
1

Behavior Analysis of Malware by
Rewriting-based Abstraction

– Extended Version –
Philippe Beaucamps, Isabelle Gnaedig, Jean-Yves Marion

INPL - INRIA Nancy Grand Est - Nancy-Université - LORIA
Campus Scientifique - BP 239 F54506 Vandoeuvre-lès-Nancy Cedex, France
Email: {Philippe.Beaucamps, Isabelle.Gnaedig, Jean-Yves.Marion}@loria.fr

Abstract—We propose a formal approach for the detection
of high-level program behaviors. These behaviors, defined as
combinations of patterns in a signature, are detected by model-
checking on abstracted forms of program traces. Our approach
works on unbounded sets of traces, which makes our technique
useful not only for dynamic analysis, considering one trace
at a time, but also for static analysis, considering a set of
traces inferred from a control flow graph. Our technique uses
a rewriting-based abstraction mechanism, producing a high-
level representation of the program behavior, independent of the
program implementation. It allows us to handle similar behaviors
in a generic way and thus to be robust with respect to variants.
Successfully applied to malware detection, our approach allows
us in particular to model and detect information leak.

Keywords-behavioral analysis, malware detection, behavior ab-
straction, model checking, temporal logic, term rewriting, static
analysis, information leak

I. INTRODUCTION

Behavior analysis was introduced by Cohen’s seminal
work [1] to detect malware and in particular unknown mal-
ware. In general, a behavior is described by a sequence of sys-
tem calls and recognition is based on finite state automata [2],
[3], [4]. New approaches have been proposed recently. In [5],
[6], [7], malicious behaviors are specified by temporal logic
formulas with parameters and detection is carried out by
model-checking. However, these approaches are tightly de-
pendent on the way malicious actions are realized: using any
other system facility to realize an action allows a malware
to go undetected. This has motivated yet another approach
where a malicious behavior is specified as a combination of
high-level actions, in order to be independent from the way
these actions are realized and to only consider their effect
on a system. In [8] and in [9], a captured execution trace
is transformed into a higher-level representation capturing its
semantic meaning, i.e., the trace is first abstracted before
being compared to a malicious behavior. In [10], the authors
propose to use attribute automata, at the price of an exponential
time complexity detection. These dynamic abstraction-based
approaches, though they can detect unknown viruses whose
execution traces exhibit known malicious behaviors, only deal
with a single execution trace.

In this paper, we propose a formal approach for high-
level behavior analysis. Underpinned by language theory,

term rewriting and first order temporal logic, it allows us to
determine whether a program exhibits a high-level behavior,
expressed by a first order temporal logic formula. Detection
is achieved in two steps. First, traces of the program are
abstracted in order to reveal the sequences of high-level
functionalities they realize. Then, abstracted traces are com-
pared with the behavior formula, using usual model-checking
techniques. Functionalities have parameters representing the
manipulated data, so our formalism is adapted to the protection
against generic threats like the leak of sensitive information.

Our approach has two main characteristics. First, in order to
consider a more complete representation of the program than
with a single trace, we work on an unbounded set of traces
representing its behavior. To deal with the infinity of the set of
traces, we restrict to regular sets and safely approximate the
set of abstract traces, so that we detect in linear time whether
a program exhibits a given behavior. In practice, we represent
a program set of traces by a finite state automaton constructed
from the program control flow graph.

Second, in order to only keep the essence of the functions
performed by the program, to be independent of their possible
implementations and to be generic with respect to behavior
mutations, we work on abstract forms of traces. Behavior
components are abstracted in program traces, by identifying
known functionalities and marking them by inserting abstract
functionality symbols. These functionalities are described by
behavior patterns, which are formally defined, like high-level
behaviors, by first-order temporal logic formulas. Thus, the
abstract form of an execution trace is defined in terms of these
abstract functionalities and not anymore in terms of observed
actions, which are low-level and therefore less reliable.

By working on sets of traces, that may consist of a single
trace as well as of an unbounded number of traces, our ap-
proach may be used for static behavior analysis, i.e., behavior
analysis in a static analysis setting.

Static behavior analysis, when it is possible, has many
advantages and applications. First, it allows us to analyze
the behavior of a program in a more exhaustive way, as it
analyzes the unbounded set of the program execution traces,
or an approximation of it. Second, static behavior analysis
can complement classical, dynamic, behavior analysis with an
analysis of the future behavior, when some critical point is

in
ria

-0
05

94
39

6,
 v

er
si

on
 1

 -
20

 M
ay

 2
01

1

http://hal.inria.fr/inria-00594396/fr/
http://hal.archives-ouvertes.fr

2

reached in an execution, e.g., when data is about to be sent on
the network after some sensitive file was read. Indeed, since
dynamic behavior analysis only analyzes the past behavior,
the captured data in this case may not be sufficient to raise
an alarm, thereby letting the program execute the critical
operation.

An interesting application of static behavior analysis is the
audit of programs in high-level technologies, like mobile ap-
plications, browser extensions, web page scripts, .NET or Java
programs. Auditing these programs is complex and mostly
manual, resulting in highly publicized infections [11], [12].
In this context, static analysis can provide an appropriate
help, because it is usually easier than for general programs,
especially when additionally enforcing a security policy (e.g.
prohibiting self-modification [13]) or when enforcing strict
development guidelines (e.g. for iPhone applications).

Note that the construction of an exhaustive representation
of a program behavior is an intractable problem in general: in
particular, a program flow may not be easily followed due
to indirect jumps, and a program may use complex code
protection, for instance by dynamically modifying its code
or by using obfuscation. Self modification is usually tackled
by emulating the program long enough to deactivate most
code protections. Indirect jumps and obfuscation are usually
handled by abstract interpretation [14], [15] or symbolic
execution [16].

To our knowledge, the use of behavior abstraction on top
of static behavior analysis has not been investigated so far.

As our detection mechanism relies on the validation of
temporal logic formulas, it is akin to model checking [17],
for which there already exists numerous frameworks and
tools [18], [19], [20]. The specificity of our approach, however,
is that, rather than being applied on the set of program traces,
verification is applied on the set of abstract forms of these
traces, which is not computable in general. Accordingly, we
identify a property of practical high-level behaviors allowing
us to approximate this set, in a sound and complete way with
respect to detection, and then to apply classical verification
techniques.

Our abstraction framework can be used in two scenarios:
• Detection of given behaviors: signatures of given high-

level behaviors are expressed in terms of abstract func-
tionalities. Given some program, we then assess whether
one of its execution traces exhibits a sequence of known
functionalities, in a way specific to one of the given
behaviors. This can be applied to detection of suspicious
behaviors. Although detection of such suspicious behav-
iors may not suffice to label a program as malicious, it
can be used to supplement existing detection techniques
with additional decision criteria.

• Analysis of programs: abstraction provides a simple and
high-level representation of a program behavior, which
is more suitable than the original traces for manual
analysis, or for analysis of behavior similarity with known
malware, etc. For instance, it could be used to detect
non necessarily harmful behaviors, in order to get a basic
understanding of the program and to further investigate if

deemed necessary. It could also be used to automatically
discover sequences of high-level functionalities and their
dataflow dependencies, exhibited by a program.

Previous work: In [21], we already proposed to abstract
program sets of traces with respect to behavior patterns, for
detection and analysis. But patterns were defined by string
rewriting systems, which did not allow the actions composing
a trace to have parameters, precluding dataflow analysis.
Moreover abstraction rules replaced identified patterns by
abstraction symbols in the original trace, precluding a further
detection of patterns interleaved with the rewritten ones.

The formalism proposed in this paper addresses both issues:
we handle interleaved patterns by keeping the identified pat-
terns when abstracting them and we express data constraints
on action parameters by using term rewriting systems. Finally,
another main difference with [21] is that, using the dataflow,
we can now detect information leaks in order to prevent
unauthorized disclosure or modifications of information.

II. BACKGROUND

Term Algebras: Let S = {Trace,Action,Data} be a
set of sorts and F = Ft ∪ Fa ∪ Fd be an S-sorted signature,
where Ft, Fa, Fd are mutually distinct and:
• Ft = {ε, ·} is the set of the trace constructors;
• Fa is a finite set of function symbols or constants, with

signature Datan → Action , n ∈ N, describing actions;
• Fd is a finite set of constants of type Data , describing

data.
We denote by T (F , X) the set of S-sorted terms over a set

X of S-sorted variables. For any sort s ∈ S, we denote by
Ts (F , X) the restriction of T (F , X) to terms of sort s and
by Xs the subset of variables of X of sort s.

If f ∈ F is a symbol of arity n ∈ N, we denote by f (x) a
term f (x1, . . . , xn), where x1, . . . , xn are variables.

Substitutions are defined as usual (see Appendix A1). By
convention, we denote by tσ or by σ (t) the application of
a substitution σ to a term t ∈ T (F , X) and by Lσ the
application of σ to a set of terms L ⊆ T (F , X). The set
of ground substitutions over X is denoted by SubstX .

A term of sort Action is called an action and a term of sort
Trace is called a trace. We distinguish the sort Action from
the sort Trace but, for a sake of readability, we may denote
by a the trace · (a, ε), for some action a. Similarly, we use the
· symbol with infix notation and right associativity, and ε is
understood when the context is unambiguous. For instance, if
a, b, c are actions, a · b · c denotes the trace · (a, · (b, · (c, ε))).

We partition Fa in a set Σ of symbols, denoting con-
crete program-level actions, and a set Γ of symbols, de-
noting abstract actions identifying abstracted functionalities.
To construct purely concrete (resp. abstract) terms, we use
FΣ = F \ Γ (resp. FΓ = F \ Σ).

We define in a natural way the concatenation t · t′ of two
traces t and t′. The projection t|Σ′ , also denoted πΣ′ (t), of
a trace t on an alphabet Σ′ ⊆ Fa corresponds to keeping in
a trace only actions from Σ′ and is naturally extended to sets
of traces (see Appendix A1).

in
ria

-0
05

94
39

6,
 v

er
si

on
 1

 -
20

 M
ay

 2
01

1

3

Program Behavior: The representation of a program is
chosen to be its set of traces. When executing a program, the
captured data is represented on the alphabets Σ, denoting the
concrete actions, and Fd, describing the data. In this paper,
we consider that the captured data is the library calls along
with their arguments. Σ therefore represents the finite set of
library calls, while constants from Fd identify the arguments
and the return values of these calls. A program execution trace
then consists of a sequence of library calls and is defined by
a term of TTrace (FΣ). A program behavior is defined by the
set of its execution traces, that is a possibly infinite subset of
TTrace (FΣ). For instance, the term fopen (1, 2)·fwrite (1, 3)
represents the execution trace of a file open call fopen (1, 2)
followed by a file write call fwrite (1, 3), where 1 ∈ Fd
identifies the file handle returned by fopen, 2 ∈ Fd identifies
the file path and 3 ∈ Fd identifies the written data.

