
Action-based verification of RTCP-nets with CADP
Jerzy Biernacki, Agnieszka Biernacka and Marcin Szpyrka

AGH University of Science and Technology, Department of Applied Computer Science
Al. Mickiewicza 30, 30-059 Krakow, Poland, {jbiernac, abiernac, mszpyrka}@agh.edu.pl

Abstract. The paper presents an RTCP-nets’ (real-time coloured Petri nets) coverability graphs into Aldebaran format
translation algorithm. The approach provides the possibility of automatic RTCP-nets verification using model checking
techniques provided by the CADP toolbox. An actual fire alarm control panel system has been modelled and several of
its crucial properties have been verified to demonstrate the usability of the approach.

Keywords: RTCP-nets, Petri nets, formal models, CADP, µ calculus, verification, model checking
PACS: 07.05.Tp

INTRODUCTION

System verification is used to establish that the design or product under consideration possesses certain properties.
Model checking is an automated technique that, given a finite-state model of a system and a formal property, checks
whether this property holds or not for that model [1]. The verification process may be oriented towards states or actions
i.e. the formal properties may describe some properties of reachable states or properties of sequences of performed
actions. Moreover, there are approaches based on the Petri net structure i.e. net decomposition [2], [3]. In the presented
approach the model takes the form of an RTCP-net [4], [5] i.e. an adjust class of timed coloured Petri nets (CP-nets) [6],
[7] designed to model real-time systems, especially embedded control systems. The considered verification process is
oriented towards actions. We use the CADP toolbox [8] to check whether the model satisfies requirements given as
regular alternation-free µ-calculus formulae [9], [10], [11]. The presented action-based approach completes the state-
based approach presented in [12]. To reach the aim an algorithm of translation of an RTCP-net coverability graph into
Aldebaran format has been formulated and implemented. The paper contains the translation algorithm together with
an RTCP-net example used to illustrate usefulness of the approach.

COVERABILITY GRAPH TO ALDEBARAN TRANSLATION ALGORITHM

The set of reachable states R(M0,S0) of an RTCP-net is represented using so-called coverability graph, which is a
labelled transition system with nodes corresponding to states and arcs corresponding to system actions. A state is a pair
(M,S), where M is the vector of places’ markings and S is the vector of clocks’ values. The fact that firing a transition
t in a binding b leads from state (M1,S1) to (M2,S2) is represented by an arc which connects corresponding states [4].
This paper presents action-based approach to RTCP-nets verification. Information about states of the considered model
is ignored and the focus is put on the edges of the coverability graph. Graph translated to Aldebaran format preserves
its number of nodes and order numbers of the states. It also retains transitions’ labels.

The translation algorithm of an RTCP-net coverability graph into the Aldebaran format is presented in Figure 1.
The first line initializes the set of defined labels for reachable states. It is denoted with letter L. Lines 2–5 contain label
creation for each state (M,S). The label of a state is its order number. Line 9 appends a template content to the output
file. Keywords of the template are replaced with appropriate values defined in lines 6–8. Lines 11–15 are processed
for each edge of the coverability graph. (Mi,Si) corresponds to the input node and (M j,S j) corresponds to the output
node of the edge. Line 15 appends a template that contains information about the transition which firing is denoted by
the given edge. As previously, its keywords are then replaced with appropriate values (lines 12–14).

The presented algorithm has been implemented in the PetriNet2ModelChecker tool. This application allows auto-
matic translation of coverability graphs of RTCP, CP and PT (place-transitions) nets into CADP Evaluator input files
in the Aldebaran format. The aim of the translation is to enable Petri net validation with µ-calculus formulae. The
tool was written in Java language. Swing library was used to provide intuitive graphical user interface (Figure 2). Due

1: L← ∅ . the set of defined labels for reachable states
2: for i = 0 . . . |R(M0, S0)| do
3: for (Mi, Si) create label i
4: add label i to L
5: end for
6: <initial-state>← L((M0, S0))
7: <number-of-transitions>← |A|
8: <number-of-states>← |R(M0, S0)|
9: append line des(<initial-state>, <number-of-transitions>, <number-of-states>)

10: for all (Mi, Si) ∈ R(M0, S0) do

11: for all (Mj , Sj) : ∃(b, t) ∈ B(Mi, Si)
(t,b)−−−→ (Mj , Sj) do

12: <from-state>← L((Mi, Si))
13: <label>← t
14: <to-state>← L((Mj , Sj))
15: append line (<from-state>, <label>, <to-state>)
16: end for
17: end for

Figure 1. Coverability graph to Aldebaran translation algorithm.

Figure 2. PetriNet2ModelChecker tool.

to the integration with the RTCP-net compiler, the application enables RTCP-net model import, coverability graph
generation and translation to Aldebaran format in a few simple steps. PetriNet2ModelChecker also incorporates im-
plemented algorithms of translation coverability graphs into nuXmv language [12], [13]. More details can be found
on http://fm.kis.agh.edu.pl website.

