
DOCTORAL THESIS

Modelling and Verification of Multi-Agent
Systems via Sequential Emulation

PHD PROGRAM IN COMPUTER SCIENCE: XXXII CYCLE

Author:

Luca DI STEFANO

luca.distefano@gssi.it

Supervisors:

Prof. Rocco DE NICOLA

rocco.denicola@imtlucca.it

Dr. Omar INVERSO

omar.inverso@gssi.it

October 2020

GSSI Gran Sasso Science Institute
Viale Francesco Crispi, 7 - 67100 L’Aquila - Italy

Declaration of Authorship

I, Luca Di Stefano, declare that this thesis titled, ‘Modelling and Verification of Multi-Agent

Systems via Sequential Emulation’ and the work presented in it are my own, under the guidance

of my supervisors. Parts of Chapter 2 appeared in [80]. Chapter 3 is based on [83]. A preliminary

description of the encoding proposed in Chapter 4 appeared in [83]; the current version of the

encoding is under submission. Parts of Chapter 5 appeared in [87].

I confirm that:

■ This work was done wholly or mainly while in candidature for a research degree at this

Institute.

■ Where I have consulted the published work of others, this is always clearly attributed.

■ Where I have quoted from the work of others, the source is always given. With the

exception of such quotations, this thesis is entirely my own work.

■ I have acknowledged all main sources of help.

Signed:

Date:

i

Abstract

A multi-agent system (MAS) is a collection of agents, often endowed with individual goals and a

partial view of the whole system, that may be required to achieve complex goals by interacting

with each other and with the environment. MASs are a convenient modelling paradigm for

complex scenarios across many research fields: they may either be used to describe and reason

about existing systems (such as colonies of insects, social networks, economic markets), or to

design and assess the correctness of new ones (such as swarms of robots, smart transportation

systems).

MASs feature an unprecedented degree of complexity, making their specification and analysis an

open problem. This complexity stems from several distinctive features, such as nondeterministic

individual behaviour and interactions, asynchronous communication, and a lack of central control.

Because of this, formal verification of MASs is particularly challenging. Some existing MAS

specification formalisms and platforms lack support for formal verification altogether, and are

limited to simulation-based analysis; others focus on specific sub-classes of MASs, or come

with tailored verification platforms that might not keep up with the state of the art in formal

verification. Meanwhile, formal verification research mainly targets low-level formalisms or

traditional programming languages. However, these languages often lack constructs to naturally

capture distinctive features of MASs, and thus may be not appropriate for describing them.

To bridge this gap, we put forward a high-level specification language for MASs, where agents

operate on (parts of) a decentralised data structure, called a virtual stigmergy, which allows

to model the influence of local changes on the global behaviour by asynchronously diffusing

the knowledge of the agents. This diffusion happens transparently: the user of the language

simply defines one or more stigmergic variables and assigns values to them. As a consequence,

stigmergies may capture the behaviour of several interesting classes of MASs in a compact and

intuitive way. We also introduce a mechanised sequential emulation procedure that encodes

a high-level system specification into a sequential imperative program. The execution traces

of this program emulate the possible evolutions of the input system. Then, the question of

whether a property of interest holds for the given system may be answered by performing a

certain verification task on the generated program. This allows us to immediately exploit mature

verification techniques developed for general-purpose languages, and to effortlessly integrate

new techniques as soon as they become available. The procedure is language-agnostic, as it may

generate programs in any imperative language with arrays and loops and it may be adapted to

support different input formalisms. We show the feasibility of our approach by implementing a

tool that applies this procedure to our original language. A thorough experimental evaluation

shows that we can formally verify a selection of real-world systems using off-the-shelf program

verification tools.

Acknowledgements

This work would not have been possible without the support of many people.

I would like to thank Rocco De Nicola, who first introduced me to the area of formal methods and

then gave me the opportunity of working under his supervision; and Omar Inverso, for teaching

me so much about formal verification. Working under their supervision has been a honor and a

pleasure, and their guidance and inspiration have been very precious to me. I am deeply grateful

to all the Computer Science people at GSSI, namely the coordinators of the PhD program, Rocco

De Nicola (again), Luca Aceto, and Michele Flammini, and all researchers and post-docs, for

their dedication to us students and the great work environment they have fostered over the years.

I would like to thank Radu Mateescu and the other members of the CONVECS team (Hubert

Garavel, Frédéric Lang, Gwen Salaün, and Wendelin Serwe) for kindly hosting me in Grenoble

for five months. During my stay I had the privilege of working with them and of meeting so many

bright and kind young researchers and students: Ajay, Alex, Armen, Lina, Nikita, Philippe, Pierre,

Supriya, Umar, and many others. I wish to thank them for the many stimulating conversations

and fun moments we shared.

I would also like to thank Radu, together with Lucas Cordeiro, for their kind agreement to review

my work and for improving it through their suggestions.

Many thanks to all my dear fellow PhD students at GSSI, with whom I shared so many great

moments. Besides their brightness, kindness, and companionship, I am grateful to them for

giving this city of mine a living chance. I am especially thankful to Alessandro, Aline, Antonio,

Stella, and Xuan, for the mutual support during and after the lockdown.

Lastly, I would like to dedicate this thesis to my family, which has always encouraged my

curiosity and showered me in affection. There is no “thank you” big enough for that.

iii

Contents

Declaration of Authorship i

Abstract ii

Acknowledgements iii

List of Figures vi

List of Tables vii

Abbreviations viii

Symbols ix

1 Introduction 1

2 Background 6
2.1 Multi-agent systems . 6

2.1.1 Definitions . 6
2.1.2 Examples . 7
2.1.3 Features . 10
2.1.4 Modelling challenges . 13

2.2 Property specification . 16
2.2.1 Linear Temporal Logic . 16
2.2.2 Hennessy-Milner Logic . 18

2.3 Languages and analysis platforms for multi-agent systems 19
2.3.1 Belief-Desire-Intention . 20
2.3.2 Simulation languages . 20
2.3.3 Process algebras . 21
2.3.4 Other paradigms . 24

2.4 Program verification . 26
2.4.1 Program verification techniques . 27
2.4.2 Existing program verification tools . 32

2.5 Summary . 34

3 A specification language for MAS 35
3.1 Preliminary definitions . 35
3.2 Core LAbS process algebra . 36

iv

Contents v

3.2.1 Processes and expressions . 37
3.2.2 Link predicates . 40
3.2.3 Agents and systems . 40
3.2.4 Tuples and atomic assignments . 42
3.2.5 Clocks and verification . 43

3.3 Modelling the environment . 43
3.3.1 Semantics of situated systems . 43

3.4 Examples . 44
3.4.1 Dining philosophers . 46
3.4.2 Leader election . 47
3.4.3 Flocking . 47
3.4.4 Line formation . 50
3.4.5 Majority protocols . 52

3.5 Syntax of the LAbS+ specification language 53
3.5.1 Basic syntactic elements . 54
3.5.2 Syntax of a LAbS+ specification . 56

3.6 Summary . 58

4 Sequential emulations 59
4.1 From Formal Specifications to Symbolically Linked Triples 61
4.2 From Symbolically Linked Triples to Imperative Programs 72
4.3 Summary . 76

5 Prototype implementation 77
5.1 Usage . 77
5.2 Analysis workflow . 79
5.3 Handling language-specific features . 82
5.4 Experimental evaluation . 84

5.4.1 Benchmark description and experimental setup 84
5.4.2 Experimental results: C emulation programs 87
5.4.3 Experimental results: LNT emulation programs 89

5.5 Summary . 90

6 Conclusions 91

Bibliography 94

List of Figures

2.1 The dining philosophers example, with n = 5. 8
2.2 A possible evolution of a leader election among four agents. 8
2.3 Individual rules for Boids. 9
2.4 Evolution of a line formation system. 9
2.5 A possible evolution of a majority protocol. 10

3.1 Two example systems in LAbS+. 48
3.2 A Boids-like system with only the alignment rule. 49
3.3 Two agents c1, c2 agree on a direction of movement. 49
3.4 A Boids-like system with alignment and cohesion rules. 50
3.5 The cohesion rule in action. 50
3.6 A system of line-forming agents. 51
3.7 A population protocol for approximate majority. 53
3.8 A correct population protocol to compute the majority opinion. 54

4.1 Overview of our encoding procedure. 59
4.2 LTSs and triple structures for two simple CCS processes. 64
4.3 LTS and triple structure for a process with synchronisation. 65
4.4 Triple structure generated from the specifications of the two-phase commit (2PC)

example. 69
4.5 Graphical representation of a possible execution of the 2PC example. 69
4.6 Emulation program for the 2PC system. 73

5.1 Example of SLiVER outputs. 78
5.2 SLiVER analysis workflows. 79
5.3 Encoding LAbS+ guards in C. 83

vi

List of Tables

2.1 Linear Temporal Logic. 18
2.2 Hennessy-Milner Logic. 19
2.3 Comparison of BMC-based tools. 33

3.1 Operations on the virtual stigmergy. 36
3.2 LAbS syntax. 37
3.3 Semantics of processes. 37
3.4 Semantics of expressions. 38
3.5 Satisfaction of guards. 39
3.6 Well-definedness of expressions and guards. 39
3.7 Semantics of agents. 41
3.8 Semantics of systems. 42
3.9 Basic processes in situated systems. 44
3.10 Semantics of agents in a situated system. 45
3.11 Semantics of situated systems. 45
3.12 Comparison between LAbS and LAbS+ syntaxes for process terms. 46
3.13 LAbS+ keywords. 55
3.14 LAbS+ syntax (1). 56
3.15 LAbS+ syntax (2). 57
3.16 LAbS+ syntax (3). 58

4.1 Definition of the translation function J·K. 67
4.2 Definition of the enabler function ◁ [·]k. 67

5.1 Results of the invariance verification tasks for C emulation programs. 87
5.2 Results of the emergence verification tasks for C emulation programs. 89
5.3 Experimental results for LNT emulation programs. 89

vii

Abbreviations

AbC Attribute-based Communication

ABM Agent-Based Modelling

BDD Binary Decision Diagram

BDI Belief-Desire-Intention

BMC Bounded Model Checking

CAS Collective Adaptive System

CEGAR Counterexample-Guided Abstraction Refinement

DSL Domain-Specific Language

LTL Linear Temporal Logic

LTS Labelled Transition System

MAS Multi-Agent System

PDR Property Directed Reachability

SAT Boolean satisfiability

SMT Satisfiability Modulo Theories

SOS Structural Operational Semantics

viii

Symbols

Symbol Parameters Meaning

N The set of natural numbers: {0, 1, 2, . . . }

P(X) X: a set The power set of X: {Y | Y ⊆ X}
⟨x, y, . . . , z⟩ x ∈ X, y ∈ Y, . . . , z ∈ Z A tuple: an element of X ×Y × · · · ×Z

X ↪→ Y X, Y : sets A partial function from X to Y

f [x ↦→ y] f : X ↪→ Y ;x ∈ X; y ∈ Y The partial function f ′ such that

f ′(x′) = y if x = x′ and f ′(x′) = f(x′)

otherwise

ix

Chapter 1

Introduction

The study of collective systems is central to several disciplines, ranging from natural sciences

such as ecology and biology to sociology, economics and social sciences. At the same time, there

exists an ever-growing demand for new paradigms and approaches to the design of man-made

collective systems involving a very large number of components deployed over vast geographic

areas, such as teams of robots, smart transportation systems and road networks, and so on. This

demand is reflected by the appearance of novel terms to classify these systems, such as complex

adaptive systems [134]; collective adaptive systems [129]; cyber-physical systems [229]; swarm

robotics [214]. All these new classifications stress the extreme features and unprecedented

complexity of the systems they designate, as well as their need to operate in, and adapt to, the

physical world.

However, the more general notion of multi-agent systems (MASs) seems to be equally appropriate

to classify these systems: they may all be seen as collections of interacting agents, within a

possibly dynamic and modifiable environment, while features stressed by more specific clas-

sifications (such as adaptivity or swarm-like behaviour) emerge from the capabilities of the

individuals and their mutual interactions. MASs seem to put researchers at ease, as they allow to

describe a system of interest starting from its elementary components, i.e., the agents [38]. Thus,

the practice of building and analysing agent-based models of collective systems is becoming

increasingly popular [38, 92, 93, 231]. As a consequence, there is a growing need for languages

that allow to create these models in a concise and intuitive fashion. These languages should hide

the complexity of these systems as much as possible, while remaining general enough to capture

a reasonably inclusive range of scenarios. It is worth noticing that the impact of such affordable

languages may potentially extend well beyond the computer science community, as they may

induce scholars from different disciplines into experimenting with agent-based systems within

their area of expertise.

1

Introduction 2

Multi-agent systems, however different, do share a number of common traits. Each agent may

follow simple local rules that govern its actions (moving, sensing or altering the environment, etc.);

at the same time, those actions may intertwine with those of other agents, possibly affecting or

being influenced by them. In fact, this intertwining of actions gives rise to an exceptionally large

set of possible evolutions, which may be hard to predict even for a small number of agents, and

such systems seem to «operate at an intermediate state between order and chaos» [142], as they

exhibit the emergence of collective, “orderly” behaviours that appear to have little relation to the

individual rules followed by the agents and their “chaotic” interaction [21, 169]. Understanding

the relation between the individual and the collective would give us a deeper insight into the

nature of such systems, and may also lead to the design of better artificial MASs [194]. However,

given the aforementioned unpredictability of these systems, this goal can be achieved only with

the support of techniques and tools that can perform an automated, systematic analysis of their

state space and draw reliable conclusions about their behaviour. Even simulation, which is

widely used to test hypotheses about agent-based models, can be only marginally effective to this

end. In fact, in a number of cases formal assurance about the behaviour of a system is required,

which is beyond the reach of simulation-based reasoning [245]. Formal verification, instead, may

provide such assurance through mathematically founded techniques, but it may struggle with

obtaining conclusive results on large systems, since they often feature a combinatorial explosion

in the number of states. This is known as the state explosion problem [64].

A great deal of formal verification research has been carried out in the context of general-purpose

programming languages, such as C: however, using such languages would be out of reach for

most researchers lacking a programming background which may be, nevertheless, interested in

agent-based modelling. Furthermore, most of the commonly observed features of MASs cannot

be easily expressed through usual programming constructs, and the resulting specifications

could be difficult to understand [80]. On the other hand, existing platforms providing both a

specification language and a related analysis toolbox can be successful for specific classes of

systems, but at the cost of limiting the flexibility of the specifications by enforcing rigid templates

for the behaviour [207], disallowing value-passing actions [162], restricting the interaction to

point-to-point communication [37, 162], assuming that the properties of interest have a specific

form and can predicate on the global state only [37], and the like. In general, representing

complex systems under such restrictions may be unnatural, and as a result precious information

about the structure of these systems may get lost in the modelling phase, compromising the

efficiency of the analysis. Additionally, these platforms often implement a specific verification

technique, and tailor it to the chosen specification language. This may make it difficult to keep

up with the state of the art in formal verification.

Introduction 3

Approach

The concerns raised so far call for the introduction of flexible yet rigorous domain-specific

formalisms for multi-agent systems. By flexibility, we mean that such formalisms should allow

users to model a wide range of scenarios and should not tie them to any specific system template.

Rigorousness means that the language should be supported by a formal semantics, on which auto-

mated analysis of complex systems can be solidly grounded. Lastly, by domain-specificity [237]

we mean that the language should provide appropriate abstractions to deal with multi-agent

systems in a concise way, so as to spare users from explicitly describing low-level details about

the modelled systems.