First-Order LTL (FOLTL) Temporal Logic: We con-
sider the First-Order Temporal Logic (FOLTL) defined in
[17], without the equality predicate, where atomic predicates
are terms and may have variables. More precisely, let X be a
finite set of variables of sort Data and AP = TAction (FΣ, X)
be the set of atomic propositions. FOLTL is an extension of
the LTL temporal logic (see Appendix A2) such that:
• If ϕ is an LTL formula, then ϕ is an FOLTL formula ;
• If ϕ is an FOLTL formula and Y ⊆ X is a set of

variables, then: ∃Y.ϕ and ∀Y.ϕ are FOLTL formulas,
where as usual: ∀Y.ϕ ≡ ¬∃Y.¬ϕ.

Notation ϕ1 � ϕ2 stands for ϕ1 ∧X (>Uϕ2).
We say that an FOLTL formula is closed when it has no

free variable, i.e., every variable is bound by a quantifier.
Let Y ⊆ X be a set of variables of sort Data and σ ∈

SubstY be a ground substitution over Y . The application of
σ to an FOLTL formula ϕ is naturally defined by the formula
ϕσ where any free variable x in ϕ which is in Y has been
replaced by its value σ (x).

As with LTL, a formula is validated on infinite sequences
of sets of atomic predicates, denoted by ξ = (ξ0, ξ1, . . .) ∈(
2AP

)ω
. ξ |= ϕ (ξ validates ϕ) is defined in the same way as

for the LTL logic, with the additional rule: ξ |= ∃Y.ϕ iff there
exists a substitution σ ∈ SubstY such that ξ |= ϕσ.

In our context, a formula is validated over traces of
TTrace (F) identified with sequences of singleton sets of
atomic predicates. A finite trace t = a0 · · · an is identified
with the infinite sequence of sets of atomic predicates ξt =
({a0} , . . . , {an} , {} , {} , . . .), and t validates ϕ, denoted by
t |= ϕ, iff ξt |= ϕ.

Tree Automata and Tree Transducers: Tree automata
and tree transducers are defined as usual (see Appendix A3
and [22]). We consider specifically top-down tree automata
without ε rules and linear nondeleting top-down tree transduc-
ers. A tree language is regular iff it is recognized by some tree
automaton and a binary relation is rational iff it is realized by
some linear nondeleting top-down tree transducer.

III. BEHAVIOR PATTERNS

The problem under study can be formalized in the following
way. First, using FOLTL formulas, we define a set of behavior

patterns, where each pattern represents a (possibly infinite)
set of terms from TTrace (FΣ). Second, we need to define
a terminating abstraction relation R allowing to schematize
a trace by abstracting occurrences of the behavior patterns
in that trace. Finally, given some program p coming with an
infinite set of traces L (static analysis scenario, for instance
by using the control flow graph, see our previous work [21]
and [23], [24]), we formulate the detection problem in the
following way: given an abstract behavior M defined by an
FOLTL formula ϕ, does there exist a trace t in L↓R such that
t |= ϕ, where L↓R is the set of normal forms of traces of
L for R? Our goal is then to find an effective and efficient
method solving this problem.

A behavior pattern describes a functionality we want to
recognize in a program trace, like writing to system files,
sending a mail or pinging a remote host. Such a functionality
can be realized in different ways, depending on which system
calls, library calls or programming languages it uses.

We describe a functionality by an FOLTL formula, such
that traces validating this formula are traces carrying out the
functionality.

Example 1. Let us consider the functionality of sending a
ping. One way of realizing it consists in calling the socket
function with the parameter IPPROTO_ICMP describing the
network protocol and, then, calling the sendto function with
the parameter ICMP_ECHOREQ describing the data to be sent.
Between these two calls, the socket should not be freed . This is
described by the FOLTL formula: ϕ1 = ∃x, y. socket (x, α)∧
(¬closesocket (x) U sendto (x, β, y)), where the first param-
eter of socket is the created socket and the second parameter
is the network protocol, the first parameter of sendto is the
used socket, the second parameter is the sent data and the
third one is the target, the unique parameter of closesocket
is the freed socket and constants α and β in Fd identify the
above parameters IPPROTO_ICMP and ICMP_ECHOREQ.

A ping may also be realized using the function IcmpSend-
Echo, whose parameter represents the ping target. This corre-
sponds to the FOLTL formula: ϕ2 = ∃x. IcmpSendEcho (x).

Hence, the ping functionality may be described by the
FOLTL formula: ϕping = ϕ1 ∨ ϕ2.

We then define a behavior pattern as the set of traces
carrying out its functionality, i.e., as the set of traces validating
the formula describing the functionality.

Definition 1. A behavior pattern is a set of traces B ⊆
TTrace (FΣ) validating a closed FOLTL formula ϕ on AP =
TAction (FΣ, X): B = {t ∈ TTrace (FΣ) | t |= ϕ} .

IV. DETECTION PROBLEM

As said before, our goal is to be able to detect, in a given set
of traces, some predefined behavior composed of combinations
of high-level functionalities. For this, we associate to each
behavior pattern an abstract symbol λ taken in the alphabet
Γ. An abstract behavior is then defined by combinations of
abstract symbols associated to behavior patterns, using an
FOLTL formula ϕ on AP = TAction (FΓ, X) instead of
TAction (FΣ, X).

in
ria

-0
05

94
39

6,
 v

er
si

on
 1

 -
20

 M
ay

 2
01

1

4

Definition 2. An abstract behavior is a set of traces M ⊆
TTrace (FΓ) validating a closed FOLTL formula ϕM on AP =
TAction (FΓ, X): M = {t ∈ TTrace (FΓ) | t |= ϕM} .

When M is defined by a formula ϕM , we write: M := ϕM .

Example 2. The abstract behavior of sending a ping to a
remote host can then be trivially defined by the formula: ϕM =
∃x.Fλping (x) .

In the following, for the sake of simplicity, the initial F
operator is implicit in definitions of abstract behaviors.

Now, let L be the set of program traces we want to analyze.
To compare these traces to the given abstract behavior, we have
to consider the behavior pattern occurrences they may contain,
at the abstract level. For this, we define an abstraction relation
R, which marks such occurrences in traces by inserting an
abstract symbol λB when an occurrence of the behavior
pattern B is identified.

From now on, if a behavior pattern is defined using an
FOLTL formula ϕ and associated to an abstraction symbol
λ, we may describe it by the notation λ := ϕ.

The abstraction symbol can have parameters corresponding
to those used by the behavior pattern. This allows us to
express dataflow constraints in a signature. For instance, the
abstraction symbol for the ping behavior pattern can take a
parameter denoting the ping target. A signature for a denial
of service could then be defined, for example, as a sequence
of 100 pings with the same target.

Example 3. The ping behavior pattern in Example 1 is
abstracted in traces by inserting the λping symbol after
the send action or after the IcmpSendEcho action. Then,
the trace socket(1, α) · gethostbyname(2) · sendto(1, β, 3) ·
closesocket(1) can be abstracted into the trace socket(1, α) ·
gethostbyname(2) · sendto(1, β, 3) ·λping(3) ·closesocket(1).

Thus, abstraction of a trace reveals abstract behavior pattern
combinations, which may constitute the abstract behavior to
be observed. In Section VI, we formally define the abstraction
relation as a terminating reduction relation induced by a term
rewriting system.

Then the detection problem can be defined as follows.

Definition 3. A set of traces L exhibits an abstract behavior
M defined by a formula ϕM , denoted by L eM , iff: ∃t ∈
L↓R|Γ , t |= ϕM .

When L is restricted to a single trace, or to a finite set of
traces, like in dynamic analysis, L↓R is computable since R is
terminating. Moreover, as FOLTL quantification is performed
over variables in the finite domain Fd, FOLTL verification is
decidable, so it can also be decided whether L exhibits M .

In the case of an infinite set of traces L, the computation of
L↓R often relies on the computation of the set of descendants
R∗(L) of L. But R∗(L) is computable only for some classes
of rewrite systems [25] and when L is regular. Unfortunately,
the rewrite systems which implement the abstraction relations
and which are described in Section VI do not belong to any
of these classes. Hence, we cannot rely on the construction of
L↓R to decide whether L exhibits M .

However, we will see that, for behaviors considered in
practice, a partial abstraction of the set of traces is sufficient
i.e., computing the set of normal forms is unnecessary. We
therefore propose a detection algorithm relying on a safe
approximation of the set of abstract traces. This approximation
must be chosen carefully. For instance, it cannot consist in
computing, for some n, the set R≤n(L) of descendants of L
until the order n, as shown by the following example.

Example 4. Let λ1 := a, λ2 := b, λ3 := c be three
behavior patterns associated to abstraction relations inserting
the abstraction symbol after a, b and c respectively. Let
M := λ1∧ (¬λ2 Uλ3) be an abstract behavior. Assume there
exists a bound n such that L↓R may be approximated by
R≤n(L) in Definition 3. The trace t = an−1 · b · c · d is an
example of a sane trace. Yet the trace t′ = (a·λ1)n−1 ·b·c·λ3 ·d
is in R≤n({t}) and its projection on Γ is in M , so we would
wrongly infer that t exhibits M .

The problem comes from the fact that R≤n(L) contains
contradictory traces compromising detection i.e., traces seem-
ingly exhibiting an abstract behavior though a few additional
abstraction steps would make them leave the signature.

Consequently, we want to exclude traces unreliably realizing
the abstract behavior in R≤n(L), while not having to reach
normal forms. In fact, we identify a fundamental property
we call (m,n)-completeness, verified by abstract behaviors
in practice in the field of malware detection. This property
states that, for a program to exhibit an abstract behavior, a
necessary and sufficient condition is the following: there exists
a partially abstracted trace, abstracted in at most m abstraction
steps, realizing the behavior and whose descendants until the
order n still realize it.

Definition 4. Let M be an abstract behavior defined by a
formula ϕM and m and n be positive numbers. M has the
property of (m,n)-completeness iff for any set of traces L ⊆
TTrace (FΣ):

L eM ⇔ ∃t′ ∈ R≤m(L), ∀t′′ ∈ R≤n (t′)
∣∣
Γ
, t′′ |= ϕM .

We then show in the next section that, when L is regular,
there exists a sound and complete detection procedure for
every abstract behavior enjoying this property. Moreover, the
time and space complexity of this detection procedure is linear
in the size of the representation of L.

