E. Brinksma. Introduction to the ISO Specification Language
LOTOS. Computer Networks, 14:25–59, 1987.

6. D. Champelovier, X. Clerc, H. Garavel, Y. Guerte, F. Lang, C. McKinty,
V. Powazny, W. Serwe, and G. Smeding. Reference Manual of the LNT to LOTOS
Translator (Version 6.7). INRIA/VASY and INRIA/CONVECS, 153 pages, 2018.

7. E. M. Clarke, S. Jha, Y. Lu, and H. Veith. Tree-Like Counterexamples in Model
Checking. In Proc. of LICS’02, pages 19–29. IEEE Computer Society, 2002.

8. R. De Nicola and F. W. Vaandrager. Action versus State based Logics for Tran-
sition Systems. In Proc. of Semantics of Systems of Concurrent Processes, 1990,
volume 469 of LNCS, pages 407–419. Springer, 1990.

9. M. B. Dwyer, G. S. Avrunin, and J. C. Corbett. Patterns in Property Specifications
for Finite-State Verification. In Proc. of ICSE’99, pages 411–420. ACM, 1999.

10. H. Garavel, F. Lang, R. Mateescu, and W. Serwe. CADP 2011: A Toolbox for the
Construction and Analysis of Distributed Processes. STTT, 15(2):89–107, 2013.

11. G. Gößler and D. L. Métayer. A General Trace-Based Framework of Logical Causal-
ity. In Proc. of FACS’13, volume 8348 of LNCS, pages 157–173. Springer, 2013.

12. Inria CONVECS team. CADP demo 01: Alternating Bit Protocol.
http://cadp.inria.fr/demos.html.

13. H. Jin, K. Ravi, and F. Somenzi. Fate and Free Will in Error Traces. In Proc. of

TACAS’02, volume 2280 of LNCS, pages 445–459. Springer, 2002.
14. S. Leue and M. T. Befrouei. Mining Sequential Patterns to Explain Concurrent

Counterexamples. In Proc. of SPIN’13, volume 7976 of LNCS, pages 264–281.
Springer, 2013.

15. M. Papadakis and Y. L. Traon. Effective Fault Localization via Mutation Analysis:
A Selective Mutation Approach. In Proc. of SAC’14, pages 1293–1300. ACM, 2014.

16. G. Salaün, L. Bordeaux, and M. Schaerf. Describing and Reasoning on Web Ser-
vices using Process Algebra. In Proc. of ICWS’04, pages 43–50. IEEE Computer
Society, 2004.

17. R. E. Tarjan. Depth-First Search and Linear Graph Algorithms. SIAM J. Comput.,
1(2):146–160, 1972.

18. W. E. Wong, R. Gao, Y. Li, R. Abreu, and F. Wotawa. A Survey on Software
Fault Localization. IEEE Trans. Software Eng., 42(8):707–740, 2016.