The analysis workflow of models written in such formalisms should take advantage of the constant

progress in the field of automated formal verification, and should not be tied to a specific approach

to systems analysis: it should rather be able to apply multiple different techniques and effortlessly

evolve along with the state of the art.

Lastly, such workflows should be implemented as push-button analysis tools. While semi-

automatic verification procedures, such as those based on interactive theorem proving, do have

their advantages [118], we believe that fully automated tools could facilitate the adoption of

state-of-the-art techniques for computer-aided verification among diverse research communities.

These tools would put the end-user at ease, as familiarity with the domain specific formalism

would be the only usage requirement.

This thesis aims at describing a possible way to fulfil these requirements.

Contributions

The main contributions of this work may be summarised as follows:

1. a domain-specific, formal language for the specification of multi-agent systems (Chapter 3);

2. a compact structure-preserving encoding of formal specifications into sequential imperative

programs (Chapter 4);

3. a prototype tool that encodes our language into C or LNT [103] programs (Chapter 5).

Formal domain-specific language

In Chapter 3 we introduce a domain-specific language built around a core calculus called

LAbS [83]. The design of LAbS was influenced by a study of several existing languages

Introduction 4

for multi-agent and multi-robot systems [80]. In particular, it allows to model agent-to-agent

interaction through virtual stigmergies, i.e., decentralised data structures that allow a group of

neighbouring agents to agree on the contents of a key-value store [198]. LAbS formalises the

operations of a virtual stigmergy by means of a structural operational semantics. At the same

time, it generalises the concept of virtual stigmergies in several ways. First, it allows the user

to customise the notion of neighbourhood, which was originally tied to spatial proximity. In

our language, instead, neighbourhood between two agents is determined by satisfaction of a

user-defined predicate over their state. Moreover, multiple virtual stigmergies may exist within

a system, with potentially different predicates. These generalisations increase the flexibility of

virtual stigmergies as a modelling tool. To highlight the capabilities of this language, we provide

several example specifications that model a selection of real-world multi-agent systems.

Structure-preserving encoding

In Chapter 4 we present a mechanised, semantics-based procedure that translates a specification of

a distributed system, together with a property of interest, into a sequential imperative program that

emulates the given system. By this, we mean that the program reproduces the feasible executions

of the system, and thus verifying it can give a verdict on whether the system satisfies the given

property. The procedure first builds an intermediate representation that captures the possible

flow of action of each agent. The interleaving of actions is not represented explicitly, but rather

encoded by a control mechanism based on symbolic expressions. This retains the compactness

of the input specification. The obtained intermediate representation is then used to generate

a sequential imperative program. Separate functions encode the actions of the agents, and a

scheduler repeatedly invokes such functions. The symbolic control mechanism described above

guarantees that all feasible evolutions are captured while no spurious evolution is introduced.

Finally, the program is decorated with appropriate statements encoding the property to verify,

so that formal verification of the input system reduces to a verification query on the decorated

program. This procedure is semantics-based in the sense that it may be adapted to any input

language provided with a structural operational semantics (SOS) [200], thus not limited to the

language that we introduce in Chapter 3.

Prototype implementation and experimental evaluation

In Chapter 5 we introduce a prototype tool, called SLiVER, which implements our structure-

preserving encoding procedure for our agent-based specification language. The tool is written

in F# and Python, currently generates programs in two languages (either the C programming

language [141] or the LNT process calculus [103]), and can be used either to verify a system

against a given property, or to simulate its evolution up to an arbitrary number of transitions. We

Introduction 5

describe the workflow of the tool and illustrate its usage through examples. Then, to show that

our encoding procedure is an effective approach to multi-agent systems verification, we perform a

battery of tasks using a selection of state-of-the-art tools for the verification of C programs. These

tools cover a wide range of techniques from the literature, ranging from symbolic execution [143]

to more recent approaches such as property directed reachability [44]. We succeed in verifying

both invariant properties (i.e., all reachable states satisfy a given formula) and simple emergent

properties (i.e., all executions lead to a state where the given formula is satisfied), over the full

state space of the input systems.

Structure of the thesis

The rest of this document is organised as follows. Chapter 2 defines the notions and the terminol-

ogy used throughout the thesis, gives a brief overview of the necessary background concepts, and

describes a selection of state-of-the art approaches to formal verification. Chapter 3 contains a

description of our language for multi-agent systems. First, the core process algebra is introduced;

then, the specification language is illustrated by modelling a collection of example multi-agent

systems; lastly, a more formal description of the specification language is provided. Chapter 4

describes a semantics-based encoding from formal specifications into imperative programs. Chap-

ter 5 describes a prototype tool that implements the aforementioned encoding procedure for our

specification language, and evaluates its effectiveness by means of a battery of verification tasks.

Chapter 6 contains some concluding remarks and possible directions for future work.

Chapter 2

Background

This chapter introduces the terminology used throughout the thesis, as well as the needed

mathematical background. Moreover, it provides an overview of multi-agent systems and their

main sources of complexity, describes existing languages and platforms oriented at these systems,

and gives a brief account of techniques and tools for formal program analysis.

2.1 Multi-agent systems

In this section, we consider the systems we are interested in modelling and analysing, and

describe their distinctive features. We collectively refer to them as multi-agent systems, although

the literature refers to them using several other names, including collective systems, distributed

systems, and process networks. We believe that these names do refer to the same classes of

systems, and prefer the term multi-agent systems to stress that they are the outcome of the

composition of multiple, autonomous elements (the agents).

2.1.1 Definitions

Intuitively, an agent is any entity with agency, i.e., the ability to perform actions [217]. Theories

of action and agency are central to Western thought, and several alternative definitions of what

constitutes an action have been put forward. These definitions generally agree that actions are

events originating from an entity as the result of some kind of deliberation, or as a reaction to

external stimuli; and that they may alter the state of the world surrounding the agent, i.e., its

environment [244].

Artificial intelligence (AI) is the branch of computer science that deals with the design of artificial

agents [213]. As agents are inevitably tied to actions, theories of agency play a relevant role in

6

Background 7

AI. The logical approach [188] proposes that, given a formal model of the world and of the effect

of each possible action, an agent could just plan a sequence of actions toward its goal (which is

itself represented as a desired state of the world). Thus, much effort has been spent on developing

formal theories of action [7, 152, 175], and planners that could exploit them [8, 95, 186]. Other

works have questioned the logical approach and showed that reactive agents (i.e., whose actions

are mainly driven by their current perceptions) can still display complex, apparently plan-driven

behaviour [4, 5, 48]. It has been argued that the logical approach tries to mimic human intelligence,

while these reactive agents take their inspiration from biology [47].

A multi-agent system (MAS) is a collection of agents that interact with one another and with their

shared environment [248]. Research on multi-agent systems was initially known as distributed

artificial intelligence (DAI) [147, 176]: in fact, a popular line of research aims at generalising

the aforementioned logical approach to include concepts such as communication, collective

knowledge, and shared goals [146, 223, 248]. This approach is sometimes labelled as “top-

down”: advocates of alternative, “bottom-up”, methodologies include the artificial life [158] and

swarm intelligence [39] communities.

Agent-based modelling, or individual-based modelling, is the activity of abstracting a real-world

scenario as a multi-agent system. An agent-based model is mainly concerned with specifying

the individual behaviour of agents. Properties of the system that may be seen as foundational in

other kinds of model, such as the presence of patterns, hierarchies, equilibria, etc., are expected

to be emergent phenomena of the system. They are the result of the interactions among agents,

and may in turn influence their future behaviour [38]. The study of natural systems from an

agent-based perspective may in turn influence the development of artificial ones, such as swarms

of robots [39, 194].

2.1.2 Examples

In this section, we give an informal description of simple multi-agent systems, which we will

refer to in the course of this thesis. We also discuss a selection of real-world scenarios that have

been analysed through agent-based modelling, in order to show the wide range of applications

of this technique. Other works offer further insight on the role of agent-based models in

economics [231, 232], epidemiology [91], ecology [113, 114], and sociology [92].

Example 2.1 (Dining philosophers [88]). A group of n philosophers is sitting at a round dinner

table. A fork lies to the left of each philosopher, and a large bowl of spaghetti stands in the centre

of the table (Figure 2.1). In order to eat, a philosopher has to grab both the fork on his left and

the one on his right. Of course, only one philosopher may hold a fork at any given time. Thus, a

problem may arise when all the philosophers pick the fork at their left at about the same time,

Background 8

FIGURE 2.1: The dining philosophers example, with n = 5. Image from the original description
of the problem [88].

0 1

2 3

(A)

1 1

2 3

(B)

3 3

3 3

(C)

FIGURE 2.2: A possible evolution of a leader election among four agents.

and no one is willing to put down their own fork before eating. «In this undignified situation,

they will all inevitably starve» [132].

Example 2.2 (Leader election). A leader election mechanism allows a distributed system to

choose an agent as its leader, or coordinator [104]. Assuming that each agent in the system has a

unique identifier and that messages are always delivered reliably, a basic leader election protocol

is the one where each agent repeatedly advertises its own identifier until it receives a message

from an agent with a higher one. After some time, all agents will stop sending messages except

the one with the highest identifier, which is then selected as leader. Figure 2.2 shows an example

evolution of this election protocol when performed by four agents. Initially, each agent considers

itself to be the leader (Figure 2.2a). If, say, node 1 advertises itself as leader, it only persuades

node 0, while the other nodes keep advertising themselves (Figure 2.2b). Eventually, the node

with the highest identifier, i.e., 3, sends a message and gets elected as leader (Figure 2.2c).

Example 2.3 (Flocking). Flocking is the emergent behaviour commonly observed in flocks of

birds, schools of fish, swarms of social insects, and other natural systems, and can generally be

described as «the collective coherent motion of large numbers of self-propelled organisms» [236].

Such a behaviour may emerge from a set of simple local rules followed by the individual agents.

More specifically, the term Boids [208] refers to a specific set of such rules, which was originally

proposed as part of an efficient algorithm to generate realistic computer animations of flocks

Background 9

(A) Alignment (B) Cohesion (C) Separation

FIGURE 2.3: Individual rules for Boids. Images from the personal web page of Craig Reynolds.1

0 1 2 3
δ

(A) One possible initial state.

0 1 2 3
δ

(B) An acceptable final state.

FIGURE 2.4: Evolution of a line formation system.

and has been very largely spread since, with countless implementations available. Figure 2.3

contains a graphical representation of these rules, which are: (a) alignment (agents head in the

same direction as other flockmates nearby); (b) cohesion (agents move closer to nearby groups of

flockmates); and (c) separation (agents avoid collisions with flockmates that are too close).

Example 2.4 (Line formation). This is an elementary example of a pattern-forming system [227].

Agents lie on a one-dimensional segment and they must reach a state where they all maintain

a given minimum distance from each other. Consider for instance Figure 2.4a. Segment δ

represents the minimum distancing that any two agents should maintain, but every agent has

at least one neighbour that is closer than δ. A correct line-forming behaviour should allow the

agents to reach a state similar to that of Figure 2.4b, where the minimum distancing requirement

is satisfied by all agents.

Example 2.5 (Opinion formation protocols). These protocols assume that each agent has an

initial opinion and that interactions between agents may lead to changes in their opinions. In

the voter model, an agent that meets another instantly imitates the opinion of the latter [183]. A

k-unanimity model, instead, requires an agent to meet k other agents with a given opinion before

it switches to that opinion [216]. Majority protocols, finally, arrange the interactions of agents

in such a way that they eventually agree on the opinion that had the initial majority [13]. As an

example, the agents of Figure 2.5 have either a Y - or a N -opinion. Notice that the Y -opinion

has the majority in the initial state of the system (Figure 2.5a). Agents randomly wander across

the arena. Upon meeting Y -agents, the N -agents change their own opinion to Y (Figure 2.5b).

Since the Y -agents were in a majority, eventually all agents have the Y -opinion (Figure 2.5c).

Background 10

(A) (B) (C)

FIGURE 2.5: A possible evolution of a majority protocol. Images adapted from web demo2 of
the Peregrine tool [37].

Real-world scenarios. Epidemiology studies the spread of an infection through a community.

Social contact patterns are an important factor in the spread of the infection. Agent-based models

that are built upon statistical and demographic data can provide good approximations of such

patterns and closely fit epidemiological findings from real-world infections [139].

In archaeology, conjectures about the social norms of an extinct community can be at least

partially validated by showing that an agent-based model built upon these conjectures evolves in

a way that matches evidence from archaeological findings [17].

In economy, actors such as households, banks, and firms, are often tied by credit relations between

one another. These relations induce a credit network on the economic system. If one element of

this network defaults (i.e., it fails to repay a debt), the topology of the network and the different

kinds of entities involved may affect the spread of the resulting financial shock. Agent-based

models seem to capture these features more closely than the aggregate approaches of mainstream

economics [225].

In spatial economics, agents incur in costs that vary according to their current location (e.g.,

commuting, rent). Agent-based models are a good fit for spatial economics and may provide deep

insight into the properties of economic exchanges within this setting [191]. For instance, they

may show that spatial equilibrium, i.e., the assumption that no agent may unilaterally improve its

own status by moving to a better location, is actually an emerging property of spatial economic

systems [192].

2.1.3 Features

In this section, we describe a collection of features that are commonly observed in multi-agent

systems. As we will see (Section 2.1.4), these traits introduce specific challenges to the modelling

and analysis of these systems.
1https://www.red3d.com/cwr/boids/
2https://peregrine.model.in.tum.de/demo/

Background 11

Open-endedness. A system is open-ended when agents can join or leave it at any time. This

may happen either because of a deliberate choice (e.g., a robot leaving a mission due to a critically

low battery level; a social network user deleting his/her account) or as the result of unexpected

events, such as hardware failure. Open-endedness complicates specifications and reasoning.

Agents that leave the system raise issues similar to those caused by faulty processes within a

distributed computing environment [155]. New agents joining the system might also need to

acquire information from their peers in order to operate correctly. For instance, a new member of

a flock of boids (see Example 2.3) must detect the position and heading of other flockmates in

order to imitate them.

Adaptivity. An adaptive system can modify its behaviour in response to unexpected changes in

the environment, or the system itself [134]. For instance, flocks of birds are known to split in two

or more groups if a predator appears, and reassemble after the threat has disappeared [20]. Some

species, instead, tend to cluster around the predator: this behaviour is known as mobbing [193].

Artificial agents and systems with some degree of adaptivity are quite desirable, as they might be

able to operate under unforeseen circumstances with little to no supervision.

Stigmergic interaction. The concept of stigmergies originated from the study of the collective

behaviour of social insects. Since then, it has been used to describe several classes of collective

behaviour in natural and human-made systems [127]. Generally, a stigmergy is an indirect

interaction mechanism based on signs, or cues, that agents leave in the environment during their

activity and that influence the future behaviour of other agents [182]. The first occurrence of the

term [111] referred to the nest-building behaviour of some species of termites. These termites

build nests by soaking small pellets of soil in pheromone and dropping them on the ground.

Other termites detect the scent of pheromone as it evaporates, and tend to accumulate soil pellets

where the scent is stronger. This positive feedback leads to the creation of complex structures,

such as strips or pillars [233]. Foraging ants also display a form of stigmergic behaviour [86].

Each ant randomly explores the area around their nest until it finds a food source: when that

happens, the ant returns to the nest with some food and leaves a pheromone trail on its way back.