The following theorems show that the (m,n)-completeness
property is realistic for abstract behaviors considered in prac-
tice.

We first prove that simple abstract behaviors describing
sequences of abstract actions with no constraints other than
dataflow constraints have the property of (m,n)-completeness.

Theorem 1. Let Y be a set of variables of sort Data . Let
α1, . . . , αm ∈ TAction (FΓ, Y). Then the abstract behavior
M := ∃Y. α1 � α2 � . . . � αm has the property of (m, 0)-
completeness.

Proofs sketches of the theorems can be found in Ap-
pendix C.

We now show that more complex abstract behaviors, for-
bidding specific abstract actions, have this property.

in
ria

-0
05

94
39

6,
 v

er
si

on
 1

 -
20

 M
ay

 2
01

1

5

For a behavior pattern λ, let Rλ denote the restriction of
the abstraction relation R to abstraction with respect to λ. We
say that two behavior patterns λ and λ′ are independent iff:
Rλ ◦Rλ′ = Rλ′ ◦Rλ. Then we get the following result.

Theorem 2. Let M := ∃Y. λ1(x1)∧¬(∃Z. λ2(x2))Uλ3(x3)
be an abstract behavior where Y and Z are two disjoint sets
of variables of sort Data and where λ2 6= λ1, λ2 6= λ3 and
λ2 is independent from λ3. Then M has the property of (2, 1)-
completeness.

In practice, as we will see in Section VII, most signatures
are disjunctions of formulas of the form: ∃Y. α1�α2� . . .�
αm, from Theorem 1, or of the form:

∃Y.λ1 (x1)∧ ¬ (∃Z1. λ (z1)) Uλ2 (x2)∧
¬ (∃Z2. λ (z2)) U . . . λk (xk) .

where λ is independent from λ2, . . . , λk. From the proof of
Theorem 2, we conjecture that the second formula has the
property of (k, 1)-completeness.

The independence condition is not necessary in general, in
order to guarantee that such abstract behaviors have a property
of (m,n)-completeness for some m and n, but absence of this
condition results in significantly higher values of m and n.

Fundamentally, by Definition 3, detection of an abstract
behavior is decomposed into two independent steps: an ab-
straction step followed by a verification step. The first step
computes the abstract forms of the program traces while
the second step applies usual verification techniques in order
to decide whether one of the computed traces verifies the
FOLTL formula defining the abstract behavior. However, when
using the (m,n)-completeness property to bypass the general
intractability of the abstraction step, this relies on computing a
set
{
t ∈ TTrace (F) , R≤n(t) |= ϕM

}
and then intersecting it

with R≤m(L). So we lose the previous decomposition, thereby
preventing us from leveraging powerful techniques from the
model checking theory. We therefore show that, in the pre-
vious theorem, (m,n)-completeness allows us to nonetheless
preserve that decomposition, so that the abstraction step now
becomes decidable.

Theorem 3. Let M be an abstract behavior defined by a
formula ϕM = ∃Y. λ1(x1) ∧ ¬(∃Z. λ2(x2))Uλ3(x3) where
Y and Z are disjoint sets of variables of sort Data and where
λ2 6= λ1, λ2 6= λ3 and λ2 is independent from λ3. Then, for
any set of traces L ⊆ TTrace (FΣ), L exhibits M iff:

∃t ∈ Rλ2

y (R≤2(L))
∣∣
Γ
, t |= ϕM .

When both the abstraction relation R and the relation
Rλ2

y are rational, the set Rλ2

y (R≤2(L)) is computable and
regular, and detection then boils down to a classical model
checking problem. In the general case, Rλ2

y is not rational,
but in our experimentations, the behavior pattern λ2 is defined
by sets Ai and Bi where Ai contains traces made of a single
action and Bi = {ε}. Thus constructing a transducer realizing
the relation Rλ2

y is straightforward.

Remark 1. An equivalent definition of infection could consist
in compiling the abstract behavior, that is computing the
set π−1

Γ (M)
y
R−1 of concrete traces exhibiting M . Then a

set of traces L would exhibit M iff one of its subtraces is
in this set. This definition seems more intuitive: rather than
abstracting a trace and comparing it to an abstract behavior,
we check whether this trace is an implementation of the be-
havior. However, this approach would require to first compute
the compiled form of the abstract behavior, π−1

Γ (M)
y
R−1 ,

which is not generally computable and whose representation
can quickly have a prohibitive complexity stemming from the
interleaving of behavior patterns occurrences (especially when
traces realizing the behavior patterns are complex) and from
the variables instantiations.

V. DETECTION COMPLEXITY

The detection problem, like the more general problem of
program analysis, requires computing a partial abstraction of
the set of analyzed traces. In practice, in order to manipulate
this set, we consider a regular approximation of it i.e., a
tree automaton. Moreover, we will see in Section VI that, in
practice, the abstraction relation is rational i.e., it is realized
by a tree transducer.

This entails the decidability of detection.

Theorem 4. Let R be an abstraction relation, such that R and
R−1 are rational. There exists a detection procedure deciding
whether L exhibits M , for any regular set of traces L and
for any regular abstract behavior M having the property of
(m,n)-completeness for some positive integers m and n.

Definition 5. Let M be an abstract behavior having the
property of (m,n)-completeness. The set of traces n-reliably
realizing M w.r.t an abstraction relation R is the set {t ∈
TTrace (F) | ∀t′ ∈ R≤n (t)

∣∣
Γ
, t′ |= ϕM}.

Using the set of traces n-reliably realizing M , we get the
following detection complexity, which is linear in the size of
the automaton recognizing the program set of traces, a major
improvement on the exponential complexity bound of [10].

Theorem 5. Let R be an abstraction relation such that R and
R−1 are rational. Let τ be a tree transducer realizing R. Let
M be a regular abstract behavior with the property of (m,n)-
completeness and AM be a tree automaton recognizing the set
of traces n-reliably realizing M w.r.t. R. Deciding whether a
regular set of traces L, recognized by a tree automaton A,
exhibits M takes O

(
|τ |m·(m+1)/2 × |A| × |AM |

)
time and

space.

VI. TRACE ABSTRACTION

As said above, abstracting a trace with respect to some
behavior pattern amounts to transforming it when it contains
an occurrence of the behavior pattern, by inserting a symbol
of Γ in the trace. This symbol, called abstraction symbol,
is inserted at the position after which the behavior pattern
functionality has been performed. This position is the most
logical one to stick to the trace semantics. Furthermore, when
behavior patterns appear interleaved, this position allows us to
define the order in which their functionalities are realized (see
Appendix B for an example).

in
ria

-0
05

94
39

6,
 v

er
si

on
 1

 -
20

 M
ay

 2
01

1

6

As said in the introduction, rather than replacing behavior
pattern occurrences with abstraction symbols, we preserve
them in order to properly handle interleaved behavior patterns
occurrences.

Now, let us consider the following example.

Example 5. Abstraction of the ping in Example 3 is realized
by rewriting using the rule A1(x, y) · B1(x, y) → A1(x, y) ·
λ(y)·B1(x, y), where A1(x, y) = socket(x, α)·(TTrace (FΣ)\
(TTrace (FΣ) ·closesocket(x) ·TTrace (FΣ))) ·sendto(x, β, y)
and B1(x, y) = {ε}, and the rule A2(x) · B2(x) → A2(x) ·
λ(x) · B2(x), where A2(x) = {IcmpSendEcho(x)} and
B2(x) = {ε}.

So we define the abstraction relation by decomposing the
behavior pattern into a finite union of concatenations of
sets Ai (X) and Bi (X) such that traces in Ai (X) end
with the action effectively performing the behavior pattern
functionality. These sets Ai (X) and Bi (X) are composed
of concrete traces only, since abstract actions that may appear
in a partially rewritten trace should not impact the abstraction
of an occurrence of the behavior pattern.

Definition 6. Let λ ∈ Γ be an abstraction symbol, X be a set
of variables of sort Data , x be a sequence of variables in X .
An abstraction system on TTrace (F, X) is a finite set of rewrite
rules of the form:Ai (X) · Bi (X) → Ai (X) · λ (x) · Bi (X)
where the sets Ai (X) and Bi (X) are sets of concrete traces
of TTrace (FΣ, X).

The system of rewrite rules we use generates a reduction
relation on TTrace (F) such that filtering works on traces
projected on Σ.

Definition 7. The reduction relation on TTrace (F) generated
by a system of n rewrite rules Ai (X) · Bi (X) → Ai (X) ·
λ (x) ·Bi (X) is the rewriting relation →R such that, for all
t, t′ ∈ TTrace (F) , t →R t′ iff:

∃σ ∈ SubstX ,∃p ∈ Pos (t) ,∃i ∈ [1..n] ,

∃a ∈ TTrace (F) · TAction (FΣ) ,∃b, u ∈ TTrace (F) ,

a|Σ ∈ Ai (X)σ, b|Σ ∈ Bi (X)σ, t|p = a · b · u
and t′ = t [a · λ (x)σ · b · u]p .

An abstraction relation with respect to a given behavior
pattern is thus the reduction relation of an abstraction system,
where left members of the rules cover the set of the traces
realizing the behavior pattern functionality.

Definition 8. Let B be a behavior pattern associated with an
abstraction symbol λ ∈ Γ. Let X be a set of variables of sort
Data . An abstraction relation w.r.t. this behavior pattern is the
reduction relation on TTrace (F) generated by an abstraction
system composed of n rules Ai (X) ·Bi (X)→ Ai (X) ·λ (x) ·
Bi (X) verifying:

B =
⋃

i∈[1..n]

⋃
σ∈SubstX

(Ai (X) ·Bi (X))σ.

Finally, we generalize the definition of abstraction to a set
of behavior patterns.

Definition 9. Let C be a finite set of behavior patterns. An
abstraction relation w.r.t C is the union of the abstraction
relations w.r.t. each behavior pattern of C.

Total Abstraction

If R is an abstraction relation with respect to our set of
behavior patterns, we want to define the total abstraction L↓R.

Even in the case of a finite set of traces L, abstraction does
not terminate in general, since the same occurrence of a pattern
can be abstracted an unbounded number of times. We therefore
require that the same abstract action is not inserted twice after
the same concrete action. In other words, if a term t = t1 · t2
is abstracted into a term t′ = t1 ·α · t2, where α is the inserted
abstract action, then if t2 starts with a sequence of abstract
actions, α does not appear in this sequence.