CASE STUDY

A common practise in construction of fire alarm control panels [14], aiming at the reduction of false fire alarms, is
alarm variants usage. The most popular variant is the two-stage alarming which scheme is presented in Figure 3. This
approach requires personnel participation who have strictly defined role of the operator in alarm verification process.
A model of this system was created with the RTCP-net formalism. The designed net is shown in Figure 4.

A current state of the panel is defined by the color of the token in place FACP. There are four possible states of the
system: normal, internal alarm, external alarm and terminal. Smoke detection by one of smoke detectors (which cor-
responds to firing of SmokeDetectorsStateCheck transition with defState variable set to warning) raises
the internal alarm (TurnOnAlarm1). The internal alarm calls in the operator to identify the fire hazard. The central
system determines the time T1 for operator to confirm reception of the notification. In the presented model T1 is set to
60 time units. Clock1 place performs a role of the timer which activates external alarm at the expiry of the deadline
(T1_TurnOnAlarm2). The external alarm results in launching of fire emergency procedures, including calling the
fire department. An acknowledgement of the internal alarm (ConfirmAlarm) results in activation of a second timer
(Clock2). Operator has T2 time units to assess the threat and verify the alarm. Upon recognition of fire employee
has two options. The first one is to push manual call point button (Emp_TurnOnAlarm2) which automatically turns
on the external alarm. The second option is an attempt to extinguish the fire using available fire fighting equipment.
After getting the situation under control personnel has to turn off the internal alarm (TurnOffAlarm1). Otherwise,

after expiration of the time limit T2 the external alarm is raised (T2_TurnOnAlarm2). T2 is set to 180 time units.
Provided that raising the external alarm causes serious consequences, e.g. stoppage of technological processes or acti-
vation of automatic extinguishing system, coincidence detection is often used. It is one of the most effective ways of
elimination of false fire alarms. In this case fire detection by at least two smoke detectors turns on the external alarm
(InstantTurnOnAlarm2). Fire detection by only one smoke detector raises the internal alarm (TurnOnAlarm1).

NORMAL
(QUISCENT CONDITION)

INTERNAL ALARM
(ALARM I)

EXTERNAL ALARM
(ALARM II)

SMOKE DETECTION NO CONFIRMATION

EMPLOYEE
CONFIRMATION

FIRE-FIGHTING

EMPLOYEE CONFIRMATION
OF EXTERNAL ALARM

ALARM
CANCELLATION

0 T1 t [min]

0 T2 t [min]

Figure 3. Fire alarm control panel [14].

colset SystemState = with normal | a1 | a2 | term;
colset DetectorsState = with normal | warning | dblWarning;
colset ConfirmationState = with on | off;
colset ClockState = with on | off;
colset FireDepState = with calledFor | none;
colset EmployeeState = with act | idle;
colset Delay = int with 0..300;
var t : Delay;
var prevState: DetectorsState;
var curState: DetectorsState;
var sysState: SystemState;
var fdState: FireDepState;
var empState: EmployeeState;
var clkState: ClockState;
var clkState2: ClockState;
var confState: ConfirmationState;

SmokeDetectors

DetectorsState

(normal)
FACP

SystemState

(normal)

CheckingFireHazard

ConfirmationState

(off)

Clock1

ClockState

(off)

FireDepartment

FireDepState

(none)

Employee

EmployeeState

(idle)

Clock2

ClockState

(off)

SmokeDetectorsStateCheck

[curState <> normal and
 prevState <> dblWarning]

TurnOnAlarm1

TurnOffAlarm1

EmergencyCall

T1_TurnOnAlarm2

T2_TurnOnAlarm2

ConfirmAlarm

[t=120 or t=300]

Emp_TurnOnAlarm2

EmpNoticesAlarm

[t=50 or t=70]

InstantTurnOnAlarm2

[sysState <> a2 and
 sysState <> term]

ResetSystem

[curState <> normal]

warning | warning

a1 | normal

term | a1

on | on

on | off

calledFor | none

a2 | a1

off | on@60 off | off

on@t | off

act | act

on@180 | off

off | on a2 | a1

on | on

a2 | a1

a1 | a1

curState | prevState

act@t | idle

a1 | a1

term | a2

dblWarning | dblWarning

a2 | sysState

normal | term

normal | curState

none | fdState

off | confState

off | clkState2

idle | empState

off | clkStateCheckDetectorsStateTimer

ClockState

on | on@1

(on)

Figure 4. RTCP-net model of fire alarm control panel.

A fire alarm system is an example of a system which errors always cause major losses. False alarms generate
high costs, but on the other hand any delays can lead to loss of human lives and health. Therefore, a comprehensive
verification of such systems is of utmost importance. The coverability graph of the considered model has 3077 states
and 3986 edges. Manual verification in this case is practically impossible. In the paper, the coverability graph of
modelled system is automatically translated into Aldebaran format and verified using CADP Evaluator tool and µ-
calculus formulae. Four examples of such formulae checking properties of the modelled system are presented below.