Other ants follow the trail until they find the food source, and they reinforce that same trail by

depositing additional pheromone molecules as they return to the nest. Eventually, most ants find

food by trail-following rather than by exploration. This behaviour is also adaptive to changes

in the environment. If an established pathway is disrupted by an obstacle, ants wander near the

point of disruption until they establish a new trail toward the food. At first different such trails

may arise, but in the end the shortest one will be preferred [67].

Numerousness. In some cases, collective features emerge only when the system features a

sufficient number of agents. For instance, smaller ant colonies tend to rely on ant-to-ant interaction

to spread information about food sources; in larger ones, indirect diffusion of knowledge through

chemical trails becomes prevalent [84].

Background 12

Anonymity. Agents within natural multi-agent systems are mostly anonymous to each other,

i.e., they have little to no concept of identities. This greatly influences their patterns of cooperation

and communication. Cooperation may be guided by the capabilities offered by the agents, or

simply by spatial closeness, as in the Boids system (Example 2.3).

Decentralisation. A system is decentralised when it lacks central control of any kind. This

is usually seen as a desirable property, as decentralised system lack a single point of failure;

however, it also means that achieving complex goals may be harder. For instance, the dining

philosophers of Example 2.1 may end up starving if they do not coordinate their actions.

Distribution. A multi-agent system is distributed from both a physical and a logical standpoint.

By physical distribution, we mean that agents generally do not occupy the same real-world

location. Rather, they are separate entities, potentially placed far apart from each other, therefore

their interactions are exposed to significant delays and potential failures. At the same time, agents

may only have limited resources and partial knowledge of the whole system. This results in

logical distribution, i.e., agents perform a complex task by interacting with each other, rather

than leaving it to a single agent. For instance, a majority protocol (Example 2.5) can determine

which opinion is held by a majority of agents through a collective, distributed computation.

Asynchrony. The behaviour of agents may be partially or fully asynchronous, i.e., there may

be little to no temporal guarantees to local computation and interaction. For instance, agents

may take an arbitrarily long time to send a message or react to a request. As a result, it becomes

impossible to distinguish an agent that has stopped working from one that is simply taking a

long time to respond [154]. A well-known consequence of this is the impossibility of reaching a

consensus (e.g., successfully performing a leader election: see Example 2.2) in an asynchronous

system with one or more faulty components [96].

Heterogeneity. Many scenarios of interest feature different kinds of agents with different

capabilities and goals. For instance, variations of the voter model (Example 2.5) introduce a

separate kind of agents, called zealots, that never change their own opinion [183].

Environment Dependence. The fact that agents operate within an external environment is a

distinguishing feature of multi-agent systems [47, 242]. For instance, the forks that a dining

philosopher (Example 2.1) must obtain in order to eat can be seen as part of its environment. The

environment is often assumed to be dynamic and partially observable. Due to partial observability,

agents may take apparently bad decisions because they seem correct, or even optimal, from their

local standpoint. At the same time, agents may have little to no power of altering the environment

through their actions. Moreover, acting on the environment may not even result in the expected

outcome [247].

Nondeterminism. A multi-agent system features several levels of nondeterminism. At local

level, the behaviour of a single agent may be intrinsically nondeterministic. For instance, foraging

Background 13

ants look for food by means of a random walk. Furthermore, an individual behaviour may itself

be the result of multiple computations that the agent performs concurrently. For instance, a

flocking bird in the Boids model (Example 2.3) simultaneously checks direction and position of

its flockmates before adjusting its own direction and speed. When we model an agent with such a

behaviour, we have to assume that these computations may be freely (i.e., nondeterministically)

interleaved, and that different interleavings may lead the agent to behave differently. At global

level, the system may have multiple feasible initial states. Additionally, even when the system has

only one initial state and each agent has a fully deterministic behaviour, nondeterminism inevitably

arises from the fact that agents evolve by randomly alternating their actions. In fact, interaction

between agents (or between an agent and the environment) is inherently nondeterministic. For

instance, messages broadcast by an agent may be received in different orders by the others;

additionally, the communication medium may be unreliable, e.g., it may drop messages or alter

their contents.

2.1.4 Modelling challenges

Modelling a multi-agent system is a necessary step in order to analyse it. A popular choice [49,

191, 199] is to reuse traditional, general-purpose programming languages (such as C, C++, or

Java) to model a given system as a program, and analyse the evolution of the system by executing

such a program. In this section, we look back at the features of Section 2.1.3 and contend that this

choice may lead to overcomplicated programs that are hard to maintain and reason about. This,

in turn, makes analysis of the modelled system harder and less reliable. The overall issue is that

general-purpose languages are mainly concerned with describing computational processes, which

often makes them ill-suited for agent-based models. We should stress that these shortcomings

do not completely rule out general-purpose languages from multi-agent modelling and analysis.

Nevertheless, having to work around these limitations at the specification level is not intuitive,

and can lead to increased code complexity and higher chances of introducing programming errors.

For instance, the behavioural specifications supporting [199] and [49] amount to about 2100 and

1700 lines of C++ code, respectively.3 As for code complexity, the two codebases contained

respectively 7 and 13 methods with a cyclomatic complexity [172] higher than 10, which is

usually seen as a reasonable upper bound beyond which testing and maintaining code becomes

difficult [173]; both feature at least one method with cyclomatic complexity higher than 50. In

general, such lack of naturalness severely affects the chances of exploiting systems’ structure,

raising issues about the efficiency of the analysis. At the same time, it discourages scholars from

different disciplines to experiment with agent-based models within their area of expertise.
3The two codebases are available at http://dx.doi.org/10.5258/SOTON/385724 and https://

github.com/edgarbuchanan/dps, respectively.

Background 14

Open-endedness. Modelling an agent leaving a system is essentially equivalent to preventing

it from changing the program state. In fact, there is no way to distinguish a failed process (or

even a non-existing one) from one that never performs any action [154]. Similarly, one could

model a fixed number of agents that join the system by disabling their models in the initial state

and enabling them in a later stage of the program execution. If agents have the ability to spawn

new ones, or if an arbitrary number of agents entering the system has to be modelled, then the

program must necessarily rely on dynamic memory allocation to accommodate the state of these

agents. This may overcomplicate formal analysis of the program.

Adaptivity. Modelling adaptive systems is known to be difficult. An adaptive agent, for

instance, may alter its behaviour in significant and unpredictable ways as it interacts with other

agents and with the environment. However, a model of such an agent is constrained by the

limits of the modelling formalism itself. To properly model truly unpredictable adaptivity, such

formalism should allow the model itself to change in ways that were not considered in the original

specification. The field of artificial life [158], for instance, attempts to mimic species that can

undergo evolutionary processes by means of models that can randomly mutate [221]. Such

features, however, are hard to replicate in the context of traditional programming languages,

induce a vast state space, and seem hardly amenable to formal verification.

Stigmergic interaction. Several traditional programming languages completely lack communi-

cation primitives, and are thus ill-suited to concisely describe any kind of interaction. Stigmergic

interaction poses additional challenges, due to its indirect nature and the fact that messages should

linger in the system waiting to be picked up by agents. The blackboard architecture [94] shares a

number of similarities with stigmergies. Processes in a blackboard system, rather than messaging

one another, cooperate indirectly by reading and writing data on a shared memory space.

Numerouseness. As stated above, agents in a MAS evolve concurrently by randomly alternat-

ing their actions. As a consequence, the number of feasible evolutions of a system increases

exponentially in the number of its agents. Thus, modelling large systems may result in programs

with a large state space, which may put a high stress on the underlying runtime environment and

on the data structures of the chosen language.

Furthermore, a large state space is detrimental to verification, and even simulation may become

harder due to it. In some cases, counter abstractions [171, 202] may be an effective solution.

Intuitively, a counter abstraction of a system is a model containing a counter for each possible

state of an agent. An agent that transits from state s to s′ is simply modelled by decreasing

the counter of s and increasing that of s′. Extensions of this approach are able to represent

unbounded-size systems with finite models. As a drawback, the requirement of having a separate

counter for each state may make modelling overcomplicate or even unfeasible when the agents

have complex behaviour.

Background 15

Anonymity. Unlike natural collective systems, anonymity is not a typical trait in computer

systems. In fact, many existing programming languages and runtime environments assume

that each component has a unique identifier and may interact with others via point-to-point

communication. However, abstraction layers that provide some degree of anonymity have proven

to be desirable, since this kind of point-to-point interaction may negatively affect the reliability

of complex software systems [34]. The already-mentioned blackboard architecture, for instance,

completely replaces message passing with operations on the shared memory space: since all

communication is mediated by the blackboard, interaction is inherently anonymous. Other

approaches, instead, still rely on message-passing primitives. Group-oriented communication

allows a process to send messages to a group of recipients, rather than a single one [35]. The

publisher-subscribe pattern (pub-sub) is a popular example of group-oriented communication.

Processes publish messages that are decorated with a topic identifier, and may subscribe to

one or more topics. When a message is published, all processes that are subscribed to the

corresponding topic receive it [34]. Such a system is implemented, for instance, by the ROS

robotics middleware [204]. A similar concept is that of channels. A process may use a channel to

send a value, or it may wait until it receives a value over a channel. Multiple processes may share

one or more channels: thus, indirect and anonymous communication may be achieved. While in

group-oriented architectures a sent value is received by all processes in the group, a value sent

over a channel is received by a single waiting process, which is selected nondeterministically.

Channels originated in process algebras such as CSP [132] and the π-calculus [215] (where

channel names themselves may be communicated across channels), and are implemented for

instance in the Go programming language. Attribute-based communication is a generalisation of

group-oriented communication, in which groups of agents are dynamically formed or dissolved

according to their exposed features (attributes). Messages may be addressed to all agents that

satisfy a given predicate over these features. Recipients may also filter incoming messages

according to a predicate over the sender’s attributes [2].

Decentralisation and Distribution. Some widely used traditional languages, such as C, C++,

and Java, lack proper constructs to model decentralised and distributed computing. Users of these

languages either need to develop their own abstractions or use existing libraries. The former

option is costly and error-prone; the latter requires adapting the semantics of the library to that of

the system to model. The blackboard architecture was originally seen as a centralised data store

that a set of distributed worker processes could use to coordinate their evolution. Decentralised

blackboards have also been proposed [51], but guaranteeing atomicity and consistency in such a

setting is a real challenge. The aforementioned generalisations of message passing, i.e., group-

oriented communication, publish-subscribe, and attribute-based communication, also help in

dealing with distributed systems.

Asynchrony. Many traditional languages rely on a sequential model of computation, which

makes them ill-suited to model systems that feature asynchronous operations, such as message

Background 16

passing with arbitrary delays. Other languages, such as Erlang [15], do support asynchronous

computation and interaction, but these features lead to increased complexity in the model, and

make specification and analysis harder. For instance, agents may need to take interaction delays

into account when they try to cooperate; pending messages may have to be modelled as separate

entities; and so on.

Heterogeneity. In principle, a formalism that only supports homogeneous behaviour may still

be able to express a heterogeneous one, if it provides adequate control-flow statements. This

approach can, however, greatly increase the complexity of the resulting specifications. Therefore,

very heterogeneous systems would quickly become hard to understand and maintain. Due to the

complex control-flow structure, tractability of analysis would be affected as well.

Environment. In principle, it is possible to model the interaction between an agent and its

surrounding environment by altering the program state appropriately. However, if such an

interaction represents the manipulation of a physical space rather than an exchange of data, it

would require additional guarantees of synchrony, atomicity and consistency.

Nondeterminism. Traditional programming languages are either deterministic, or they feature

a different kind of nondeterminism than the one present in multi-agent systems. For instance, the

evaluation order of a C expression is unspecified by the language standard: a program containing

an expression f() + g() may first evaluate f() and then g(), or vice versa. Potentially, a

different order may be chosen for each evaluation of the same expression. Another instance of

a nondeterministic construct is channel selection in Go. A Go program may wait on multiple

channel operations. If two or more such operations are enabled at the same time, the program

will select and perform only one of them. This selection happens nondeterministically. In any

case, this mismatch poses an additional challenge: to accurately model a MAS, one has to take

into account all of its sources of nondeterminism, and replicate them with appropriate language

constructs; at the same time, one has to verify that nondeterminism introduced by the language

does not affect the behaviour of the model (say, by introducing spurious evolutions).

2.2 Property specification

In this section, we introduce some logic formalisms that are commonly used to specify the desired

properties of a system under analysis.

2.2.1 Linear Temporal Logic

A temporal logic allows to attach time-related information to a logic predicate, thus allowing

to formalise statements such as “p holds at all times” or “if p holds now, then q will be true

Background 17

sometime in the future” [109]. Temporal logics are often used to reason about the correctness

of programs. Correctness is typically defined by a set of properties that all executions of the

program must satisfy. These properties belong to two categories: safety properties (meaning

that undesired events never happen) and liveness properties (meaning that some desired event

eventually happens) [153]. Temporal logics provide a natural way to formalise these properties.

A popular example of a temporal logic formalism is Linear Temporal Logic (LTL) [201], whose

syntax is shown in Table 2.1a. In LTL, time is a discrete sequence of instants, while formulas

are constructed from a set of atomic propositions, i.e., facts that may or may not hold at any

instant in time. So, the LTL formula a (where a is an atomic proposition) means “a is true in

this instant”. ¬a (“a is not true in this instant”) and a ∧ b (“both a and b hold in this instant”)

are also valid LTL formulas. One can then introduce the contradiction ⊥ ≜ a ∧ ¬a (for some

atomic proposition a) and its negation ⊤ ≜ ¬⊥ (which holds in all instants). LTL provides two

temporal operators, called next (⃝) and until (U). The formula ⃝a means “a will be true in

the next instant”. while p U q means “q holds at some instant in the future, and p holds until

then”. More complex operators could be defined in terms of U. For instance, ♢φ (“eventually

φ”), meaning that φ should hold at some instant, is equivalent to ⊤ U φ. On the other hand, □φ

(“always φ”) means that φ should hold at every instant, and can be expressed as ¬♢¬φ.

Let us consider the dining philosophers of Example 2.1, and let us define for each philosopher an

atomic proposition wait i that holds if and only if the i-th philosopher is waiting for the second

fork. Then, the LTL formula □¬(wait1 ∧wait2 ∧ · · ·∧waitn) specifies that there should always

be at least one philosopher who is not waiting for the second fork. If this formula is violated,

then there exists a state where no philosopher can perform any further action and the system is

deadlocked.

As another example, let us consider the majority protocols introduced in Example 2.5. A majority

protocol is correct if, eventually, all n agents agree on the opinion that was initially held by a

majority of agents. Let us assume that the opinion of each agent is either Yes or No. Then, we can

define for each i = 1, 2, . . . , n an atomic proposition Yes i that holds if and only if the i-th agent

has opinion Yes. We further define a proposition MajorityYes that holds if and only if at least

n/2 agents have opinion Yes.4 This allows us to formalise a necessary condition for correctness,

namely that if Yes is the majority opinion in the initial state, then at some point all agents should

have opinion Yes: this is specified in LTL as MajorityYes ⇒ ♢(Yes1 ∧ Yes2 ∧ · · · ∧ Yesn).