Definition 10. The terminating abstraction relation for an
abstraction relation R is the relation R′ defined by: ∀t1, t2 ∈
TTrace (F) ,∀α ∈ TAction (FΓ) , t1 · t2 →R′ t1 · α · t2 ⇔
t1 ·t2 →R t1 ·α·t2 and 6 ∃u ∈ TTrace (FΓ) , 6 ∃u′ ∈ TTrace (F) ,
t2 = u · α · u′.

Using the above definition, a behavior pattern occurrence
can only be abstracted once. Furthermore, abstraction does
not create new abstraction opportunities so the relation R′ is
clearly terminating.

Remark 2. Note that a terminating abstraction relation with
respect to a set of behavior patterns is not confluent in general.
We could adapt the definition of the abstraction relation to
make it confluent, for instance by defining an order on the
set TAction (FΓ). However, as we have seen in Section IV,
detection works on the set of normal forms. So having several
normal forms for a trace does not compromise its mechanism.

Rational Abstraction

In practice, a behavior pattern is regular, along with the
set of instances of right-hand sides of its abstraction rules.
We show that this is sufficient to ensure that the abstraction
relation is realizable by a tree transducer, in other words that it
is a rational tree transduction. The tree transducer formalism is
chosen for its interesting formal (closure by union, composi-
tion, preservation of regularity) and computational properties.

Theorem 6. Let B be a behavior pattern and R be a termi-
nating abstraction relation w.r.t. B defined by an abstraction
system whose set of instances of right-hand sides of rules
is recognized by a tree automaton AR. Then R and R−1

are rational and, for any tree automaton A, R (L (A)) is
recognized by a tree automaton of size O (|A| · |AR|)

VII. APPLICATION TO INFORMATION LEAK DETECTION

Abstraction can be applied to detection of generic threats,
and in particular to detection of sensitive information leak.
Such a leak can be decomposed into two steps: capturing
sensitive information and sending this information to an exoge-
nous location. The captured data can be keystrokes, passwords
or data read from a sensitive network location, while the

in
ria

-0
05

94
39

6,
 v

er
si

on
 1

 -
20

 M
ay

 2
01

1

7

exogenous location can be the network, a removable device,
etc. Thus, we define a behavior pattern λsteal (x), represent-
ing the capture of some sensitive data x, and a behavior
pattern λleak (x), representing the transmission of x to an
exogenous location. Moreover, since the captured data must
not be invalidated before being leaked, we define a behavior
pattern λinval (x), which represents such an invalidation. The
information leak abstract behavior is then defined by:

M := ∃x. λsteal (x) ∧ ¬λinval (x) Uλleak (x) .

By looking at several malware samples, like keyloggers, sms
message leaking applications or personal information stealing
mobile applications, we consider the following definitions of
the three behavior patterns involved:

• λsteal (x) describes a keystroke capture functionality1

and, on Android mobile phones, the retrieving of the
IMEI number:

λsteal(x) := GetAsyncKeyState(x)∨
(RegisterDev(KBD, SINK)�GetInputData(x, INPUT))∨
(∃y. SetWindowsHookEx(y, WH_KEYBOARD_LL)∧
¬UnhookWindowsHookEx(y)UHookCalled(y, x))∨

∃y.TelephonyManager_getDeviceId(x, y).

• λleak(x) describes a network send functionality under
Windows or Android:

λleak(x) := ∃y, z. sendto(z, x, y)∨
∃y, z. (connect (z, y) ∧ ¬close(z)U send(z, x))∨

∃c, s.HttpURLConnection_getOutputStream(s, c)∧
¬OutputStream_close(s)UOutputStream_write(s, x).

• λinval (x) describes the overwriting or freeing of x:

λinval(x) := free(x) ∨ ∃y. sprintf0(x, y)∨
GetInputData(x, INPUT) ∨ . . .

Finally, the captured data is usually not leaked in its raw form,
so we take into account transformations of this data via the
behavior pattern λdepends (x, y) which denotes a dependency
of x on y. For instance, x may be a string representation of
y, or x may be an encryption or an encoding of y:

λdepends(x, y) := sprintf0(x, y) ∨ ∃s. sprintf1(x, s, y)∨
∃sb. StringBuilder_append(sb, y)� SB_toString(x, sb).

Then, in order to account for one such transformation of
the stolen data, we adapt the definition of the information leak
abstract behavior:

M := ∃x, y. λsteal (x)∧ ¬λinval (x) Uλdepends (y, x)∧
¬λinval (y) Uλleak (y) .

Of course, we can adapt this formula to allow more than
one data transformation.

1We assume the execution of a hook f with argument x is represented in
a trace by an action HookCalled (f, x).

VIII. EXPERIMENTS

We tested the validity of our approach on several types
of malware: keyloggers, sms message leaking, mobile phone
personal information stealing. Our goal is to detect the infor-
mation leak behavior M defined in the previous section. In
order to perform behavior pattern abstraction and behavior
detection in the presence of data, we use the CADP tool-
box [26], which allows us to manipulate and model-check
communicating processes written in the LOTOS language.
CADP features a verification tool, evaluator4, which allows
on-the-fly model checking of formulas expressed in the MCL
language, a fragment of the modal mu-calculus extended with
data variables, whose FOLTL logic used in this paper is a
subset.

We first represent the program set of traces as a CADP pro-
cess. For this, we use a program control flow graph obtained by
static analysis (see [21] and [23], [24]). Regularity of the set of
traces is enforced by limiting recursion and inlining function
calls, an approximation that can be deemed safe with respect
to the abstract behaviors to detect. Note that there are two
shortcomings to regular approximation. First, approximation
of conditional branches by nondeterministic branches may
result in false positives, especially when the program code
is obfuscated. And second, failure to identify data correlations
during dataflow analysis can result in false negatives. However,
this does not significantly impact our detection results.

Now, as expressed in Theorem 3, detection of the in-
formation leak abstract behavior M can be broken down
into two steps: abstracting the set of traces L by computing
Rλinval

y(R≤2(L)
)

and then verifying whether an abstracted
trace matches the abstract behavior formula.

So, we can simulate the abstraction step in CADP and
delegate the verification step to the evaluator4 module. For
this, we represent the set of traces L of a given program by
a system of communicating processes expressed in LOTOS,
with a particular gate on which communications correspond to
library calls. Then, computation of R≤2(L) is performed by
synchronization with another LOTOS process which simulates
the transducer realizing the abstraction. Moreover, the relation
Rλinval

y is rational and can also be simulated by process
synchronization in CADP.

For each malware sample we tested, we success-
fully run evaluator4 on the resulting process, representing
Rλinval

y (R≤2(L)), in order to detect the information leak
abstract behavior defined in the previous section.

Also, in our previous work [21], we implemented our
string rewriting based abstraction technique and we defined
several behavior patterns and abstract behaviors, by looking at
malicious execution traces. Then, we tested it on samples of
malicious programs collected using a honeypot2 and identified
using Kaspersky Antivirus. These samples belonged to known
malware families, among which Allaple, Virut, Agent, Rbot,
Afcore and Mimail. Most of them were successfully matched
to our malware database.

2The honeypot of the Loria’s High Security Lab: http://lhs.loria.fr.

in
ria

-0
05

94
39

6,
 v

er
si

on
 1

 -
20

 M
ay

 2
01

1

http://lhs.loria.fr

8

IX. CONCLUSION

We presented an original approach for detecting high-level
behaviors in programs, describing combinations of function-
alities and defined by first-order temporal logic formulas.
Behavior patterns, expressing concrete realizations of the
functionalities, are also defined by first-order temporal logic
formulas. Abstraction of these functionalities in program traces
is performed by term rewriting. Validation of the abstracted
traces with respect to some high-level behavior is performed
using usual model checking techniques. In order to address
the general intractability of the problem of constructing the
set of normal forms of traces for a given program, we have
identified a property of practical high-level behaviors allowing
us to avoid computing normal forms and yielding a linear time
detection algorithm.

Abstraction is a key notion of our approach. Providing an
abstracted form for program traces and behaviors allows us to
be independent of the program implementation and to handle
similar behaviors in a generic way, making this framework
robust with respect to variants. The fact that high-level be-
haviors are combinations of elementary patterns enables to
efficiently summarize and compact the possible combinations
likely to compose suspicious behaviors. Moreover, high-level
behaviors and behavior patterns are easy to update since they
are expressed in terms of basic blocks.

Our technique could be improved to account for shortcom-
ings in the computation of the dataflow. Indeed, as dataflow
is computed by static analysis, some relations between data
may have been wrongly inferred or ignored. So, we could
extend our formalism by considering probabilistic abstraction:
when an occurrence of a behavior pattern cannot be precisely
matched due to dataflow inconsistencies, we could neverthe-
less abstract the occurrence by taking the related uncertainty
into account. Then, a high-level behavior would be matched on
the condition that some abstracted trace realizes it with a high
enough certainty. We are currently extending our formalism to
include such scenarios.

REFERENCES

[1] F. Cohen, “Computer viruses: Theory and experiments,” Computers and
Security, vol. 6, no. 1, pp. 22–35, 1987.

[2] B. Le Charlier, A. Mounji, and M. Swimmer, “Dynamic detection and
classification of computer viruses using general behaviour patterns,” in
International Virus Bulletin Conference, 1995, pp. 1–22.

[3] R. Sekar, M. Bendre, D. Dhurjati, and P. Bollineni, “A fast automaton-
based method for detecting anomalous program behaviors,” in IEEE
Symposium on Security and Privacy. IEEE Computer Society, 2001,
pp. 144–155.

[4] J. Morales, P. Clarke, Y. Deng, and G. Kibria, “Characterization of virus
replication,” Journal in Computer Virology, vol. 4, no. 3, pp. 221–234,
August 2007.

[5] J. Bergeron, M. Debbabi, J. Desharnais, M. Erhioui, Y. Lavoie, and
N. Tawbi, “Static detection of malicious code in executable programs,”
in Symposium on Requirements Engineering for Information Security,
2001.

[6] J. Kinder, S. Katzenbeisser, C. Schallhart, and H. Veith, “Detecting
malicious code by model checking,” in Conference on Detection of
Intrusions and Malware & Vulnerability Assessment, ser. Lecture Notes
in Computer Science, vol. 3548. Springer, 2005, pp. 174–187.

[7] P. K. Singh and A. Lakhotia, “Static verification of worm and virus
behavior in binary executables using model checking,” in Information
Assurance Workshop. IEEE Press, 2003, pp. 298–300.

[8] L. Martignoni, E. Stinson, M. Fredrikson, S. Jha, and J. C. Mitchell, “A
layered architecture for detecting malicious behaviors,” in International
symposium on Recent Advances in Intrusion Detection, ser. Lecture
Notes in Computer Science, vol. 5230. Springer, 2008, pp. 78–97.