Listing 1: Examples of µ-calculus formulae for the model in Figure 4.
[true*."ConfirmAlarm".(not "ResetSystem")*."T1_TurnOnAlarm2".true*."ResetSystem"] false
[true*."ConfirmAlarm".(not "ResetSystem")*."TurnOffAlarm1".(not "ResetSystem")*."EmergencyCall"]

↪→ false
[true*."InstantTurnOnAlarm2".(not "EmergencyCall")*."ResetSystem"] false
[true*."ConfirmAlarm".(not "ResetSystem" and not "T2_TurnOnAlarm2" and not "Emp_TurnOnAlarm2")*."

↪→ EmergencyCall"] false

The first formula verifies whether acknowledgement of the internal alarm turns off the first timer, that is Clock1.
Verification in CADP Evaluator proves, that even after expiration of T1 time limit, the premature external alarm is not
raised. The second formula checks whether operator’s actions of confirmation and then internal alarm disarming are
definitely preventing false external alarm from being raised. The third one denotes that fire detection by at least two
smoke detectors always turns on the external alarm. These last two formulae are also proven true. The last formula
denotes that after employee confirmation of the internal alarm, the external alarm cannot be raised unless the operator
turns it on manually or timer T2 expires. This formula, however, is not satisfied. Second smoke detector can possibly
activate at any given moment, automatically turning on the external alarm, what was verified by the previous formula.
It is also worth mentioning that a graph explaining the truth value of given formula can be generated using -diag
option of the Evaluator tool.

SUMMARY

Action-based approach to verification of RTCP-nets has been presented in the paper. It employs conceived and
implemented algorithm of translation of an RTCP-net coverability graph into the Aldebaran format. Employing
PetriNet2ModelChecker tool, RTCP-nets modelled with CPN Tools can be automatically loaded and then, after the
conversion, automatically verified with CADP Evaluator. To demonstrate the usability of this approach, an actual fire
alarm control panel system has been modelled with the RTCP-net formalism. Some illustrative properties of the system
have been specified using µ-calculus formulae and the results of the verification have been presented. Combined with
the state-based verification introduced in [12] this approach allows comprehensive verification of any system modelled
with the RTCP-net formalism.

REFERENCES

1. C. Baier, and J.-P. Katoen, Principles of Model Checking, The MIT Press, London, UK, 2008.
2. I. Grobelna, M. Wiśniewska, R. Wiśniewski, M. Grobelny, P. Mróz, “Decomposition, validation and documentation of control

process specification in form of a Petri net”, in 7th International Conference on Human System Interactions - HSI 2014,
Lisbon, Portugal, 2014, pp. 232–237.

3. R. Wiśniewski., A. Karatkevich, M. Adamski, D. Kur, “Application of comparability graphs in decomposition of Petri nets”,
in 7th International Conference on Human System Interactions - HSI 2014, Lisbon, Portugal, 2014, pp. 216–220.

4. M. Szpyrka, “Analysis of RTCP-nets with Reachability Graphs”, Fundamenta Informaticae 74, 375–390 (2006).
5. M. Szpyrka, “Analysis of VME-Bus communication protocol – RTCP-net approach”, Real-Time Systems 35, 91–108 (2007).
6. K. Jensen, and L. Kristensen, Coloured Petri nets. Modelling and Validation of Concurrent Systems, Springer, 2009.
7. B. Jasiul, M. Szpyrka, and J. Śliwa, “Detection and Modeling of Cyber Attacks with Petri Nets”, Entropy 16, 6602–6623

(2014).
8. H. Garavel, F. Lang, R. Mateescu, and W. Serwe, “CADP 2006: A Toolbox for the Construction and Analysis of Distributed

Processes”, in Computer Aided Verification, Springer-Verlag, 2007, vol. 4590 of LNCS, pp. 158–163.
9. E. A. Emerson, “Model checking and the Mu-calculus”, in Descriptive Complexity and Finite Models, edited by N. Immerman,

and P. G. Kolaitis, American Mathematical Society, 1997, vol. 31 of DIMACS Series in Discrete Mathematics and Theoretical
Computer Science, pp. 185–214.

10. D. Kozen, “Results on the propositional µ-calculus”, Theoretical Computer Science 27, 333–354 (1983).
11. R. Mateescu, and M. Sighireanu, Efficient on-the-fly model-checking for regular alternation-free µ-calculus, Tech. Rep. 3899,

INRIA (2000).
12. A. Biernacka, J. Biernacki, and M. Szpyrka, “State-based verification of RTCP-nets with NuXMV”, in Proceedings of the

Design and Analysis of Control Systems Conference (DACS 2015), Athens, Greece, 2015.
13. M. Szpyrka, A. Biernacka, and J. Biernacki, “Methods of translation of Petri nets to NuSMV language”, in Proceedings

of the Concurrency Specification and Programming Workshop (CSP 2014), Chemnitz, Germany, 2014, vol. 1269 of CEUR
Workshop Proceedings, pp. 245–256.

14. J. Ciszewski, K. Kunecki, W. Markowski, J. Sawicki, and M. Sobecki, SITP Guideline WP-02:2010. Fire alarm systems. The
design (2010).