Kripke structures. LTL properties are typically evaluated over a Kripke structure that repre-

sents the system of interest. Let AP be a set of atomic propositions. A Kripke structure is a

tuple ⟨S, I, R, L⟩ where S is a finite set of states, I ⊆ S a set of initial states, R ⊆ S × S a

4This proposition is a first-order predicate over the atomic propositions Yes1,Yes2, . . . ,Yesn. For instance, for
n = 3 we have MajorityYes ≜ (Yes1 ∧ Yes2) ∨ (Yes2 ∧ Yes3) ∨ (Yes1 ∧ Yes3).

Background 18

TABLE 2.1: Linear Temporal Logic.

(A) Grammar.

φ ::= a
| ¬φ
| φ1 ∧ φ2

| ⃝φ
| φ1 U φ2

(B) Formal semantics.

σ |= a ⇐⇒ a ∈ σ0
σ |= ¬φ ⇐⇒ σ ̸|= φ
σ |= φ1 ∧ φ2 ⇐⇒ σ |= φ1 and σ |= φ2

σ |= ⃝φ ⇐⇒ σ1 |= φ
σ |= φ1 U φ2 ⇐⇒ ∃i ≥ 0.σi |= φ2 and

∀j.0 ≤ j < i ⇒ σj |= φ1

transition relation, and L : S → P(AP) a labelling function. Intuitively, each label L(s) is the

set of atomic propositions that hold in state s, while the transition relation captures the temporal

relations between states: given two states s, s′, we say that s′ is a successor of s if (s, s′) ∈ R.

This means that the system can evolve from state s to s′ in one instant. We assume that every

state has at least one successor. Given a state s0, a path rooted in s0 is a sequence of states

π = ⟨s0, s1, . . .⟩ such that each si+1 is a successor of si. Finally, we can associate to each path π

a trace σ = ⟨L(s0), L(s1), . . .⟩, i.e., the sequence of labels associated to each state of π.

Semantics of LTL. A trace σ models an LTL property φ if the pair ⟨σ,φ⟩ belongs to the

satisfaction relation |=, described in Table 2.1b. In that table, we use σi to denote the i-th

component, or step, of a trace σ; on the other hand, σi ≜ ⟨σi,σi+1, . . .⟩ is the suffix of σ that

starts at σi. A trace σ satisfies the formula corresponding to an atomic proposition a if its first

step contains a. Logical operators (¬, ∧) work in the usual way. Intuitively, ⃝φ means that φ

should hold from the second step of the trace onward; on the other hand, φ1 U φ2 means that φ1

holds in the first i− 1 steps of the trace and that φ2 holds in the i-th step (for some i). A Kripke

structure models a property if all traces rooted in its initial states satisfy it.

2.2.2 Hennessy-Milner Logic

Labelled transition systems. A labelled transition system (LTS) is a tuple ⟨S,Λ,→⟩, where S

is a set of states, Λ a set of labels, and → ⊆ S × Λ× S a labelled transition relation describing

the transitions that the system may perform in any given state. An element ⟨s,α, s′⟩ of →,

commonly written as s α−→ s′, represents that the system may evolve from state s to state s′ by

performing a transition with label α (informally, an α-move).

Hennessy-Milner Logic. Hennessy-Milner Logic (HML) [123] is a formalism to express

properties over the states of a LTS. It is a modal logic, in the sense that it extends predicates

with modalities that qualify their truth values. Specifically, HML formulas are made of one basic

predicate ⊤ (which holds in every state of an LTS), the logical negation and conjunction operators

(¬ and ∧), and one modality ⟨α⟩ for each label α in the LTS (Table 2.2a). The HML formula

Background 19

TABLE 2.2: Hennessy-Milner Logic.

(A) Grammar.

φ ::= ⊤
| ¬φ
| φ1 ∧ φ2

| ⟨α⟩φ
| [α]φ

(B) Formal semantics.

s |= ⊤
s |= ¬φ ⇐⇒ s ̸|= φ
s |= φ1 ∧ φ2 ⇐⇒ s |= φ1 and s |= φ2

s |= ⟨α⟩φ ⇐⇒ ∃s′.s α−→ s′ and s′ |= φ
s |= [α]φ ⇐⇒ s |= ¬⟨α⟩¬φ

⟨α⟩φ (“after α, possibly φ”) holds in a state s if the system may perform an α-move from s to a

state s′ where φ holds. A second modality [α], denoting necessity rather than possibility, may be

derived from possibility: [α]φ (“after α, necessarily φ”) holds in s if every α-move that may be

performed in s leads to a state where φ holds. In fact, it is equivalent to ¬⟨α⟩¬φ. The semantics

described above are formalised by a satisfaction relation |=, which is defined as the least relation

induced by the rules of Table 2.2b.

Extensions to HML. Finite-length HML formulas are not suitable to express many interesting

properties. For instance, the deadlock freedom property (i.e., each state reachable from a state

s has at least one successor) would require an HML formula of infinite length, as it needs to

account for arbitrarily long sequences of transitions. A possible solution to this drawback is to

introduce recursive properties. Deadlock freedom, for instance, could be recursively expressed

as follows: “A state s is deadlock-free if it has at least one successor and all its successors are

deadlock-free”. The semantics of recursive properties is given in terms of recursive equations

over sets of states in the LTS of interests. These equations admit a least and a greatest fixed point:

intuitively, checking liveness properties involve finding a least fixpoint for one such equation,

while checking safety properties require the computation of a greatest fixed point [43]. The

modal µ-calculus [150] is a variant of HML that has recursive operators and allows to freely

combine least- and greatest- fixpoint operators within a formula. It has been shown that the modal

µ-calculus is expressive enough to embed many temporal logics. In particular, both LTL and

Computation Tree Logic (CTL) [60] may be seen as fragments of that logic.

2.3 Languages and analysis platforms for multi-agent systems

This section provides an overview of existing languages and platforms for the specification

and analysis of multi-agent systems. Domain-specific languages (DSLs) [237] with tailored,

higher-level primitives can compensate for the sources of complexity described in Section 2.1.3,

thus making specifications more compact and facilitating both formal analysis and informal

reasoning [80]. A drawback of DSLs is that the heterogeneity of the domains might be detrimental

for compositionality, and it might become harder to specify complex systems by composing

Background 20

available solutions. Adopting excessively specific formalisms is another risk, as the capability

of the language to realistically describe scenarios of interest might be affected. Thus, linguistic

support should aim at achieving an acceptable trade-off between expressiveness and generality.

2.3.1 Belief-Desire-Intention

Belief-Desire-Intention (BDI) is a theory of agency [46, 179] that has been extensively applied

to the specification of artificial agents [207]. According to the BDI theory, an agent’s practical

reasoning (i.e., its choice of actions) is influenced by its beliefs about the current state of the

world, and is directed by its desires. A desire may be a goal, a constraint, or in general a

description of states of the world that the agent may want to reach or avoid. Beliefs and desires

lead an agent to form intentions, which are commitments to perform a sequence of actions (i.e.,

a plan) to satisfy its desires. The theory inspired several programming languages, that support

the definition of beliefs, desires, and intentions (or similar concepts) through specific primitives.

One of the first formalisms to follow this paradigm was Agent-0, which also popularised the term

agent-oriented programming to refer to BDI-inspired languages [220]. Other examples include

AgentSpeak(L) [206] and its implementation Jason [42]; 3APL [130]; Agent Factory [211]; and

more [41]. These languages are typically tied to an interpreter or simulation framework that

allows to empirically analyse the behaviour of specified systems [40, 74, 212]. AJPF [85] can

instead perform formal verification of several BDI languages, by relying on an intermediate

representation in Java which is checked via Java Pathfinder [119].

2.3.2 Simulation languages

While the term simulation usually designates a visual representation of an evolving system, we

use the term to refer to any technique that is able to produce one or more finite traces of a given

system. Due to the finiteness of traces and the huge state space of most multi-agent systems,

simulation can only provide shallow guarantees on the overall correctness of a system [245].

However, it also offers several advantages over more formal analysis techniques. A simulation

platform can reproduce the laws of physics effortlessly and in deep detail, which may be of

importance in several fields, such as robotics. Simulations also scale well in the number of

agents and in the complexity of their behaviour, and they are greatly appreciated in those fields

that would otherwise rely exclusively on real-world experiments. For instance, simulations can

represent very large sample sizes, time spans and distances that would be impossible to observe

in a controlled experiment. They allow to observe and control the full state of the system, at

any given time; moreover, simulations may be effortlessly reproduced in every detail, whereas

reproducing a comparable real-world experiment may be exceedingly difficult. The evolution

of a simulation may be compared to empirical findings, and researchers may iteratively adjust

Background 21

parameters within their models to fit real-world patterns. In the process, they may gain novel

insights into the origin and meaning of those patterns [113]. Simulations are especially valuable

in those fields where reproducible experiments are impossible, such as archaeology [17].

Early examples of simulation languages include Simscript [89] and Simula [73]. However,

they both anticipate the widespread adoption of agent-based modelling. Currently, the most

popular agent-based simulation language might be NetLogo [243]. The basic entities provided by

NetLogo are turtles (mobile agents), patches (regions of space), and links (connections between

turtles). The user may define additional kinds of entities, known as breeds, or customise the

language through Java extensions [222]. Another simulation-oriented language is Buzz [196],

which allows to program the behaviour of robotic multi-agent systems through primitives for

ensemble formation, data exchange between neighbours, and virtual stigmergies. A virtual

stigmergy is a distributed data structure that allows a group of agents to eventually agree on a set

of key-value pairs [198]. Buzz systems may be simulated on the ARGoS platform [197].

A popular alternative to the creation of a new language is to build modelling and simulation li-

braries on top of existing general-purpose languages. These libraries provide reusable components

to define common features of a MAS, such as its spatial environment, communication constraints

on the agents, and so on. However, the user has to define the behaviour of agents in one of the sup-

ported languages: thus, the issues outlined in Section 2.1.4 are only partially mitigated. Example

of such libraries include the Swarm Simulation System (available for Objective-C and Java) [128];

MASON (Java-based) [164]; and ASCAPE (Java-based) [136]. Similarly, in the ROS robotic

middleware [204] the behaviour of an agent is programmed through general-purpose languages

(C++, Python) as a set of interacting nodes. Interaction happens either through remote procedure

calls or via publish-subscribe messaging. ROS does not provide multi-agent capabilities, and

several third-party libraries have been proposed to fill this gap [148, 161]. While ROS does

have a standard simulation environment, namely Gazebo [144], its open architecture led to the

development of many compatible simulation platforms, such as Stage [239], SwarmSimX [151],

V-REP [210], and Morse [90].

2.3.3 Process algebras

A process algebra, or process calculus, is a mathematically rigorous formalism to describe concur-

rent systems [77]. A process algebra typically features an alphabet of actions that the system may

perform, and a set of operators to describe complex systems by combining simpler components.

Early process algebras include CCS [180], CSP [132], ACP [25, 26], and LOTOS [140]. Exam-

ples of more recent calculi are LNT [103] and mCRL2 [115]. All the aforementioned calculi,

or variants thereof, provide value-passing actions that allow processes to exchange information

during their execution.

Background 22

Operational semantics. A (well-formed) process term in a given process calculus is a syntactic

term constructed according to the grammar of that calculus. A semantics of a process algebra is a

rigorous definition of the behaviour of well-formed process terms. Specifically, an operational

semantics associates to each process term a labelled transition system (LTS). In the structural

operational semantics (SOS) approach [200], such an LTS is defined by induction on the structure

of process terms: its set of states is the set of process terms, and the transition relation → is

specified by means of inference rules. Each rule is in the form

antecedent1 antecedent2 · · · antecedentn
consequent

meaning that, if → satisfies all of the antecedents, then it must also satisfy the consequent. Rules

with no antecedents must be unconditionally satisfied: they are called axioms. The transition

relation → is the smallest relation that satisfies all rules. Whenever P α−→ Q, one may informally

say that P can perform an α-move and become Q.

Examples of process-algebraic terms and operators. We now provide a description of some

terms and operators commonly found in process calculi, along with their SOS rules.

Elementary terms. Most process algebras have the idle, or deadlocked process, as an elementary

term. It is typically denoted by 0 or stop. The idle process cannot perform any action at all, and

is therefore associated with the empty LTS. Some calculi, such as CSP, provide a separate notion

of a successfully terminated process, denoted as 1, skip, or
√

. This process may only signal

its own termination and does nothing afterwards. Thus, it corresponds to an LTS that may only

perform a
√

-move and become the idle process (rule TICK). The single-action process α, where

α is an element of the alphabet of actions, is also treated as an elementary process term by calculi

such as CSP and ACP. Such a process may perform α and terminate (rule ACT).

√ √
−→ 0

(TICK)
α

α−→ √ (ACT)

Expressing sequentiality. The action prefixing operator is a common means of expressing

sequential actions: it allows one to define a process term α.P that may perform action α and then

continue as P (rule PREFIX). Several process calculi provide a sequential composition operator

to either replace (ACP, LNT) or complement (CSP, LOTOS) action prefixing. Intuitively, a term

P ;Q behaves as P until it terminates, and then continues as Q. The exact way in which “behaves

as P ” and “continues as Q” is formalised varies from one calculus to another: here we show one

possible set of rules [77, 98]. Rule SEQ1 states that P ;Q may evolve as P ′;Q as long as P may

evolve into P ′ by means of an α-move; rule SEQ2 says that, if P can signal its own termination

Background 23

(by means of a
√

-move) and Q can perform an α-move to Q′, then the composite process may

evolve as Q′. Overall, action prefixing allows for more compact semantics and facilitates proofs;

sequential composition, on the other hand, makes complex sequential behaviours simpler to

describe, and better resembles the style of traditional programming languages [98].

α.P
α−→ P

(PREFIX)
P

α−→ P ′ α ̸= √

P ;Q
α−→ P ′;Q

(SEQ1)
P

√
−→ P ′ Q

α−→ Q′

P ;Q
α−→ Q′ (SEQ2)

Alternative behaviour. The term P +Q may behave either as P or as Q. The rules below describe

+ as a mixed choice operator, meaning that the decision of proceeding as one process or the other

may be controlled by an external process or may happen nondeterministically.

P
α−→ P ′

P +Q
α−→ P ′

Q
α−→ Q′

P +Q
α−→ Q′

Parallel composition. A term P | Q represents two processes, P and Q, that evolve together.

The simplest form of parallel composition is interleaving, where the two processes just alternate

their respective actions. Most process algebra also feature a notion of synchronisation between

processes. For instance, in CCS, a process willing to perform an action a may evolve together

with another willing to perform a complementary action a. This event represents a handshake

between the two processes. As a result, the parallel composition performs an internal action,

usually denoted by τ . Notice that the two processes may also alternate the execution of a and

a. Other process calculi, however, provide composition operators where processes are forced to

synchronise on specific pairs of actions.

Synchronisation algebras provide a fairly general way to formalise the concept of synchronisation,

as they reproduce the behaviour of several existing parallel composition operators, such as the

one in CCS and the merge operator in ACP [246]. A synchronisation algebra is a partial function

σ : Act×Act∪{∗} ↪→ Act , where Act is the alphabet of actions and ∗ is a distinguished symbol

representing idleness. Intuitively, σ(a, ∗) = a means that a can be performed by one party while

the other is idle, while σ(a, ∗) = ⊥ forbids that (rules PAR1,2). On the other hand, σ(a, b) = c

means that two processes may synchronise if they can respectively perform a and b, and the

composite process does perform action c; finally, σ(a, b) = ⊥ indicates that a synchronisation on

the pair of actions a, b (rule PAR3) is not possible.