[9] U. Bayer, P. Milani Comparetti, C. Hlauscheck, C. Kruegel, and
E. Kirda, “Scalable, Behavior-Based Malware Clustering,” in 16th
Symposium on Network and Distributed System Security (NDSS), 2009.

[10] G. Jacob, H. Debar, and E. Filiol, “Malware behavioral detection by
attribute-automata using abstraction from platform and language,” in
Proceedings of the 12th International Symposium on Recent Advances
in Intrusion Detection, ser. RAID ’09. Berlin, Heidelberg: Springer-
Verlag, 2009, pp. 81–100.

[11] “Security Issue on AMO,” http://blog.mozilla.com/addons/ 2010/02/04/
please-read-security-issue-on-amo.

[12] “Aftermath of the Droid Dream Android Market Mal-
ware Attack,” http://nakedsecurity.sophos.com/2011/03/03/
droid-dream-android-market-malware-attack-aftermath/.

[13] B. Yee, D. Sehr, G. Dardyk, J. B. Chen, R. Muth, T. Ormandy,
S. Okasaka, N. Narula, and N. Fullagar, “Native Client: A sandbox
for portable, untrusted x86 native code,” Communications of the ACM,
vol. 53, no. 1, pp. 91–99, 2010.

[14] M. D. Preda, M. Christodorescu, S. Jha, and S. Debray, “A semantics-
based approach to malware detection,” in Proceedings of the 34th annual
ACM SIGPLAN-SIGACT symposium on Principles of programming
languages. New York, NY, USA: ACM, 2007, pp. 377–388.

[15] J. Kinder, H. Veith, and F. Zuleger, “An abstract interpretation-based
framework for control flow reconstruction from binaries,” in Proceedings
of the 10th International Conference on Verification, Model Checking,
and Abstract Interpretation (VMCAI 2009), ser. LNCS, M. M.-O. Neil
D. Jones, Ed., vol. 5403. Springer, 2009, pp. 214–228.

[16] D. Brumley, C. Hartwig, M. G. Kang, Z. Liang, J. Newsome,
P. Poosankam, and D. Song, “BitScope: Automatically dissecting mali-
cious binaries,” School of Computer Science, Carnegie Mellon Univer-
sity, Tech. Rep. CS-07-133, Mar. 2007.

[17] F. Kröger and S. Merz, Temporal Logic and State Systems, ser. Texts
in Theoretical Computer Science. An EATCS Series, 2008.

[18] G. J. Holzmann, The SPIN Model Checker: Primer and Reference
Manual. Addison-Wesley Professional, sep 2003.

[19] H. Garavel, F. Lang, R. Mateescu, and W. Serwe, “CADP 2006: A
Toolbox for the Construction and Analysis of Distributed Processes,”
in Computer Aided Verification (CAV’2007), ser. Lecture Notes in
Computer Science, Werner Damm and Holger Hermanns, Eds., vol.
4590, Berlin Germany, 2007, pp. 158–163.

[20] F. Chen and G. Roşu, “MOP: An Efficient and Generic Runtime
Verification Framework,” in Object-Oriented Programming, Systems,
Languages and ApplicationsObject-Oriented Programming, Systems,
Languages and Applications. ACM press, 2007, pp. 569–588.

[21] P. Beaucamps, I. Gnaedig, and J.-Y. Marion, “Behavior Abstraction
in Malware Analysis,” in 1st International Conference on Runtime
Verification, ser. Lecture Notes in Computer Science, O. S. Grigore
Rosu, Ed., vol. 6418. St. Julians Malta: Springer-Verlag, Aug. 2010,
pp. 168–182. [Online]. Available: http://hal.inria.fr/inria-00536500/en/

[22] H. Comon, M. Dauchet, R. Gilleron, C. Löding, F. Jacquemard,
D. Lugiez, S. Tison, and M. Tommasi, “Tree automata techniques and
applications,” Available on: http://www.grappa.univ-lille3.fr/tata, 2007.

[23] M. Christodorescu, S. Jha, S. A. Seshia, D. Song, and R. E. Bryant,
“Semantics-aware malware detection,” in IEEE Symposium on Security
and Privacy. IEEE Computer Society, 2005, pp. 32–46.

[24] E. Kirda, C. Kruegel, G. Banks, G. Vigna, and R. Kemmerer, “Behavior-
based Spyware Detection,” in Proceedings of the 15th USENIX Security
Symposium, Vancouver, BC, Canada, August 2006.

[25] R. Gilleron and S. Tison, “Regular Tree Languages and Rewrite
Systems,” Fundamenta Informaticae, vol. 24, pp. 157–176, 1995.
[Online]. Available: http://hal.inria.fr/inria-00538882/en/

[26] H. Garavel, F. Lang, R. Mateescu, and W. Serwe, “Cadp 2010: A toolbox
for the construction and analysis of distributed processes,” in Tools and
Algorithms for the Construction and Analysis of Systems, ser. Lecture
Notes in Computer Science, P. Abdulla and K. Leino, Eds. Springer
Berlin / Heidelberg, 2011, vol. 6605, pp. 372–387.

[27] M. Mohri, “Statistical natural language processing,” in Applied Combi-
natorics on Words. New York, NY, USA: Cambridge University Press,
2005, ch. 4.

in
ria

-0
05

94
39

6,
 v

er
si

on
 1

 -
20

 M
ay

 2
01

1

http://blog.mozilla.com/addons/
2010/02/04/please-read-security-issue-on-amo
2010/02/04/please-read-security-issue-on-amo
http://nakedsecurity.sophos.com/2011/03/03/droid-dream-android-market-malware-attack-aftermath/
http://nakedsecurity.sophos.com/2011/03/03/droid-dream-android-market-malware-attack-aftermath/
http://hal.inria.fr/inria-00536500/en/
http://www.grappa.univ-lille3.fr/tata
http://hal.inria.fr/inria-00538882/en/

9

APPENDIX

A. Additional Background

1) Term Algebras: A ground substitution on a finite set X
of S-sorted variables is a mapping σ : X → T (F) such that:
∀s ∈ S,∀x ∈ Xs, σ (x) ∈ Ts (F). σ can be naturally extended
to a mapping T (F , X)→ T (F) in such a way that:

∀f (t1, . . . , tn) ∈ T (F , X) ,
σ (f (t1, . . . , tn)) = f (σ (t1) , . . . , σ (tn)) .

If X is a set of variables of sort Data , we define the pro-
jection on an alphabet Σ′ ⊆ Fa of a term t ∈ TTrace (F, X),
denoted by πΣ′ (t) or, equivalently, by t|Σ′ , in the following
way:

πΣ′ (ε) = ε

πΣ′ (b · u) =

{
b · πΣ′ (u) if b ∈ TAction (FΣ′ , X)

πΣ′ (u) otherwise

with b ∈ TAction (F, X) and u ∈ TTrace (F, X).

Similarly, the concatenation of two terms t and t′ of
TTrace (F, X), where X is a set of S-sorted variables and
t 6∈ X , is denoted by t · t′ ∈ TTrace (F, X) and defined
by t · t′ = t [t′]p, where p is the position of ε in t, i.e.,
t|p = ε. Projection and concatenation are naturally extended
to sets of terms of sort Trace . We also extend concatenation to
2TTrace(F,X)×2TTrace(F,X) with L ·L′ = {t · t′ | t ∈ L, t′ ∈ L′}
and to 2TTrace(F,X) × TAction (F, X) with L · a = L · {a · ε}.

2) LTL Temporal Logic: Let A be an alphabet. We de-
note by Aω the set of infinite words over A: Aω =
{a1a2 . . . | ∀i, ai ∈ A}.

Let AP be the set of atomic propositions. An LTL formula
is defined as follows:
• > (true) and ⊥ (false) are LTL formulas;
• If p ∈ AP , then p is an LTL formula;
• If ϕ1 and ϕ2 are LTL formulas, then: ¬ϕ1, ϕ1 ∧ ϕ2,
ϕ1 ∨ ϕ2, Xϕ1 (“next time”), Fϕ1 (“eventually” or “in
the future”) and ϕ1 Uϕ2 (“until”) are LTL formulas.

A formula is satisfied on infinite sequences of sets of atomic
predicates, denoted by ξ = (ξ0, ξ1, . . .) ∈

(
2AP

)ω
. We denote

by ξi the sequence (ξi, ξi+1, . . .). ξ |= ϕ (ξ validates ϕ) is
defined by:
• ξ |= >;
• ξ |= p, where p ∈ AP , iff p ∈ ξ0;
• ξ |= ¬ϕ iff ξ 6|= ϕ;
• ξ |= ϕ1 ∧ ϕ2 iff ξ |= ϕ1 and ξ |= ϕ2;
• ξ |= ϕ1 ∨ ϕ2 iff ξ |= ϕ1 or ξ |= ϕ2;
• ξ |= Xϕ iff ξ1 |= ϕ;
• ξ |= Fϕ iff for some i ≥ 0, ξi |= ϕ;
• ξ |= ϕ1Uϕ2 iff for some i ≥ 0, ξi |= ϕ2 and, for any
j ∈ [0..i− 1], ξj |= ϕ1;

3) Tree Automata: Let X be a set of variables. A (top-
down) tree automaton [22] is a tuple A = (F , Q, q0,∆) where
F is a finite alphabet, Q is a finite set of states, q0 ∈ Q is an
initial state and ∆ is a set of rules of the form:

q (f (x1, . . . , xn))→ f (q1 (x1) , . . . , qn (xn))

where f ∈ F of arity n ∈ N, q, q1, . . . , qn ∈ Q and
x1, . . . , xn ∈ X .

The transition relation →A associated with the automaton
A is defined by:

∀t, t′ ∈ T (F ∪Q) ,
t→A t

′

⇔
∃ q(f (x1, . . . , xn))→ f (q1 (x1) , . . . , qn (xn)) ∈ ∆,

∃p ∈ Pos (t) ,∃u1, . . . , un ∈ T (F) ,
t|p = q (f (u1, . . . , un))

and t′ = t [f (q1 (u1) , . . . , qn (un))]p .

The language recognized by A is defined by: L (A) =
{t | q0 (t)→∗A t}. The tree languages recognized by (top-
down) tree automata are the regular tree languages.

The size of A is defined by: |A| = |Q|+ |∆|.
4) Tree Transducers: Let X be a set of variables. A (top-

down) tree transducer [22] is a tuple τ = (F ,F ′, Q, q0,∆)
where F is the finite set of input symbols, F ′ is the finite set
of output symbols, Q is a finite set of unary states, q0 ∈ Q is
the initial state, ∆ is a set of transduction rules of the form:

q (f (x1, . . . , xn))
w→ u

or
q (x1)

w→ u (ε-rule)

where q ∈ Q, n ∈ N, f ∈ F of arity n ∈ N, x1, . . . , xn are
distinct variables from X , u ∈ T (F ′ ∪Q, {x1, . . . , xn}) and
w ∈ S.

The transition relation →τ associated with the transducer τ
is defined by:

∀t, t′ ∈ T (F ∪ F ′ ∪Q) ,
t→τ t

′

⇔
∃ q(f (x1, . . . , xn))→ u ∈ ∆,

∃p ∈ Pos (t) ,∃u1, . . . , un ∈ T (F ′) ,
t|p = q (f (u1, . . . , un))

and t′ = t [u {x1 ← u1, . . . , xn ← un}]p .
ε-rules are a particular case of this definition.
The transduction relation induced by τ is the relation Rτ

defined by: Rτ = {(t, t′) | q0 (t) →∗τ t′, t ∈ T (F) , t′ ∈
T (F ′)}. A top-down tree transducer is linear (resp. nondelet-
ing) iff its rules are linear (resp. nondeleting). A binary relation
in T (F , X) × T (F ′, X) is called rational iff there exists a
linear nondeleting top-down tree transducer realizing it.

The size of τ is defined by: |τ | = |Q|+ |∆|.
The image of a regular set in TTrace (F, X) by a rational

transduction is a regular set in TTrace (F, X). Rational tree
transductions are closed by union and functional composition.
In this paper, we only consider linear nondeleting top-down
tree transducers.

In the following lemma, we call trace language on an
alphabet F a tree language in TTrace (F), trace automaton
on F a tree automaton recognizing a trace language and trace
transducer a transducer transforming trace languages into trace
languages.

Lemma 1. Let A be a trace automaton on an alphabet F and
τ = (F ,F ′, Q, q0,∆) be a trace transducer. Then the trace

in
ria

-0
05

94
39

6,
 v

er
si

on
 1

 -
20

 M
ay

 2
01

1

10

language τ (L (A)) is recognized by a trace automaton of size
O (|A| · |τ |).

Proof: Define two word alphabets Ω and Ω′ in bijection
with the finite sets TAction (F) and TAction (F ′).

Then, since A is a trace automaton and τ is a trace
transducer, the result follows by direct analogy with the case
of string transducers on the word alphabets Ω and Ω′ [27].

B. Abstraction examples

Although Example 5 defines a single abstraction rule for
each way of realizing the behavior pattern functionality, a
realization may sometimes be associated to more than one
abstraction rule, especially when constraints of the behavior
pattern are complex. This is shown by the following example.

Example 6. Let B be a behavior pattern constructed from a
trace a (x) · b · c (x) such that the trace d (x) · e (x) frees the
resource x and is forbidden between a (x) and c (x).

Let’s define:

Ta1···an (F) = TTrace (F) · a1 · TTrace (F) · · ·
an · TTrace (F) .

We then define B by:

B =
⋃
σ

(
(a (x) · Tb (F) · c (x))σ \ T(d(x)·e(x))σ (F)

)
.

Assume action b effectively realizes the behavior pattern
functionality: abstraction with respect to this pattern then
corresponds to inserting the abstraction symbol λ immediately
after action b.

Traces realizing the behavior pattern are traces that verify
one of the following conditions:
• d (x) appears between a (x) and b, and e (x) does not

appear between d (x) and c (x);
• e (x) appears between b and c (x), and d (x) does not

appear between a (x) and e (x);
• d (x) does not appear between a (x) and b, and e (x)

does not appear between b and c (x).
Thus, we define three rewrite rules using the following Ai (x)
and Bi (x) sets, respectively corresponding to the three above
cases:
• For the first condition, if d (x) appears between a (x) and
b, then e (x) does not appear between d (x) and c (x)
iff d (x) · e (x) does not appear between a (x) and b,
and e (x) does not appear between b and c (x), which is
expressed by:

– A1 (x) =
(
a (x) · Td(x) (F) · b

)
\ Td(x)·e(x) (F);

– B1 (x) = (T (F) · c (x)) \ Te(x) (F).
• For the second condition, if e (x) appears between b and
c (x), then d (x) does not appear between a (x) and e (x)
iff d (x) · e (x) does not appear between b and c (x),
and d (x) does not appear between a (x) and b, which
is expressed by:

– A2 (x) = (a (x) · T (F) · b) \ Td(x) (F);
– B2 (x) =

(
Te(x) (F) · c (x)

)
\ Td(x)·e(x) (F).

• The last condition is expressed by:

– A3 (x) = (a (x) · T (F) · b) \ Td(x) (F);
– B3 (x) = (T (F) · c (x)) \ Te(x) (F).

Importance of the choice of the insertion position for the
abstraction symbol is illustrated by the following example.

Consider a behavior pattern describing the reading of a
sensitive file ReadFile and a behavior pattern socket·sendto,
describing the sending of data over the network. The trace
socket · ReadFile · sendto will be deemed suspicious only
when the abstraction symbol λread identifying the reading of
a sensitive file is inserted immediately after ReadFile and the
abstraction symbol λsend identifying the sending of data over
the network is inserted after sendto, yielding the abstracted
trace socket · ReadFile · λread · sendto · λsend. Indeed, in
that case the trace will be interpreted as the the reading of
a sensitive file followed by a network communication. If the
abstraction symbol λread for ReadFile had been inserted later
in the trace, for example after sendto, we would have losed
the sequence “read-send”. The choice of this insertion position
is therefore important for reducing false positives and false
negatives in the detection algorithm.

C. Proofs

Theorems 1 and 2 rely on a lemma stating that, whenever
some behavior pattern is abstracted within a trace t after any
number of abstraction steps, it can be abstracted from t at the
same concrete position and at the first abstraction step.

Definition 11. Let t be a term of TTrace (F) and t′ be a
subterm of t, of sort Trace . The concrete position of t′ in t is
the position of t′|Σ in t|Σ.

Definition 12. Let B be a behavior pattern associated with
an abstraction symbol λ ∈ Γ and with an abstraction relation
→. We say that the trace t = t1 · t2 is abstracted with respect
to B into t1 · λ · t2 at the concrete position p, denoted by
t1 · t2 →p t1 ·λ · t2, iff t1 · t2 → t1 ·λ · t2 and p is the concrete
position of t2 in t.

The lemma can therefore be stated as follows. If t→∗ t1 ·
t2 →p t1 · λ · t2, then there exists u1, u2 ∈ T (F) such that:
t→p u1 · λ · u2.

We actually show a more general form of this lemma,
where a variable number of behavior patterns (not necessarily
distinct) are abstracted one after the other.

Lemma 2. Let t ∈ TTrace (F) be a trace and λ1, λ2, . . .
λk ∈ TAction (FΓ) be abstract actions. Let an abstraction
chain from t be t →∗ t1 · t′1 →p1 t1 · λ1 · t′1 →∗ t2 · t′2 →p2

t2 ·λ2 ·t′2 →∗ . . .→∗ tk ·t′k →pk tk ·λk ·t′k where we distinguish
k abstraction steps, then:

∃u1, . . . uk, u
′
1, . . . u

′
k ∈ TTrace (F) ,

t→p1
u1 ·λ1 ·u′1 →p2

u2 ·λ2 ·u′2 →p3
. . .→pk uk ·λk ·u′k.

Proof: By induction on the length l of the derivation t→∗
tk. · λk · t′k.
• For the base case l = 1, we have: t →p1

t1 · λ1 · t′1.
Hence, there exists u1, u

′
1, u1 = t1, u

′
1 = t′1.

in
ria

-0
05

94
39

6,
 v

er
si

on
 1

 -
20

 M
ay

 2
01

1

11

• For the general induction step, assume the property for
l = n. We prove the property for l = n + 1. By
the induction hypothesis applied to t →∗ t1 · t′1 →p1

t1 · λ1 · t′1 →∗ t2 · t′2 . . . →∗ tk · t′k →pk tk · λk · t′k,
∃u1, . . . uk, u

′
1, . . . , u

′
k ∈ TTrace (F) , t →p1

u1 · λ1 ·
u′1 → . . .→ uk · λk · u′k.
For l = n + 1, the chain of length n is extended by
tk · λk · t′k → tk+1 · λk+1 · t′k+1.
We want to rewrite uk · λk · u′k into uk+1 · λk+1 · u′k+1.
Now, existence of the reduction tk ·λk ·t′k → tk+1 ·λk+1 ·
t′k+1 entails the existence of an occurrence of the behavior
pattern Bk+1 in tk ·λk · t′k. This occurrence also appears
in uk ·λk ·u′k and can therefore be abstracted at the same
concrete position pk+1, hence the existence of terms uk+1

and u′k+1 such that: uk ·λk ·u′k →pk+1
uk+1 ·λk+1 ·u′k+1.

Theorem 1. Let Y be a set of variables of sort Data . Let
α1, . . . , αm ∈ TAction (FΓ, Y). Then the abstract behavior
M := ∃Y. α1 � α2 � . . . � αm has the property of (m, 0)-
completeness.

Proof:
Let L ⊆ TTrace (FΣ) be a set of traces. We show that:

L eM
⇔

∃t′ ∈ R≤m (L) ,∀t′′ ∈ R≤0 (t′)
∣∣
Γ
, t′′ |= ϕM .

⇒: By Definition 3, there exists a trace t ∈ L with a
normal form t↓ such that t↓|Γ validates ϕM . Thus, t↓|Γ can
be written:

t↓|Γ = u · v · w

where u,w ∈ TTrace (FΓ) and v ∈ M . By definition of M ,
v is a trace validating the formula ∃Y. α1 � α2 � . . . � αm
so, by the semantics of FOLTL, there exists a substitution σY
such that v validates the formula α1σY �α2σY � . . .�αmσY
which is equivalent to the formula α1σY ∧ X(>Uα2σY ∧
X(>U . . .∧X(>UαmσY))). So v validates formulas α1σY
and X(>Uα2σY ∧X(>U . . .∧X(>UαmσY))). Therefore
v is of the form:

v = α1σY · v1 · α2σY · v2 · · ·αmσY · vm

where v1, . . . , vm ∈ TTrace (FΓ).
Since the projection of t ↓ removed actions from

TAction (FΣ), t↓ can be written:

t↓= t0 · α1σY · t1 · α2σY · t2 · · ·αmσY · tm

where t0, . . . , tm ∈ TTrace (F).
By Lemma 2, there exists u0, . . . , um ∈ TTrace (F) such

that t is abstracted into t′ = u0 · α1σY · u1 · · ·αmσY · um in
exactly m steps. Thus t′ ∈ R≤m (L). Moreover, R≤0 (t′)

∣∣
Γ

=
{ t′|Γ} and t′|Γ |= ϕM .