Background 24

P
α−→ P ′ σ(α, ∗) ̸= ⊥
P | Q α−→ P ′ | Q

(PAR1)
Q

α−→ Q′ σ(∗,α) ̸= ⊥
P | Q α−→ P | Q′ (PAR2)

P
α−→ P ′ Q

β−→ Q′ σ(α,β) ̸= ⊥

P | Q σ(α,β)−−−−→ P ′ | Q′
(PAR3)

Process algebras as a modelling tool. Process algebras have several advantages as a modelling

tool for multi-agent systems (and systems of heterogeneous, interacting components, in general).

First, composition and interaction between components are core process-algebraic concepts.

Moreover, process calculi allow the user to choose the alphabet of basic actions according to

the level of abstraction they want to achieve in their model. Lastly, they are amenable both to

simulation and formal analysis [235]. Several works investigated the use of process algebras as a

multi-agent modelling tool. For instance, WSCCS (Weighted Synchronous CCS) [234], which

extends CCS with probabilistic operators and prioritised actions, has been used to model ant

colonies [174] and population dynamics [174]. Bio-PEPA [57] has been used for epidemiological

modelling [58], and to analyse the collective behaviour of crowds [167] and robotic swarms [168].

Finally, the PALPS process algebra [195] has been specifically developed to describe and analyse

ecosystems.

Analysis and verification. In any process algebra, different process terms may describe the

same behaviour, or slightly different behaviours that are nonetheless undistinguishable from

one another under some specific context. Thus, it is convenient to formalise one or more

equivalence relations between process terms. An equivalence checking algorithm, then, is a

decision procedure that takes two process terms as input and returns yes if and only if they are

equivalent. Equivalence checking is a natural way to prove the correctness of a process term

representing an implementation: to do so, it is sufficient to encode the correctness specification

as a separate process term, and then check that the implementation and the specification are

equivalent [76]. An alternative way to prove that a process term conforms to a specification is to

encode the latter as one or more formulas in an adequate formalism, and then verify that the LTS

of the given process term satisfies them.

2.3.4 Other paradigms

Actor model. The concept of actors is closely related to that of agents. An agent receives

percepts and performs actions; similarly, an actor is an entity that receives and sends messages.

The actor model is based on the principle that any kind of computation may be expressed (and

performed) by a set of interacting actors [126]. The behaviour of an actor may be formally

Background 25

defined by a function that, given a set of input messages, returns a set of output messages, a set of

new actors and a possibly new behaviour that the actor will follow after receiving that input [3].

The Erlang language [15] is perhaps the most popular implementation of the actor model; Elixir5

is another, more recent actor-based language. The popularity of this paradigm is also attested by

the many libraries and frameworks that allow to create actor-based systems with general-purpose

programming languages [135].

Population protocols. Population protocols are a model of distributed computing based on

anonymous, mobile agents with uniform behaviour that may change their state through pairwise

interactions [12]. The allowed interactions are encoded as a transition relation over pairs of

states. Each transition, typically denoted as (p, q) ↦→ (p′, q′), means that a pair of agents with

states p and q can interact and evolve, respectively, to states p′ and q′. The first element of the

pair is called the initiator of the interaction, while the other is called the responder. Transition

relations may be asymmetric, i.e., a pair of agents may evolve in different ways depending on

which one is the initiator. Given a set Q of individual states, a configuration is a multiset over

Q, which expresses how many agents are in a specific state. A system defined by a population

protocol never terminates: rather, it is said to stabilise when it reaches a configuration that cannot

be changed by further transitions. With the fairness assumption that any configuration which is

reachable infinitely often is eventually reached, some population protocols always stabilise to a

configuration which satisfies a given predicate over its initial configuration. In this case, we say

that the protocol computes the predicate. The PEREGRINE tool [37] can simulate the evolution

of a population protocol, and can verify whether a protocol computes a given predicate. It also

supports parameterised verification, i.e., it can check that a protocol computes a predicate for an

unbounded number of agents.

Attribute-based communication. The literature features several instances of languages and

process algebras with attribute-based primitives, such as AbC [2] and CARMA [163]. Both

feature non-blocking output and blocking input primitives, which are decorated with attribute-

based predicates to select the desired partners for interaction. A message is exchanged whenever

(a) an agent (the sender) performs an output action; (b) there are one or more agents (the

receivers) waiting on an input action; (c) the sender’s attributes satisfy the predicate specified by

the receivers, and vice versa; (d) the structure of the sent message matches the pattern required

by the receivers. This allows for implicit multi-party synchronisation between one sender and

multiple receivers. Similar attribute-based primitives have also been implemented on top of

existing programming languages through libraries or extensions, such as AErlang (Erlang) [81],

ABEL (Erlang) [82], and GoAt (Go) [1]. The SCEL language [78, 79] does not feature an explicit
5https://elixir-lang.org.

Background 26

input action: agents may perform attribute-based actions to insert, retrieve, or withdraw items

from the knowledge repositories of other agents.

2.4 Program verification

In this section, we review several formal verification techniques, as well as a selection of tools

that implement said techniques. Specifically, we focus on techniques and tools that allow to

perform either termination analysis or reachability analysis, or both. Before doing so, we provide

some basic terminology.

A computational problem P is a function that associates to each instance a (possibly empty)

set of solutions for that instance. We say that P is a decision problem when the solution of

every instance is either yes or no. A given decision problem may always be identified by the

set of instances whose answer is yes. For instance, the problem “is n an odd natural number?”

is identified by the set ODD = {1, 3, 5, . . .}. Therefore, from now on we will use the notation

x ∈ P to mean that P(x) = yes .

A decision procedure is an algorithm for a decision problem. Therefore, its output is either yes or

no. Given a decision procedure A for a problem P, let us denote by A ≜ {x | A(x) = yes} the

set of all instances x such that A(x) terminates with output yes. Then, A is sound if A ⊆ P; it

is complete if P ⊆ A. Intuitively, a sound procedure always gives correct answers, but it may

fail to provide an answers for some instances x ∈ P (e.g., because it never terminates for those

instances). On the other hand, a complete procedure gives all the correct answers, but it may also

give wrong ones (i.e., it may happen that A(x) = yes even though x ̸∈ P).

Termination analysis is the decision problem of determining whether a given program uncondi-

tionally terminates, i.e., all of its executions are of finite length. When discussing termination

analysis, we will say that a program is safe if it unconditionally terminates, and is unsafe

otherwise.

Reachability analysis is the decision problem of determining whether any error states of a given

program are reachable from its initial states, i.e., if the program admits an execution that leads

to an error state. The program is said to be safe if and only if no error state is reachable. Error

states are either identified by labels in the source code of the program, or expressed in terms of

assertion statements such as assert(φ). If such a statement is reachable and the condition φ

is not satisfied, the program is unsafe.

In the context of this work, sequentialization [203] is any source-to-source transformation that

takes a concurrent program P as input and generates a sequential program Pseq that reproduces the

traces of P. The verification techniques discussed in this work are aimed at sequential programs;

Background 27

however, they may be coupled with a sequentialization transformation to verify concurrent

programs. Since this approach appears to be effective in practice [19, 138, 187], we will refrain

from discussing techniques that natively handle concurrent programs.

Throughout this section, the term under-approximation designates techniques that explore a

subset of the state space of the input program. Over-approximating techniques, on the other hand,

consider a superset of the state space. Under-approximation may result in false positives, i.e., an

unsafe program is deemed safe, or a non-terminating program is considered to unconditionally

terminate. Over-approximation may instead produce false negatives.

2.4.1 Program verification techniques

Symbolic execution. In symbolic execution [143], all nondeterministic variables within the

input program are replaced by symbolic variables. A symbolic variable is initially unconstrained,

i.e., its value is assumed to be arbitrary. If the control flow of the program does not depend on

any symbolic variable, then all its concrete executions may be represented by a single symbolic

execution. On the other hand, if a branching condition does depend on a symbolic variable, the

symbolic execution is forked into two separate ones, and constraints are added to the variable to

record the branching condition. In the end, one obtains a symbolic execution tree where each

root-leaf path represents a set of concrete executions. If no path ever visits an error state, the

input program is safe. The main drawback of symbolic execution is the so-called path-explosion

problem: the number of paths in the execution tree is exponential in the number of branching

statements (over symbolic variables) in the input program. The path-explosion problem is

exacerbated by loops, as each check on the loop condition is treated as a separate branching

statement [29]. The use of (over-approximating) symbolic execution for termination analysis

has also been investigated [240]: some of these approaches [124, 226] prove termination by

constructing a symbolic execution graph based on separation logic [189], a formalism that helps

reasoning about programs that feature dynamic memory allocation and complex data structures.

Model checking. Given a model M of a system of interest, and a property φ, the model

checking problem is to determine whether M |= φ [65]. A model checking algorithm, then, is a

decision procedure for the model checking problem: it takes ⟨M,φ⟩ as input, and returns yes or

no depending on whether M |= φ is proved or disproved. In the latter case, it is desirable that

the algorithm returns also a counterexample (also known as a violation witness), i.e., a trace of

M proving that the model violates φ. Several model checkers also return a correctness witness

when M does satisfy the given property. Generally, such a witness is not a single trace, but rather

a sub-model M′ ⊆ M that explains why φ holds in M. A software model checker takes as input

a program, computes a model of that program according to the semantics of the language, and

then performs the actual model checking procedure.

Background 28

Explicit-state model checking procedures represent each individual state of the input program

in memory as they verify it. Examples of such representations include nondeterministic Büchi

automata (NBA) [238] and Boolean equation systems (BES) [11]. Since representing the whole

state space would be prohibitive even for modest programs, typically the model is generated

and explored on-the-fly [105]. State space reduction techniques based on symmetries [61] or

partial orders [107] are often necessary to handle larger systems. Symbolic model checking [52],

instead, uses predicates to compactly represent states and transition relations involved in the

verification process. A symbolic model checker may verify systems that are out of reach for

explicit-state techniques by directly manipulating these predicates, by means of data structures

such as binary decision diagrams (BDDs) [6] (in the case of Boolean predicates). Moreover, state

space reduction may be combined with symbolic exploration to further improve the efficiency of

the analysis [10].

Bounded model checking. The bounded model checking problem (BMC) is stated as fol-

lows [32]: given a model M, a property φ, and a bound k, is there a counterexample of length

at most k that proves M ̸|= φ? This is equivalent to check φ on a bounded version of M.

In fact, a bounded software model checker typically transforms the input program P into a

bounded program P′ by means of loop unwinding, function inlining, and other source-to-source

transformations. The bounded program, together with property φ, can be efficiently encoded

into a propositional logic formula and then fed to a Boolean satisfiability (SAT) solver [31].

An assignment that satisfies the formula corresponds to a trace of P′ that violates φ; if no such

assignment exists, then there is no counterexample of length k. SAT solvers provide several

advantages over BDD-based algorithms in terms of time and memory consumption, and their use

may be extended to unbounded model checking [177].

Further improvements may be obtained by relying on solvers for satisfiability modulo theories

(SMT) [23]. Intuitively, while a propositional formula only ranges over Boolean variables, an

SMT formula may contain predicates over variables of different sorts, such as integers, real

numbers, etc. A theory over a given sort constraints the interpretation of predicates over variables

of that sort, and may allow an SMT solver to quickly discharge predicates that would be harder

to solve for a SAT-based tool [14]. Program encodings modulo theories are often more compact

than their propositional counterparts, but sometimes they may not capture the actual behaviour of

the program, due to differences between the used theory and machine arithmetics. Bit-precise

theories exist to address this issue, but using them might reduce the advantage of using SMT over

plain SAT.

BMC is an under-approximation technique: if it fails to find a counterexample of length k, one

cannot conclude that the program is safe, unless the bound is big enough to cover the whole state

space of the program. However, it can be used to prove safety by means of k-induction [219].

Background 29

This algorithm relies on incrementally unwinding the input program P. At the k-th iteration

of the algorithm, a standard BMC check is performed on Pk (i.e., the program unwound up to

depth k). If a counterexample is found, then P is unsafe and the procedure terminates. Otherwise,

an inductive step is checked. This check attempts to prove the safety of Pk+1, assuming that

P0, . . . ,Pk are safe. If a proof for the inductive step is found, then the input program is safe and

the procedure terminates; otherwise, the value of k is increased and the procedure starts over.

The above discussion focused on reachability analysis. A sound algorithm for termination analysis

based on BMC exists. This algorithm unwinds all loops k times and adds an unwinding assertion

at the end of each unwinding. The unwinding assertion condition is the negation of the loop

condition: thus, it is satisfied if and only if the loop is fully unwound, i.e., the input program never

performs more than k iterations of the loop. The bounded program is then model-checked: if all

unwinding assertions are satisfied, it means that the input program unconditionally terminates.

The value of k is a completeness threshold for the program: if the program satisfies a given

property up to k steps, then it models the property [63]. If one or more unwinding assertions

are violated, the algorithm starts over with a higher value of k. Thus, the algorithm may never

terminate.

Abstraction-based techniques. Abstraction-based techniques build over-approximations of

the program to verify. As a consequence, they do recognise all unsafe programs as such, but may

incorrectly label a safe program as unsafe. In fact, a property violation found by these techniques

may be either genuine or the effect of over-approximation.

Many such techniques can be defined as specialisations of abstract interpretation [70], «a method

to design approximate semantics of programs» which may give sound answers to questions about

their run-time behaviour [71]. In abstract interpretation, the term concrete domain refers to all

those objects that describe the real behaviour of a program, as defined by its semantics. Instead

of verifying a program by analysing its concrete domain, the core idea of abstract interpretation

is to build a computable approximation of it, called an abstract domain, and use it to perform the

verification task. The abstract domain is required to be a sound approximation of the concrete

one, i.e., it must represent at least all of its elements.

Value abstraction is a common example of abstract interpretation: program variables are as-

sociated to mathematical objects taken from an abstract domain, and the concrete semantics

of expressions is replaced by an abstract semantics over these objects. For instance, let us

consider the abstract domain of intervals [69]. In this domain, a deterministic assignment x := v

becomes an assignment to a singleton interval: x♯ := [v, v]. On the other hand, a nondeterministic

assignment x := ∗ is abstracted as x♯ := [−∞,∞]. The addition operator is abstracted as

[a, b] +♯ [c, d] ≜ [a+ c, b+ d], meaning that the sum of two variables with intervals respectively

Background 30

[a, b] and [c, d] must belong to the interval [a + c, b + d]. Similar rules are defined for each

arithmetic operator and to handle special cases (e.g., division by an interval that crosses the zero).

Predicate abstraction [110], instead, considers a set of predicates Preds over program variables,

such that they partition the state space of the program, and approximates sets σ of concrete

program states by the conjunction of all predicates that hold in σ, by means of an abstraction

function:

α(σ) =
⋀︂

{p ∈ Preds | σ |= p}.

Reachability analysis via predicate abstraction works by first computing an abstract initial state

and an abstract transition relation for the program from their concrete counterparts. Then, one

obtains the set of reachable abstract states by repeatedly applying the abstract transition relation

to the abstract initial state. If this set contains no error states, then the program is safe. Clearly,

the choice of predicates deeply influences the efficacy of the analysis. Fine-grained predicates

might produce less false negatives, but they may also induce a large abstract state space, hindering

performance. Conversely, an analysis based on a coarser set of predicates may quickly produce

an answer, but is more prone to run into spurious property violations.