⇐: Let t′ ∈ R≤m (L) be a partial abstraction of a trace of L
such that ∀t′′ ∈ R≤0 (t′)

∣∣
Γ
, t′′ |= ϕM . Then t′ can be written

t′ = t0·α1σY ·t1 · · ·αmσY ·tm, where t0, . . . , tm ∈ TTrace (F)
and σY ∈ SubstY . Clearly, any future abstraction of t′ will
still be of the form u0 ·α1σY ·u1 · · ·αmσY ·um and this will

especially be true for any normal form t′↓ of t′ by R. Hence
t′↓|Γ |= ϕM and thus L eM .

Theorem 2. Let M := ∃Y. λ1(x1)∧¬(∃Z. λ2(x2))Uλ3(x3)
be an abstract behavior where Y and Z are two disjoint sets
of variables of sort Data and where λ2 6= λ1, λ2 6= λ3 and
λ2 is independent from λ3. Then M has the property of (2, 1)-
completeness.

Proof: Let’s denote λ1 (x1), λ2 (x2) and λ3 (x3) by α1,
α2 and α3 respectively.

Let L ⊆ TTrace (FΣ) be a set of traces. We show that:

L eM
⇔

∃t′ ∈ R≤2 (L) ,∀t′′ ∈ R≤1 (t′)
∣∣
Γ
, t′′ |= ϕM .

⇐ We reason by contradiction. Let t′ ∈ R≤2 (L) be a trace
such that ∀t′′ ∈ R≤1 (t′)

∣∣
Γ
, t′′ |= ϕM . Assuming that L does

not exhibit M , we construct a trace t′1 ∈ R≤1 (t′) which does
not realize M and use the hypothesis ∀t′′ ∈ R≤1 (t′)

∣∣
Γ
, t′′ |=

ϕM to get a contradiction.
In particular, t′|Γ |= ϕM so, like in the proof of The-

orem 1, by definition of the satisfiability of the formula
M := ∃Y. λ1 (x1) ∧ (¬ (∃Z. λ2 (x2)) Uλ3 (x3)), there exists
a substitution σY ∈ SubstY such that we can decompose t′

into
t′ = t1 · α1σY · t2 · α3σY · t3

where t1, t2, t3 ∈ TTrace (F), and such that there exists no
substitution σZ ∈ SubstZ such that α2σY σZ appears in t2.

Assume L does not exhibit M . Let t′′ be a normal form
of t′: t′′ ∈ {t′} ↓R. Then, by Definition 3, t′′|Γ 6|= ϕM .
By definition of the satisfiability of the formula M :=
∃Y. λ1 (x1) ∧ (¬ (∃Z. λ2 (x2)) Uλ3 (x3)), there must exist
a substitution σZ ∈ SubstZ such that the abstract action
α2σY σZ has been inserted into a term of the derivation from
t′ to t′′, at a concrete position p between α1σY and α3σY . By
Lemma 2, we could have inserted this action α2σY σZ directly
in the term t′, at the same concrete position p:

∃u,w, t′ →p u · α2σY σZ · w.

Considering that the insertion is made between actions
α1σY and α3σY , and given that t′ = t1 ·α1σY ·t2 ·α3σY ·t3, we
can decompose t2 into t2 = t12 · t22 such that insertion occurs
after t12, in other words:

t′ →p t1 · α1σY · t12 · α2σY σZ · t22 · α3σY · t3.

Let’s denote by t′1 the obtained term: t′1 = t1 · α1σY · t12 ·
α2σY σZ · t22 · α3σY · t3. Then t′1 ∈ R≤1 (t′) and yet t′1|Γ 6|=
ϕM , which contradicts the hypothesis ∀t′′ ∈ R≤1 (t′)

∣∣
Γ
, t′′ |=

ϕM .

⇒ By definition of the infection, there exists a trace t ∈ L
such that one of its normal forms t↓ validates ϕM and can
therefore be written:

t↓= t1 · α1σY · t2 · α3σY · t3
where σY ∈ SubstY is a ground substitution over Y ,
t1, t2, t3 ∈ TTrace (F) and there exists no substitution σZ such
that α2σY σZ appears in t2.

in
ria

-0
05

94
39

6,
 v

er
si

on
 1

 -
20

 M
ay

 2
01

1

12

We first define a term t′ ∈ R≤2 (t) that contains the same
occurrence α1σY · α3σY of M and we show that its future
abstractions remain infected. Indeed, as t↓= t1 · α1σY · t2 ·
α3σY · t3, by Lemma 2, there exists traces u′, v′, w′ such that:

∃u′, v′, w′ ∈ T (FΣ) , t→→ u′ · α1σY · v′ · α3σY · w′.

Thus we define t′ = u′ ·α1σY ·v′ ·α3σY ·w′. Moreover, since
t ∈ L is concrete, v′ contains no abstract action, so it contains
no instance of α2σY . Hence, t′|Γ |= ϕM .

We now show that: ∀t′′ ∈ R≤1 (t′)
∣∣
Γ
, t′′ |= ϕM . In fact,

we show more generally that: ∀t′′ ∈ R∗ (t′)|Γ , t′′ |= ϕM .
Assume this is not the case and that t′ can thus be rewritten
in such a way that an action α2σY σ

′
Z is inserted within v′

for some substitution σ′Z ∈ SubstZ . The occurrence of the
behavior pattern related to this insertion must also appear in
t ↓. However, t ↓ is in normal form so this occurrence has
been abstracted, at the same concrete position, in a term of
the abstraction derivation from t to t↓, that is after a concrete
action of t2.

Moreover, by hypothesis, in t ↓, no instance of α2σX
appears in t2 since t↓ validates ϕM .

So action α2σY σ
′
Z would necessarily appear in the abstract

actions at the head of t3. But, since λ2 and λ3 are independent,
this is impossible. Hence, no abstraction from t′ could insert
this action α2σY σ

′
Z between α1σY and α3σY .

Hence: ∀t′′ ∈ R∗ (t′)|Γ , t′′ |= ϕM .

Theorem 3. Let M be an abstract behavior defined by a
formula ϕM = ∃Y. λ1(x1) ∧ ¬(∃Z. λ2(x2))Uλ3(x3) where
Y and Z are disjoint sets of variables of sort Data and where
λ2 6= λ1, λ2 6= λ3 and λ2 is independent from λ3. Then, for
any set of traces L ⊆ TTrace (FΣ), L exhibits M iff:

∃t ∈ Rλ2

y (R≤2(L))
∣∣
Γ
, t |= ϕM .

Proof: ⇒: By Theorem 2, M has the property of (2, 1)-
completeness so, by Definition 4, there exists a trace t′ ∈
R≤2 (L) such that ∀t′′ ∈ R≤1 (t′)

∣∣
Γ
, t′′ |= ϕM . In fact, we

showed in the proof of Theorem 2 that: ∀t′′ ∈ R∗ (t′)|Γ , t′′ |=
ϕM . Since Rλ2

y ⊆ R∗λ2
⊆ R∗, we have:

∀t′′ ∈ Rλ2

y (t′) , t′′|Γ |= ϕM .

Since the abstraction relation R is terminating, the set
Rλ2

y (t′) is not empty, so this entails:

∃t′′ ∈ Rλ2

y (t′) , t′′|Γ |= ϕM .

Considering that, by hypothesis, t′ ∈ R≤2 (L), we get:

∃t ∈ Rλ2

y(R≤2 (L)
)∣∣

Γ
, t |= ϕM .

⇐: Let t′′ ∈ Rλ2

y(R≤2 (L)
)

be a trace such that:
t′′|Γ |= ϕM . Every occurrence of the behavior pattern λ2

has been abstracted in t′′ so any future abstraction of t′′ by R
only inserts abstract actions from TAction

(
FΓ\{λ2}

)
, hence:

∀u ∈ R∗ (t′′)|Γ , u |= ϕM . So any normal form of t′′ by R
is infected by M . Since R is terminating, t′′ has at least one
normal form with respect to R so, by Definition 3, L exhibits
M .

Theorem 4. Let R be an abstraction relation, such that R and
R−1 are rational. There exists a detection procedure deciding
whether L exhibits M , for any regular set of traces L and
for any regular abstract behavior M having the property of
(m,n)-completeness for some positive integers m and n.

Proof: Let’s define M ′ = π−1
Γ (M), where π−1

Γ is the
inverse of the projection on Γ. By definition of the abstract
behavior M , (m,n)-completeness of M can be restated as:

L eM
⇔

∃t′ ∈ R≤m (L) , R≤n (t′) ⊆M ′.

Let’s show that the right member of this equivalence is
decidable.

Observe first that, for any set A ⊆ TTrace (F), any term
t ∈ TTrace (F) and any integer i ∈ N, t can be rewritten by
R into some term of A in i steps iff some term of A can be
rewritten by R−1 into t in i steps:

Ri (t) ∩A 6= ∅ ⇔ t ∈
(
R−1

)i
(A) (1)

Hence:

R≤n (t′) ⊆M ′

⇔
¬
(
R≤n (t′) ∩ (TTrace (F) \M ′) 6= ∅

)
⇔

¬

 ∨
0≤i≤n

(
Ri (t′) ∩ (TTrace (F) \M ′) 6= ∅

)
⇔

by (1)

¬

 ∨
0≤i≤n

t′ ∈
(
R−1

)i
(TTrace (F) \M ′)


⇔

¬
(
t′ ∈

(
R−1

)≤n
(TTrace (F) \M ′)

)
Intuitively, this set

(
R−1

)≤n
(TTrace (F) \M ′) repre-

sents the set of unreliably infected traces to avoid. Let’s
denote by M ′′ its complement: M ′′ = TTrace (F) \(
R−1

)≤n
(TTrace (F) \M ′). So:

R≤n (t′) ⊆M ′ ⇔ t′ ∈M ′′.

The property of (m,n)-completeness can be restated as
follows:

L eM
⇔

R≤m (L) ∩M ′′ 6= ∅.

M is regular by hypothesis, so M ′ is regular too. Also,
R−1 is rational so it preserves regularity, hence M ′′ is regular.
Similarly, R is rational and L is regular, so R≤m (L) is regular
too, hence the decidability of detection.

We use the following lemma to prove Theorem 5.

in
ria

-0
05

94
39

6,
 v

er
si

on
 1

 -
20

 M
ay

 2
01

1

13

Lemma 3. Let R be a terminating abstraction relation. Let M
be a regular malicious behavior with the property of (m,n)-
completeness for some positive integers m and n.