Another technique achieves abstraction through function summarisation. A summary of a function

is a formula that approximates the relation between its input and output variables [131]. If the

summary is computed by means of abstraction, e.g., by using one of the aforementioned value

abstract domains, then it captures all possible behaviours of its corresponding function while

possibly introducing spurious ones. These summaries may be used in the encoding phase in

place of encoding the actual body of corresponding functions, thus improving performance of the

underlying decision procedure. Notice that under-approximating summaries also have several

useful applications [55].

A common way to address the issue of spurious property violations is counterexample-guided

abstraction refinement (CEGAR) [62]. A CEGAR algorithm starts by verifying an abstract model

of the input program. If this model does not admit any counterexample, then the algorithm recog-

nises the program as safe and terminates. Otherwise, the algorithm checks the counterexample

against the concrete program. If the counterexample is genuine, then the program is unsafe

and the algorithm terminates. If it is spurious, the algorithm uses it to refine the abstraction. In

the case of predicate abstraction, the algorithm starts with a rather coarse set of predicates and

invalidates spurious counterexamples by introducing new, finer-grained predicates. Then, the

algorithm computes a new abstraction of the input program and starts over. Thus, a CEGAR

loop only returns feasible counterexamples, but on the other hand it might never terminate. This

abstract-check-refine approach may be improved by means of lazy abstractions, i.e., by refining

different parts of the abstract model to different degrees of precision, driven by the verification

Background 31

procedure [125]. Another tool to (possibly lazily) refine the abstract model is Interpolation [72].

Interpolation-based algorithms may prove that error paths in the abstract model are unfeasible

by computing a sequence of formulas along the path that leads to the error state, such that each

formula in the sequence maps to a step in the error path and implies the next formula. Such

a sequence is called an interpolant. Since refinement through interpolants does not require

computing the abstract transition relation (which is the dominant cost when using, say, basic

predicate abstraction), it may guarantee further performance gains [178].

Property directed reachability. A safety property for a program P can be expressed as an

invariant, i.e., a predicate P (s) that should hold for any program state s. If I(s) is a predicate

that holds if and only if s is an initial state of P, and T another predicate encoding the transition

relation of the program (i.e., T (s, s′) holds if and only if s′ is a successor state of s), then one

could try to prove the safety of P by induction. Specifically, one should prove the base case

∀s.I(s) ⇒ P (s) and the inductive step ∀s, s′.(P (s) ∧ T (s, s′)) ⇒ P (s′). However, P may be

too weak to prove the inductive step. As a solution, one should find an inductive strengthening of

P , i.e., a predicate P ′ = P ∧ ψ such that (a) ψ is an invariant and (b) P ′(s) ∧ T (s, s′) ⇒ P ′(s′).

Since P ′ entails P , by finding it one also proves that P is an invariant. Of course, proving that ψ

is an invariant may also involve finding an inductive strengthening, so one may need to prove this

intermediate step recursively.

Essentially, a property directed reachability (PDR) algorithm, such as IC3 [44], automates the

above procedure. In fact, the PDR term has been retroactively coined to refer to IC3 and its

derivatives, such as GPDR [133] and RecMC [145]. We now give a brief description of IC3, but

other PDR algorithms share the same basic concepts. The algorithm maintains a sequence of

frames Fi, where F0 is the set of initial program states and each Fk, k > 0, over-approximates

the set of program states that are reachable in k transitions. Frames are not explicitly represented,

but rather symbolically expressed as a conjunction of clauses. At each iteration k, assuming that

the invariant P holds in all frames up to Fk, the algorithm tries to show that

∀s.Fk(s) ∧ T (s, s′) ⇒ P (s′) (2.1)

If this is the case, and furthermore Fk is inductive (i.e., Fk(s) ∧ T (s, s′) ⇒ Fk(s
′)), then P is an

invariant and the algorithm terminates. If Eq. 2.1 holds but Fk is not inductive, then P is added

to the clauses of Fk+1, a new frame Fk+2 is constructed, and the algorithm iterates on k + 1.

The construction of Fk+2 happens by propagating clauses from the previous frames: thus, it can

be seen as a form of predicate abstraction. Finally, if Eq. 2.1 does not hold, a state z ∈ Fk+1

that violates P is revealed. In this case, the algorithm tries to refine F1, . . . , Fk+1 to prove that

z is not a reachable state (at least, not in k + 1 steps). If it fails to do so, then a trace leading

to z is returned as a counterexample and the algorithm terminates; otherwise, the algorithm

Background 32

can resume its execution. It is crucial to observe that a PDR algorithm never returns spurious

counterexamples, and it never declares an unsafe program to be safe.

Semantics-based techniques. Many real-world verification tools are tied to a specific program-

ming language: by contrast, a semantics-based procedure accepts as input a program together

with a formal semantics of the language in which the program is written. In other words, the

verification procedure is parameterised in the semantics of the given language [68]. For instance,

the TVLA tool [160] exploits the operational semantics of a language to generate an abstract

interpreter for concurrent programs in that language. Operational semantics can also be used to

generate reachability verifiers for sequential programs in the given language [224]. For a given

program and property, verification conditions in the form of Horn clauses can be automatically

generated from the semantics of the language [75]. Other approaches target termination analy-

sis [240], semantics-based simulation [185], or model checking through rewriting systems [209].

All the approaches mentioned above rely on structural operational semantics, with the exception

of [209], which requires the language semantics to be specified in rewriting logic.

2.4.2 Existing program verification tools

Tools for sequential C programs. Due to the importance of the C programming language

in the software industry, the literature provides a wide set of tools for the verification of C

programs. We briefly describe the features of a selection of tools that have given conclusive

results in the experimental phase of this work. Four of the considered tools are based on bounded

model checking. Table 2.3 contains a summary of their respective features.6 2LS [55] supports k-

induction and may perform termination analysis via function summarisation. 2LS may summarise

functions through several abstract domains, but it currently lacks support for arrays. CBMC [59]

is a SAT-based bounded model checker for reachability analysis over C programs, and is used by

2LS as an analysis backend. An experimental version of CBMC, submitted to the 2019 Software

Verification Competition (SV-COMP) [27], can also perform termination analysis by checking

unwinding assertions. BMC tools that rely on SMT include ESBMC [97], which also implements

k-induction and termination analysis based on incremental unwinding. While ESBMC performs

its own SMT encoding, SMACK [205] first compiles the input program to LLVM bytecode [159]

and then translates this intermediate representation into the Boogie verification language [22].

Symbiotic [54] performs reachability analysis by combining symbolic execution and program

slicing [241]. Slicing the input program eliminates instructions that are not relevant to the

property under verification, and thus may help with the path-explosion problem. Symbiotic also

implements a termination analysis algorithm, where termination is reduced to unreachability
6We only consider those features that are relevant to the experimental evaluation of Section 5.4.2, and ignore

others, such as support for floating-point arithmetic, pointers, or dynamic memory allocation.

Background 33

TABLE 2.3: Comparison of BMC-based tools.

Tool Back end Summarisation k-induction Termination analysis Arrays

2LS SAT • • •
CBMC SAT • •
ESBMC SMT • • •
SMACK SMT •

of infinite loops. This is a sufficient, but unnecessary condition for termination, and thus the

tool may report a terminating program as non-terminating. Ultimate Automizer [120] verifies

safety properties by using automata to encode sets of traces of the program under verifications.

The automata are refined via a CEGAR loop until the tool either finds an effective trace leading

from the initial state of the program to an error state, or proves that no such path exists. The

tool is able to dynamically choose the refinement strategy at each iteration of the CEGAR

loop [122]. CPAchecker [28] is a configurable program analysis platform that supports many

different techniques.

In this work we consider three configurations for reachability analysis. The first one performs

explicit-value analysis by using a simple abstract domain where each program variable is bound

to either an integer, ⊤ (denoting a nondeterministic value), or ⊥ (denoting a contradiction: i.e.,

an abstract state where a variable is bound to ⊥ does not represent any concrete state) [30].

Counterexamples found by this configuration are cross-checked (via predicate abstraction) to

prevent spurious results. The second configuration is instead based on predicate abstraction with

CEGAR, while the last one performs bit-precise k-induction. We also consider a configuration

for termination analysis based on ranking functions [120]; as with 2LS, applying these over-

approximating techniques to programs with arrays may lead to unexpected results. Finally, we

consider two tools based on PDR algorithms. VVT [116] implements a CEGAR extension

of IC3: this approach is known as CTIGAR (counterexample to induction-guided abstraction

refinement) [33] and allows for the verification of infinite-state systems. SeaHorn [117] features

another PDR algorithm, namely RecMC.

Process-algebraic tools. We cannot account for all the tools that have been developed within

the process algebra community: we only provide an overview of representative tools and the

calculi they support. All of them provide both equivalence checkers and model checkers. Explicit-

state toolboxes include Winston (CCS) [165], CWB (CCS, CSP, LOTOS) [66], FDR (CSP) [108],

and CADP (LOTOS, LNT) [99]. Only the last two are actively developed.7 Other toolsets,

such as mCRL2 (for the eponymous process calculus) [50] and LTSmin [36], implement both

explicit-state and symbolic verification techniques.
7See https://cocotec.io/fdr/ and https://cadp.inria.fr

Background 34

2.5 Summary

In this chapter, we have introduced the terminology and concepts that constitute the background

of this thesis. In Section 2.1, we provided an overview of the features and modelling challenges

typical of multi-agent systems, along with a selection of illustrative examples. In Section 2.2, we

described Linear Temporal Logic and Hennessy-Milner Logic, two well-known property speci-

fication formalisms, and gave definitions for labelled transition systems and Kripke structures.

Section 2.3 lists several existing languages and platforms that have been used to specify and

analyse multi-agent systems. Lastly, Section 2.4 describes the state of the art in automated reach-

ability analysis and termination analysis, by considering a selection of techniques (Section 2.4.1)

and related verification tools (Section 2.4.2).

Chapter 3

A specification language for MAS

In this chapter we introduce a language for the specification of multi-agent systems. The

language is built on top of a core process calculus, LAbS (a Language with Attribute-based

Stigmergies) [83], which is the result of a systematic study on the main factors of complexity in

multi-agent systems [80]. The core language combines the concepts of virtual stigmergy [198],

with attribute-based communication [2].

3.1 Preliminary definitions

Interfaces. Each agent in a LAbS system is equipped with a set of attributes (or local variables).

An attribute has a name and a (possibly undefined) value. We use KI and V to denote the set

of attribute names and values, respectively. The store of local variables of an agent is called

its interface, and may be seen as a partial function I : KI ↪→ V . We denote by I the set of

all interfaces. Updating an attribute x to value v within an interface I amounts to defining a

new interface I ′, which is the same as I except that I ′(x) = v. We denote such an interface by

I[x ↦→ v].

Attributes can be specified in the initialisation phase and modified at runtime; they represent

either a variable in the agent’s memory, or a physical property of the agent (for instance, its

position). LAbS makes no distinction between these two kinds of information. For instance, an

agent may move by updating the attribute that represents its position.

Local stigmergies. Each LAbS agent is also equipped with a local stigmergy. Formally, a

local stigmergy L : KL ↪→ (V × N) is a partial function from a set KL of stigmergic variables,

or keys, to a set of timestamped values (again denoted by V). Intuitively, a timestamp captures

the moment when a value was assigned to a given stigmergic variable. We use natural numbers

35

A specification language for MAS 36

TABLE 3.1: Operations on the virtual stigmergy.

L(x) = ⊥
L⊕ (x, v, t) = L[x ↦→ (v, t)]

(ADD)
t > time(L, x)

L⊕ (x, v, t) = L[x ↦→ (v, t)]
(UPDATE)

t ≤ time(L, x)

L⊕ (x, v, t) = L
(DISCARD)

to represent timestamps. We assume that KL is disjoint from KI and denote by L the set of all

local stigmergies. If (x, v, t) ∈ L, we say that v is the value of x and that t is its timestamp in the

local stigmergy L. We refer to these as value(L, x) and time(L, x), respectively.

Insertion of a value in a local stigmergy is a function ⊕ : L × (KL × V × N) −→ L defined as

the smallest relation that satisfies the rules in Table 3.1. These rules imply that only new values

are successfully inserted in the local stigmergy. A value is new if its key is missing from the local

stigmergy or it has a more recent timestamp than the existing one.

Virtual stigmergies were first introduced as part of the Buzz language [196], but were not given

a formal definition. Besides that, our description slightly deviates from Buzz stigmergies in a

few points. First, the former are based on Lamport timestamps [154] and rely on unique agent

identifiers to break ties, which may occur when the same timestamp is used more than once; our

language is currently more limited, as it relies on a global clock (see Section 3.2.5). However,

our calculus also generalises some of the concepts related to the virtual stigmergies of Buzz.

Most importantly, in our language the ability to exchange information through the stigmergy

is not directly constrained by spatial vicinity. In fact, there is no explicit concept of an agent’s

position at all. Rather, we rely upon attribute-based predicates to determine whether two agents

are allowed to communicate. This is an important source of flexibility, as different means of

communication for an agent can be modelled through different predicates. Furthermore, the

ability of the agents to change their attributes at any time means that connections among agents

can be dynamically established or removed.

3.2 Core LAbS process algebra

The syntax of LAbS is described in Table 3.2. In expressions, we assume that v ∈ V , x ∈
KL∪KI , and ⋄ stands for any binary operator over V (such as +,−,×. . .). In guards, ▷◁ denotes

comparison relations over V ∪ {⊥}, namely (=, <,>). We also assume that K is taken from a

set of named processes.

A specification language for MAS 37

TABLE 3.2: LAbS syntax.

S ::= a | a ∥S Systems

a ::= ⟨I , L, P, Zc, Zp⟩ Agents

P ::= 0 | √ | α | P ;P | P + P | P |P | K | g → P Processes

g ::= true | e ▷◁ e | ¬g | g ∧ g | g ∨ g Guards

α ::= x ← e | x ↝e Assignments

e ::= v | x | e ⋄ e Expressions

A system is the parallel composition of a number of agents. An agent is a 5-ple ⟨I , L, P, Zc, Zp⟩
where I ∈ I is the interface of the agent; L ∈ L is the local stigmergy of the agent; P is a

process describing the behaviour of the agent; Zc is the set of keys that the agent has to confirm

(i.e., query); and Zp is the set of keys that the agent must propagate.

3.2.1 Processes and expressions

Processes are used to model behaviour of the agents. We present their syntax in Table 3.2 and

their operational semantics in Table 3.3. There, P and Q denote processes while
√

denotes

successful termination, α represents the actions used to update attributes (x ← e) or stigmergic

variables (x ↝e), with the result of the evaluation of an expression, while µ is a placeholder for

either
√

or α.

TABLE 3.3: Semantics of processes.

√ √
↦−→ 0

(TICK)
α

α↦−→ √ (ACT)
P

µ↦−→ P ′

P +Q
µ↦−→ P ′

(CHOICE-L)
Q

µ↦−→ Q′

P +Q
µ↦−→ Q′

(CHOICE-R)

P
α↦−→ P ′

P ;Q
α↦−→ P ′;Q

(SEQ1)
P

√
↦−→ P ′ Q

µ↦−→ Q′

P ;Q
µ↦−→ Q′

(SEQ2)
P

µ↦−→ P ′ K ≜ P

K
µ↦−→ P ′

(CON)

P
α↦−→ P ′

P | Q α↦−→ P ′ | Q
(PAR1)

P
√
↦−→ P ′ Q

µ↦−→ Q′

P | Q µ↦−→ Q′
(PAR2)

P1 | P2
µ↦−→ P ′

P2 | P1
µ↦−→ P ′

(PARCOMM)

Below, we briefly comment on the main semantic rules for each term. The term 0 represents the

idle process and thus has no corresponding semantic rule. The term
√

represents the elementary

process that performs action
√

and becomes idle (TICK). The term α represents the elementary

process that performs an assignment and terminates (ACT). The sequential composition of two

processes is denoted by the term P ;Q, that represents the process that behaves as P until it

A specification language for MAS 38

TABLE 3.4: Semantics of expressions.

EJ·K : Expr −→ I → L ↪→ V
EJvK = λ I .λL .v

EJxK =
{︄
λ I .λL . I (x) if x ∈ KI

λ I .λL .value(L, x) if x ∈ KL

EJe1 ⋄ e2K = λ I .λL .EJe1K(I ,L) ⋄ EJe2K(I ,L)
EJe ⋄ ⊥K = EJ⊥ ⋄ eK = λ I .λL .⊥

KJ·K : Expr −→ 2KL

KJvK = ∅

KJxK =
{︄
{x} if x ∈ KL

∅ otherwise

KJe1 ⋄ e2K = KJe1K ∪KJe2K

terminates (SEQ1), and if P does terminate and Q performs a transition µ to become Q′, then

P ;Q can perform the same µ-transition and continue as Q′ (SEQ2).

The term P + Q represents a process which can nondeterministically behave either as P

(CHOICE-L) or Q (CHOICE-R). The parallel composition of processes is a process P | Q,

where the executions of P and Q are interleaved (PAR1), and upon termination of one of the

parallel components the other continues in isolation (PAR2). The parallel composition operator

is commutative (PARCOMM). We will sometimes consider the n-ary variants of the choice and

parallel operators and denote them by
∑︁n

i=1 Pi and
∏︁n

i=1 Pi, respectively. From a theoretical

standpoint, this only amounts to assuming that both operators are associative and commutative.

From a practical one, using n-ary operators often makes LAbS syntactic terms more compact

and readable.

LAbS also supports named process invocation. We assume that there exists a set of process

definitions K ≜ P , where P is a process term, named K, defined according to the syntax of

Table 3.2 that may contain references to K itself and to other process constants; rule (CON)

amounts to saying that K can perform the same actions of the process term associated to it. A

process named K that contains invocations to itself (or to other named process which in turn

invoke K) is recursive and may thus describe an infinite behaviour.

Intuitively, the guarded process g → P can only continue as P if the guard g is satisfied. We will

formalise this rule when we introduce the semantics of agents (see Table 3.7) since the evaluation

of a guard depends on the state of the agent.

Expressions may contain constants, references to the value of local attributes, or stigmergic keys.

A guard may either be the true predicate, which is always satisfied, or a comparison between

two expressions. Guards can also be negated (¬b) or composed through the conjunction and

disjunction operators, ∧ and ∨.

The semantics of expressions is formalised by a semantic function EJ·K (Table 3.4). We assume

that v ∈ V , x ∈ KI ∪ KL; ⋄ and ▷◁ are the same as in Table 3.2. We also assume that the

A specification language for MAS 39

TABLE 3.5: Satisfaction of guards.

I, L |= true
I, L |= ¬g ⇐⇒ I, L ⊢ ¬g and I, L ̸|= g
I, L |= e1 ▷◁ e2 ⇐⇒ I, L ⊢ e1 and I, L ⊢ e2 and EJe1K(I, L) ▷◁ EJe2K(I, L)
I, L |= g1 ∧ g2 ⇐⇒ I, L |= g1 and I, L |= g2
I, L |= g1 ∨ g2 ⇐⇒ I, L |= g1 or I, L |= g2

TABLE 3.6: Well-definedness of expressions and guards.

I, L ⊢ v
I, L ⊢ x ⇐⇒ (x ∈ KI and I(x) ̸= ⊥) or (x ∈ KL and value(L, x) ̸= ⊥)
I, L ⊢ e1 ⋄ e2 ⇐⇒ I, L ⊢ e1 and I, L ⊢ e2

I, L ⊢ true
I, L ⊢ ¬g ⇐⇒ I, L ⊢ g
I, L ⊢ g1 ∧ g2 ⇐⇒ I, L ⊢ g1 and I, L ⊢ g2
I, L ⊢ g1 ∨ g2 ⇐⇒ I, L ⊢ g1 and I, L ⊢ g2

equality ⊥ = ⊥ holds, while all other relations ▷◁ involving ⊥ never do. We denote with KJ·K a

function that computes the set of stigmergy keys needed to evaluate an expression. This function

is instrumental to formalise the mechanisms of virtual stigmergies. We allow EJ·K to return the

undefined value ⊥. For instance, this may happen when the expression refers to an undefined

value or applies an operator to incompatible values (e.g. adding a number to a string). With a

slight abuse of notation, we will use KJbK to denote the union of KJeK for all sub-expressions of

a guard b.

Satisfaction of a guard g is formalised as a relation I, L |= g (Table 3.5). We say that a guard g

is well-defined with respect to interface I and stigmergy L if all the sub-expressions of g refer

to defined attributes and stigmergy keys (this relation is denoted by ⊢ in Table 3.6). If g is not

well-defined, then it may happen that neither g nor ¬g hold. This means that the law of excluded

middle is not generally valid, and this is why, although we have conjunction and negation, we

have also introduced an operator for disjunction; g1 ∨ g2 does not have the same meaning as

¬(¬g1 ∧¬g2). Well-definedness is not a strict requirement for all types of guards: satisfaction of

g1 ∨ g2 only requires at least one of the two sub-guards to hold. By defining disjunction in this

way, we allow agents to operate even though their knowledge is partial: in fact, g1 ∨ g2 → P

may enable P also when one of the sub-guards is not well-defined.

A specification language for MAS 40

3.2.2 Link predicates

A link predicate is a predicate over the knowledge (i.e., interface and local stigmergy) of

two agents, describing the conditions that allow them to communicate. We assume that each

stigmergic variable x has an associated link predicate φx. When multiple variables occur within

the same link predicate φs, we say that they belong to the same virtual stigmergy s. Two agents

are neighbours with respect to stigmergy s if they satisfy φs. This abstraction is useful, for

instance, in the case of multi-robot systems, where predicates allow to effectively model different

sensors and capabilities for each robot. Link predicates have the following syntax:

φ ::= true | η ▷◁ η | ¬φ | φ ∧ φ | φ ∨ φ predicate

η ::= v | x | η ⋄ η x ∈ KI ∪KL expression

We denote with HJ·K the semantic function of expressions η. We omit a formal definition, as it

is nearly identical to the function EJ·K described in Table 3.3. The only difference is that HJ·K
evaluates a predicate against two interfaces and two local stigmergies. Identifiers are decorated

with indexes (xs, xr) to clarify whether they refer to a variable in the knowledge of the sender or

the potential receiver, respectively.

Similarly, the definitions of satisfaction and well-definedness closely follow the ones introduced

for guards. The ability of combining link predicates offers an intuitive way to model different

communication modes for agents. For instance, the predicate

∥poss − posr∥ ≤ δ ∨ (LongRanges = “true” ∧ LongRanger = “true”),

where ∥ · ∥ denotes the Euclidean norm, states that two agents can communicate if their positions

are closer than a constant δ or if they both possess a long-range networking device.

3.2.3 Agents and systems

Agent-level transitions, triggered when an agent performs an action, are modelled in Table 3.7.

We assume that v = value(L, x) and t = time(L, x). Rule (SKIP) states that an agent can

perform a transition when its behaviour allows a
√

-move. According to rule (ATTR) we have that,

when an agent performs an attribute update x ← e, the result of expression e is bound to attribute

x, and the stigmergy keys used to evaluate e are added to the set Zc of keys to be confirmed.

Stigmergy updates are defined by rule (LSTIG) and result in the insertion of a value in the local

stigmergy of the agent. We use tod() to represent the timestamp (obtained from a global clock)

A specification language for MAS 41

TABLE 3.7: Semantics of agents.

P
√
↦−→ P ′ Zc = Zp = ∅

⟨I , L, P, Zc, Zp⟩ ε−→ ⟨I, L, P ′, Zc, Zp⟩
(SKIP)

P
x←e↦−−−→ P ′ EJeK(I , L) = v I [x ↦→ v] = I ′ Zc = Zp = ∅

⟨I , L, P, Zc, Zp⟩ ε−→ ⟨I ′, L, P ′, Zc ∪KJeK, Zp⟩
(ATTR)

P
x ↝e↦−−−→ P ′ EJeK(I , L) = v t = tod() Zc = Zp = ∅

⟨I , L, P, Zc, Zp⟩ ε−→ ⟨I, L⊕ (x, v, t), P ′, Zc ∪KJeK, Zp ∪ {x}⟩
(LSTIG)

I , L |= g ⟨I , L, P, Zc, Zp⟩ ε−→ ⟨I ′, L′, P ′, Zc′, Zp′⟩
⟨I , L, g → P,Zc, Zp⟩ ε−→ ⟨I ′, L′, P ′, Zc′ ∪KJgK, Zp′⟩

(AWAIT)

for the new value. Since the newly inserted value must be propagated, its key is added to Zp; Zc

may also be updated, like for the attribute update case. Rule (AWAIT) specifies that a guarded

process g → P can only proceed if the guard g is satisfied. Notice that, if the guarded process can

proceed, the stigmergy keys contained in the guard are added to the set Zc of the agent. The above

transitions are labelled ε to denote they are internal to each agent, i.e., they are invisible from the

point of view of the system. All agent-level rules are guarded by the condition Zc = Zp = ∅,

meaning that an agent has to propagate or confirm all pending variables before continuing its

execution.

System-level transitions formalise the handling of shared knowledge inside the virtual stigmergy

and are shown in Table 3.8, where λ denotes a generic transition label. Rule (PAR) simply states

that parallel subsystems interleave their internal actions. The symmetrical rule to (PAR) has

been omitted. Rules (COMM) and (ASSOC) describe that parallel composition is commutative

and associative. Rule (PROPAGATE) states that an agent can always remove a variable from Zp

and propagate its value to neighbours. Rule (CONFIRM) specifies that the same can happen with

Zc keys. The different nature of the messages is reflected by different transition labels (put for

propagation; qry for confirmation). The (PUT) rule allows messages to spread to other agents.

When a subsystem performs a put(I ′,L′, x, v, t) transition, a neighbouring agent (that is, one

that satisfies the predicate φx together with the sender) with an expired value will update its local

stigmergy and add x to the keys to propagate. Notice that x is also removed from Zc, as it is

assumed that the new value does not need to be confirmed anymore. Notice also that a composite

system evolves by emitting the same transition label as its subsystem. This means that the rule is

recursively applied until all neighbours perform their stigmergy update.

The rules for confirmation messages are quite similar, but the actions of agents that receive a

confirmation message depend on the current state of their local stigmergy. Rule (QRY1) says that

an agent with an older entry will react to a query transition qry(I ′, x, v, t) by updating its own

A specification language for MAS 42

TABLE 3.8: Semantics of systems.

S
ε−→ S′

S ∥ T ε−→ S′ ∥ T
(PAR)

S1 ∥ S2
λ−→ S′

S2 ∥ S1
λ−→ S′

(COMM)
(S1 ∥ S2) ∥ S3

λ−→ S′

S1 ∥ (S2 ∥ S3)
λ−→ S′

(ASSOC)

x ∈ Zp L(x) = (v, t)

⟨I ,L, P, Zc, Zp⟩ put(I ,L,x,v,t)−−−−−−−−→ ⟨I , L, P, Zc, Zp \ {x}⟩
(PROPAGATE)

x ∈ Zc L(x) = (v, t)

⟨I ,L, P, Zc, Zp⟩ qry(I ,L,x,v,t)−−−−−−−−→ ⟨I , L, P, Zc \ {x}, Zp⟩
(CONFIRM)

S
put(I ′,L′,x,v,t)−−−−−−−−−→ S′ I ′,L′, I ,L |= φx L⊕ (x, v, t) ̸= L

S ∥ ⟨I ,L, P, Zc, Zp⟩ put(I ′,L′,x,v,t)−−−−−−−−−→ S′ ∥ ⟨I , L⊕ (x, v, t), P, Zc \ {x}, Zp ∪ {x}⟩
(PUT)

S
qry(I ′,L′ x,v,t)−−−−−−−−−→ S′ I ′,L′, I ,L |= φx time(L, x) < t

S ∥ ⟨I ,L, P, Zc, Zp⟩ qry(I ′,L′,x,v,t)−−−−−−−−−→ S′ ∥ ⟨I , L⊕ (x, v, t), P, Zc\{x}, Zp ∪ {x}⟩
(QRY1)

S
qry(I ′,L′,x,v,t)−−−−−−−−−→ S′ I ′,L′, I ,L |= φx time(L, x) ≥ t

S ∥ ⟨I ,L, P, Zc, Zp⟩ qry(I ′,L′,x,v,t)−−−−−−−−−→ S′ ∥ ⟨I , L, P, Zc, Zp ∪ {x}⟩
(QRY2)

stigmergy and propagating the value afterwards. On the other hand, an agent that has a more

up-to-date value will just update Zp to propagate it, while discarding the received entry (rule

QRY2).

3.2.4 Tuples and atomic assignments

We will sometimes use compound assignments of the form x1, . . . , xn ← e1, . . . , en. In this case,

all expressions are evaluated over the current state of the agent, and the corresponding values

v1, . . . , vn are then assigned atomically to variables x1, . . . , xn. When performing a compound

stigmergic assignment x1, . . . , xn ↝e1, . . . , en, all values receive the same timestamp. Multiple

assignments to variables of different kinds (e.g., an internal one and a shared one) are not allowed.

We further enrich our language with the notion of stigmergy tuples. Tuples are disjoint sets of

stigmergic variables; all variables within the same tuple belong to the same virtual stigmergy. A

tuple acts as a single stigmergic variable: whenever any element of a tuple can be propagated or

requested, the rest of the tuple will be as well, in an atomic fashion. Thus, these communication

steps cannot be interleaved with any other action.

These design choices are driven by the need to restrict the interleaving of agents, by giving the

user of the language a natural way to express operations that should always be performed together.

A specification language for MAS 43

Similarly, stigmergic tuples allow to store complex data in virtual stigmergies, with the guarantee

that such data will be propagated atomically.

3.2.5 Clocks and verification

As stated in Section 3.2.3, the semantics of LAbS are based on the assumption that agents can

always retrieve a (unique) timestamp from a global clock. Using a distributed clock would be a

more realistic option for the actual implementation of multi-agent systems, and is the solution

adopted by languages such as Buzz [196]. However, our language has an important difference in

that its main focus is on formal verification, rather than execution on real or simulated platforms.

From a verification standpoint, the purpose of a clock is simply to enforce a total order on

the transitions by assigning them a unique identifier (i.e., the timestamp). Using a distributed

clock would unnecessarily inflate the state space with intermediate transitions for distributed

time-stamping. Instead, we simply compute timestamps by relying on a global counter, which we

increase each time a new transition takes place.

Please note that, due to interleaving, the above mechanism does not lose any feasible ordering of

events with respect to a distributed schema. In fact, it captures all the total orders that would be

possible with distributed clocks. In contrast, multiple (partial) orderings under the distributed

clock can correspond to the same total order under the global clock. As a consequence, using a

global clock helps to maintain a more compact state space, which is very desirable for verification.