If R−1 is rational, then the set of traces n-reliably infected
by M with respect to R is regular.

Proof: This set is precisely the set M ′′ defined in Theo-
rem 4.

The set TTrace (F) \ π−1
Γ (M) is regular since inverse

projection and complementation preserve regularity.
Sets

(
R−1

)i
(TTrace (F) \ π−1

Γ (M)) are regular by ratio-
nality of R−1, as is their union for 1 ≤ i ≤ n, and the
complement of their union.

Theorem 5. Let R be an abstraction relation such that R and
R−1 are rational. Let τ be a tree transducer realizing R. Let
M be a regular abstract behavior with the property of (m,n)-
completeness and AM be a tree automaton recognizing the set
of traces n-reliably realizing M w.r.t. R. Deciding whether a
regular set of traces L, recognized by a tree automaton A,
exhibits M takes O

(
|τ |m·(m+1)/2 × |A| × |AM |

)
time and

space.

Proof: Let’s denote by M ′′ the set of traces n-reliably
infected by M with respect to R. The proof of Theorem 4
relied on the following result:

L eM ⇔ R≤m(L) ∩M ′′ = ∅

By Theorem 6, there is a tree automaton recognizing
R≤m(L) of size O

(
|τ |m·(m+1)/2 × |A|

)
. Intersection of

two tree automata A1 and A2 yields an automaton of size
O (|A1| × |A2|). Finally, deciding whether an automaton rec-
ognizes the empty set takes time and space linear in its size.

We use the following definition and lemma to prove the
rationality of abstraction.

Definition 13. Let Ω be a set of function symbols with profile
Datan → Action , n ∈ N. Let L ⊆ TTrace (F) be a set of
traces. The Ω-generalized form of L, denoted by qΩ (L), is
the set:

qΩ (L) = { t0 · a1 · t1 · · · an · tn |
a1, . . . , an ∈ TAction (Ω ∪ Fd) ,
t0 · · · tn ∈ L}.

Lemma 4. Let Ω ⊆ Fa be a set of function symbols with
profile Datan → Action , n ∈ N. If A is a tree automaton,
then there exists a tree automaton of size O (|A|) recognizing
the Ω-generalized form of L (A).

Proof:
We define a top-down tree transducer τ =

(F ,F ∪ Ω, {qt, qa, qd} , qt,∆) such that: Rτ (L (A)) =
qΩ (L (A)).

∆ is composed of the following rules:
• qt (· (x1, x2))→ · (qa (x1) , qt (x2));
• qt (ε)→ ε;
• For all k ∈ N, for all f ∈ F (k)

a , ∆ contains a rule:
qa (f (x1, . . . , xk))→ f (qd (x1) , . . . , qd (xk));

• For all d ∈ Fd, ∆ contains a rule:
qd (d)→ d;

• For all term α ∈ TAction (FΩ), ∆ contains a rule:
qt (x)→ · (α, qt (x)).

The transducer τ realizes qΩ and has a size constant
with respect to the size of A. Lemma 1 thus entails
that qΩ (L (A)) is recognized by a tree automaton of size
O
(
szrFΩ∪Ω′

(τ)× |A| × |τ |
)

= O (|A|).

Theorem 6. Let B be a behavior pattern and R be a termi-
nating abstraction relation w.r.t. B defined by an abstraction
system whose set of instances of right-hand sides of rules
is recognized by a tree automaton AR. Then R and R−1

are rational and, for any tree automaton A, R (L (A)) is
recognized by a tree automaton of size O (|A| · |AR|)

Proof: We construct two tree transducers realizing R and
R−1.

Let n be the number of rules of the abstraction system.
Let C denote the set

⋃
i∈[1..n]

⋃
σ∈SubstX

Ai (X)σ · λ (x)σ ·

Bi (X)σ ⊆ TTrace (F).
Let ♦ be a constant of sort Action not in Fa. We consider

the following set:

Img♦ (R) = {t1 · ♦ · α · ♦ · t2 | t1, t2 ∈ TTrace (F) ,
α ∈ TAction (FΓ) ,
(t1 · t2, t1 · α · t2) ∈ R}.

We will show that this set is recognized by a tree automaton,
of size O (|AR|), and then use this set to construct a tree
transducer recognizing R and R−1.

Define C ′ to be the set:

C ′ = q{♦} (C)
∩

(TTrace (F) · ♦ · TAction (FΓ) · ♦ · TTrace (F)) .

By Lemma 4 applied to Ω = {♦} and to automaton AR, the
set q{♦} (C) is regular and recognized by a tree automaton,
of size O (|AR|). The set TTrace (F) · ♦ · TAction (FΓ) · ♦ ·
TTrace (F) is also recognized by a tree automaton of constant
size. So their intersection C ′ is regular and recognized by a
tree automaton AC′ of size O (|AR|). Terms in C ′ are terms
of C where the abstract action has been enclosed between two
diamond symbols.

Now, define C ′′ to be the set

C ′′ = qΓ (C ′)
∩

(TTrace (F) · TAction (FΣ) ·
♦ · TAction (FΓ) · ♦ · TTrace (F)).

By Lemma 4 applied to Ω = Γ and to automaton AC′ , the
set qΓ (C ′) is regular and recognized by a tree automaton
of size O (|AR|). The set TTrace (F) · TAction (FΣ) · ♦ ·
TAction (FΓ) · ♦ · TTrace (F) is also recognized by a tree
automaton and of constant size. So their intersection C ′′ is
regular and recognized by a tree automaton AC′′ of size
O (|AR|).

in
ria

-0
05

94
39

6,
 v

er
si

on
 1

 -
20

 M
ay

 2
01

1

14

Finally, we remove from C ′′ the terms violating the termi-
nating condition of Definition 10. We define C ′′′ to be the
set:

C ′′′ = C ′′\⋃
α∈TAction(FΓ)

(TTrace (F) · ♦ · α · ♦·

TTrace (FΓ) · α · TTrace (F)).

The set TAction (FΓ) is finite, so the set⋃
α∈TAction(FΓ)

TTrace (F) ·♦ ·α ·♦ ·TTrace (FΓ) ·α ·TTrace (F)

is recognized by a tree automaton of constant size. Hence,
C ′′′ is regular, recognized by a tree automaton of size
O (|AC′′ |) = O (|AR|), and it verifies:

TTrace (F) · C ′′′ · TTrace (F) = Img♦ (R) . (2)

Indeed, for all t1, t2 ∈ TTrace (F) and for all α ∈
TAction (FΓ):

(t1 · t2, t1 · α · t2) ∈ R
⇔

∃u1, v1, u2, v2 ∈ TTrace (F) ,

t1 = u1 · v1, t2 = v2 · u2,

v1|Σ · α · v2|Σ ∈ C,
v1 ∈ TTrace (F) · TAction (FΣ) ,

v2 6∈ TTrace (FΓ) · α · TTrace (F)

⇔
∃u1, v1, u2, v2 ∈ TTrace (F) ,

t1 = u1 · v1, t2 = v2 · u2,

v1|Σ · ♦ · α · ♦ · v2|Σ ∈ C
′,

v1 ∈ TTrace (F) · TAction (FΣ) ,

v2 6∈ TTrace (FΓ) · α · TTrace (F)

⇔
∃u1, v1, u2, v2 ∈ TTrace (F) ,

t1 = u1 · v1, t2 = v2 · u2,

v1 · ♦ · α · ♦ · v2 ∈ C ′′,
v2 6∈ TTrace (FΓ) · α · TTrace (F)

⇔
∃u1, v1, u2, v2 ∈ TTrace (F) ,

t1 = u1 · v1, t2 = v2 · u2,

v1 · ♦ · α · ♦ · v2 ∈ C ′′′

⇔
t1 · ♦ · α · ♦ · t2 ∈ TTrace (F) · C ′′′ · TTrace (F) .

We now define the transducers realizing R and R−1. To that
end, let’s consider the relation T defined by:

T = { (t · t′, t · ♦ · α · ♦ · t′) , |
t, t′ ∈ TTrace (F) , α ∈ TAction (FΓ) }.

Clearly, relations T and T−1 are rational and recognized by
transducers τT and τT−1 of constant size.

The set TTrace (F) · C ′′′ · TTrace (F) is recognized
by a tree automaton of size O (|AR|), so there
exists a tree transducer τC′′′ realizing the relation

{(t, t) | t ∈ TTrace (F) · C ′′′ · TTrace (F)} and of size
O (|AR|).

Moreover, let τ♦ be the tree transducer on TTrace (F ∪ {♦})
realizing the projection on Σ ∪ Γ, i.e. removing the diamond
symbol, and τ♦−1 be the tree transducer on TTrace (F ∪ {♦})
inserting random diamonds on the ouput. τ♦ and τ♦−1 are of
constant size.

Then R is realized by the tree transducer τ♦ ◦ τC′′′ ◦ τT .
Indeed, for all t1, t2 ∈ TTrace (F) , α ∈ TAction (FΓ), let t′ =
t1 · ♦ · α · ♦ · t2, then:

(t1 · t2, t1 · α · t2) ∈ R
⇔

t′ = t1 · ♦ · α · ♦ · t2 ∈ Img♦ (R)
⇔

by (2)
t′ ∈ TTrace (F) · C ′′′ · TTrace (F)

⇔
(t1 · t2, t′) ∈ T, (t′, t′) ∈ RτC′′′ and (t′, t1 · α · t2) ∈ Rτ♦

⇔
(t1 · t2, t1 · α · t2) ∈ Rτ♦◦τC′′′◦τT .

Similarly, R−1 is realized by the tree transducer τT−1 ◦ τC′′′ ◦
τ♦−1 . Indeed:

(
Rτ♦

)−1
= Rτ♦−1 and

(
RτC′′′

)−1
= RτC′′′ ,

hence:
R−1 = RτT−1◦τC′′′◦τ♦−1 .

Finally, for any tree automaton A, the set R (L (A)) =
τ♦ (τC′′′ (τT (L (A)))) is recognized by a tree automaton of
size O (|A| · |AR|), by Lemma 1.

in
ria

-0
05

94
39

6,
 v

er
si

on
 1

 -
20

 M
ay

 2
01

1

	Introduction
	Background
	Behavior Patterns
	Detection Problem
	Detection complexity
	Trace Abstraction
	Application to Information Leak Detection
	Experiments
	Conclusion
	References
	Appendix
	Additional Background
	Term Algebras
	LTL Temporal Logic
	Tree Automata
	Tree Transducers

	Abstraction examples
	Proofs