3.3 Modelling the environment

Agents are mobile entities that are situated and operate in a physical environment. This agent-

environment interaction is a fundamental feature of many real-world scenarios [242]. This kind

of interaction enjoys some specific properties that are difficult to express with the constructs

introduced in Section 3.2. In this section we extend the language to support a shared-memory

abstraction of the environment. We allow environment variables to occur in expressions and

guards, and we update the formal semantics of situated systems so that agents can atomically

perform read and write operations on the environment.

3.3.1 Semantics of situated systems

Assuming that there is a set KE disjoint from KI and KL, we define an environment to be a

partial function from KE to the set of values V . A situated system is a pair (E,S), where E is an

environment and S is a LAbS system. We now allow expressions to also contain identifiers from

A specification language for MAS 44

TABLE 3.9: Basic processes in situated systems.

α ::= x ← e | x ↝e | x ⇐ e | √

KE . This requires introducing a new semantic function, which extends the one in Table 3.4 as

follows:

E2J·K : Expr −→ Env → I → L ↪→ V
E2JvK = λE .λ I .λL .v

E2JxK =

⎧
⎨
⎩
λE .E1JxK if x ∈ KE

λE .EJxK otherwise

where E1JxK = λ I .λL .E (x)

E2Je1 ⋄ e2K = λE .λ I .λL .E2Je1K(E, I, L) ⋄ E2Je2K(E, I, L)

In the definition above, we have used Env to denote the set of all environments. Agents are now

able to perform an additional basic action to store the result of an expression into an environment

variable. We denote this action by x ⇐ e (Table 3.9). Since any expression may now potentially

refer to environmental variables, their evaluation can no longer be done at the individual level. We

therefore revise the semantics of agents and add a transition label e ▷ x denoting the willingness

of an agent to assign the value of expression e to variable x (Table 3.10). Note that we omit Rule

(SKIP) as it is the same as in Table 3.7.

To define the semantics of situated systems, in Table 3.11 we introduce an unlabelled transition

relation (↣). As mentioned above, the evaluation of expressions and the assignment to the

relevant store of variables is described by rules (EVALI,L,E). Rule (AWAIT) has also been

removed from agent-level rules, as guards may now also refer to environmental variables.

Rule (MSG) simply states that the actions related to stigmergic communications only affect the

system and leave the environment unchanged. Finally, rule (PARE), which is commutative, states

that the parallel composition of two systems affects the environment in an interleaved fashion.

The rule symmetrical to (PARE) is omitted.

3.4 Examples

In this section we specify several examples of multi-agent systems. We use a machine-readable

specification language that extends LAbS with constructs that allow to compactly declare the

composition of a system and its initial state. We call this language LAbS+, to avoid confusion

with the core process algebra LAbS. We now provide an informal description of the language:

A specification language for MAS 45

TABLE 3.10: Semantics of agents in a situated system.

P
x←e↦−−−→ P ′ Zc = Zp = ∅

⟨I ,L, P, Zc, Zp⟩ e ▷x−−→ ⟨I ,L, P ′, Zc ∪KJeK, Zp⟩
(ATTR)

P
x ↝e↦−−−→ P ′ Zc = Zp = ∅

⟨I ,L, P, Zc, Zp⟩ e ▷x−−→ ⟨I ,L, P ′, Zc ∪KJeK, Zp⟩
(LSTIG)

P
x⇐e↦−−−→ P ′ Zc = Zp = ∅

⟨I ,L, P, Zc, Zp⟩ e ▷x−−→ ⟨I ,L, P ′, Zc ∪KJeK, Zp⟩
(ENV)

TABLE 3.11: Semantics of situated systems.

a
e ▷x−−→ ⟨I ,L, P, Zc, Zp⟩ E2JeK(E, I, L) = v ̸= ⊥ x ∈ KI

(E, a) ↣ (E, ⟨I[x ↦→ v],L, P, Zc, Zp⟩) (EVALI)

a
e ▷x−−→ ⟨I ,L, P, Zc, Zp⟩ E2JeK(E, I, L) = v ̸= ⊥ x ∈ KL

(E, a) ↣ (E, ⟨I,L⊕(x, v, tod()), P, Zc, Zp ∪ {x}⟩) (EVALL)

a
e ▷x−−→ ⟨I ,L, P, Zc, Zp⟩ E2JeK(E, I, L) = v ̸= ⊥ x ∈ KE

(E, a) ↣ (E[x ↦→ v], ⟨I ,L, P, Zc, Zp⟩) (EVALE)

(E , ⟨I ,L, P, Zc, Zp⟩) ↣ (E ′, ⟨I ′, L′, P ′, Zc′, Zp′⟩) E , I ,L |= g

(E , ⟨I ,L, g → P,Zc, Zp⟩) ↣ (E ′, ⟨I ′, L′, P ′, Zc′ ∪KJgK, Zp′⟩) (AWAIT)

S
µ(I,x,v,t)−−−−−−→ S′

(E,S) ↣ (E,S′)
(MSG)

(E,S) ↣ (E′, S′)
(E,S∥T) ↣ (E′, S′∥T) (PARE)

Section 3.5 contains a more thorough definition. Table 3.12 shows the LAbS+ syntax for process

terms, and compares it to the LAbS one introduced in Table 3.2. A LAbS+ specification consists

of the following elements:

• A global section that contains the declaration of environment variables, specifies the

composition of the system, and possibly the declaration of external parameters that can be

set by the user when performing analysis on the system. A newly declared variable can be

initialised via an assignment or left undefined by using the keyword undef. In addition to

deterministic assignment, a nondeterministic assignment from either a range or a set of

values is possible.

A specification language for MAS 46

TABLE 3.12: Comparison between LAbS and LAbS+ syntaxes for process terms.

√
x ← e x ↝e x ⇐ e P ;Q P +Q P | Q g → P

Skip x <- e x <~ e x <-- e P ; Q P ++ Q P || Q g -> P

• A (possibly empty) set of stigmergy declarations, each containing a link predicate and a

sequence of variables. All stigmergic interactions over variables of a given stigmergy are

constrained by their link predicate. It might be convenient to group different stigmergic

variables that form composite data. A typical example would be a position within an

n-dimensional space. To do that, the user can define a tuple by declaring a sequence of

comma-separated stigmergic variables. A tuple is considered as a single stigmergy entry:

the stigmergic values from the same tuple are always propagated and confirmed together.

• A non-empty set of agent declarations, one for each different kind of agent. Each decla-

ration contains the attributes of the agent and its behavioural specifications. The list of

virtual stigmergies that the agent manipulates is explicitly declared in this section too.

• The list of the properties of interest for the specified system. A property has a temporal

modality followed by a predicate. The modality is either always or eventually,

corresponding to the LTL operators □ and ♢, respectively. The predicate ranges over the

attributes and the stigmergic variables of the agents, and over the environment variables. A

basic predicate is a comparison between two arithmetic expressions over said variables.

Composite predicates can be obtained using the usual Boolean operators. Existential or

universal quantification over the sets of agents of any given kind is also allowed within the

predicate.

LAbS+ supports one-dimensional arrays-.1 Formally, we treat an array of length n as a collection

of n variables; specifications that allow an out-of-bound array access are invalid. The elements

of a stigmergic array are assumed to be tupled together. This language also introduces several

extensions to the syntax of arithmetic expressions. The read-only variable id evaluates to a

natural number strictly smaller than the number of agents in the system, and the evaluated value

is unique for each agent. An expression may also contain calls to the following built-in functions:

max(e1, e2) and min(e1, e2) (respectively, the maximum and the minimum between

the values obtained by computing expressions e1, e2), and abs(e) (the absolute value of

expression e).

3.4.1 Dining philosophers

The specification of Figure 3.1a describes the dining philosophers scenario (Example 2.1). The

system is parameterised in a value _n (line 2), which determines the number of agents in the
1Higher-dimensional arrays are not currently supported, but may be added in a future revision of the language.

A specification language for MAS 47

system (line 4: in LAbS+, the spawn keyword introduces the composition of the system, i.e., the

number of agents that it contains). The environment features an array forks whose elements

are all initialised to 0 (line 3). Each element of the array models a fork: a value 0 means that

the fork is available, while a value 1 means that it is currently held by one of the agents. The

(recursive) behaviour of the philosophers is specified at lines 9–20. Each agent repeatedly tries

to acquire two forks, by checking and updating the elements id and (id+1)%_n of the array

forks. After acquiring both forks, the agent releases them and starts over. Each agent maintains

an internal variable status, initially set to 0, which describes its current situation (line 8).

When status is set to either 0, 1, or 2, it denotes the number of forks currently held by the

agent. When status is set to 3, it means that the agent has just released one fork and is going to

release the other one during its next action. Lastly, invariant NoDeadlock (lines 24–26) states

that the system should never reach a state where all agents are waiting for the second fork.

3.4.2 Leader election

Figure 3.1b contains a simple leader election system (Example 2.2): all the agents repeatedly

update a stigmergic variable leader with their own id, but they stop doing so as soon as they

detect that the variable already stores a value lower than their identifier. Thus, they eventually

agree to choose the agent with id = 0 as their leader.

Lines 1–4 specify that _n is an external parameter, and that the system is composed of _n agents

of kind Node. Lines 6–9 define a stigmergy Election containing a single variable leader.

Its link predicate is simply true, so any two agents may communicate at any time. The

stigmergic variable leader is initially set to the value of _n. The definition of Node agents

states that they can access the Election stigmergy (line 12). Their behaviour (lines 13–16)

simply tells them to repeatedly set leader to their own id as long as that variable contains

a greater value. Finally, property LeaderIs0 (lines 20–22) specifies that the system should

eventually reach a state where all Node agents agree on a value of 0 for variable leader.

3.4.3 Flocking

We now describe two systems of flocking agents that aim at replicating the Boids rules described

in Example 2.3 by means of appropriate virtual stigmergies.

A simple model of flocking behaviour. As a first step, we describe how to specify the align-

ment mechanism. The LAbS+ specification of Table 3.2 models a flock of _n agents distributed

on a square grid, or arena, of _size × _size locations. _n and _size are both external

parameters: the third parameter _delta encodes the visibility range of the agents. The position

A specification language for MAS 48

1 system {
2 extern = _n
3 environment = fork[_n]: 0
4 spawn = Phil: _n
5 }
6
7 agent Phil {
8 interface = status: 0
9 Behaviour =
10 fork[id] = 0 ->
11 fork[id] <-- 1;
12 status <- 1;
13 fork[(id+1) % _n] = 0 ->
14 fork[(id+1) % _n] <-- 1;
15 status <- 2;
16 fork[(id+1) % _n] <-- 0;
17 status <- 3;
18 fork[id] <-- 0;
19 status <- 0;
20 Behaviour
21 }
22
23 check {
24 NoDeadlock =
25 always exists Phil p,
26 status of p != 1
27 }

(A) Dining philosophers.

1 system {
2 extern = _n
3 spawn = Node: _n
4 }
5
6 stigmergy Election {
7 link = true
8 leader: _n
9 }
10
11 agent Node {
12 stigmergies = Election
13 Behaviour =
14 leader > id ->
15 leader <~ id;
16 Behaviour
17 }
18
19 check {
20 LeaderIs0 =
21 finally forall Node a,
22 leader of a = 0
23 }

(B) Leader election.

FIGURE 3.1: Two example systems in LAbS+.

of each agent is stored as a pair of attributes x, y, and may be initialised to any location in the

arena (line 16). Its direction is instead recorded by the stigmergic tuple ⟨dirX,dirY⟩, with both

elements initially set to either 1 or −1 (line 11). The Behaviour process (line 18) states that

every agent simply repeatedly moves on the arena one step at a time. The Move process (line 19)

describes a single step, which amounts to a sum between the position attributes and the direction

variables. Note that the arena wraps around: for instance, an agent at location (x,_size− 1)

that moves in direction (1, 1) will reach (x+ 1, 0). This explains the modulo operators in Move.

Due to their behavioural specification, agents must repeatedly access the values of ⟨dirX,dirY⟩:
therefore, they will also repeatedly send confirmation messages to verify that these values are

up-to-date. The link predicate at lines 7–9 encodes that the Euclidean distance between the sender

and the receiver should be at most _delta. Thus, whenever two agents happen to be close

enough, they may agree on the direction with the most recent timestamp (see Figure 3.3 for a

graphical representation). Property Consensus (lines 23–25) states that all the agents should

eventually move in the same direction.

Adding the cohesion mechanism. Figure 3.4 shows a slightly more complex system, where

Bird agents implement both an alignment and a cohesion mechanism. The global section and

the Alignment stigmergy declaration are omitted, as they are exactly the same as those of

Figure 3.2. To achieve cohesion, the agents maintain some information about the group of agents

A specification language for MAS 49

1 system {
2 extern = _n, _size, _delta
3 spawn = Bird: _n
4 }
5
6 stigmergy Alignment {
7 link =
8 ((x of 1 - x of 2) * (x of 1 - x of 2)) +
9 ((y of 1 - y of 2) * (y of 1 - y of 2)) <= _delta * _delta
10
11 dirX, dirY: [-1, 1], [-1, 1]
12
13 }
14
15 agent Bird {
16 interface = x: 0.._size; y: 0.._size
17 stigmergies = Alignment
18 Behaviour = Move; Behaviour
19 Move = x, y <- (x + dirX) % _size, (y + dirY) % _size
20 }
21
22 check {
23 Consensus =
24 finally forall Bird b1, forall Bird b2,
25 dirX of b1 = dirX of b2 and dirY of b1 = dirY of b2
26 }

FIGURE 3.2: A Boids-like system with only the alignment rule.

��

��

(A)

��

��

(B)

��

��

���

(C)

��

��

���

(D)

FIGURE 3.3: Two agents c1, c2 agree on a direction of movement.

they belong to. This information is stored as a tuple within the Cohesion stigmergy (lines 3–7).

Each group has a leader and zero or more followers. The leader registers its id and position

in the variables leader, posX, and posY. The last variable in the tuple, count, is a counter

that is repeatedly updated by the followers. In the initial state, each boid is the leader of its own

group, and count is set to 1. Thanks to the link predicate (line 4), a boid can decide to join a

larger group than the one it is actually part of. When this happens, the new follower increases the

group counter and moves towards its new leader, if they are far apart (Figure 3.5). These actions

are specified by the Attract process (lines 16–30), which is repeatedly performed by each

agent after each movement they make. Lastly, property OneLeader (lines 34–36) specifies that

all the agents should eventually have the same leader.

A specification language for MAS 50

1 system { ... }
2
3 stigmergy Cohesion {
4 link = (count of 1 >= count of 2)
5
6 leader, posX, posY, count: id, -1, -1, 1
7 }
8
9 stigmergy Alignment { ... }
10
11 agent Bird {
12 interface = x: 0.._size; y: 0.._size
13 stigmergies = Cohesion; Alignment
14 Behaviour = Move; Attract; Behaviour
15 Move = x, y <- (x + dirX) % _size, (y + dirY) % _size
16 Attract = (
17 (leader = id -> posX, posY <~ x, y)
18 ++
19 (leader != id ->
20 count <~ count + 1; (
21 (abs(x - posX) > _delta -> dirX <~ (posX-x) / abs(posX-x))
22 ++
23 (abs(x - posX) <= _delta -> Skip)
24); (
25 (abs(y - posY) > _delta -> dirY <~ (posY-y) / abs(posY-y))
26 ++
27 (abs(y - posY) <= _delta -> Skip)
28)
29)
30)
31 }
32
33 check {
34 OneLeader =
35 finally forall Bird b1, forall Bird b2,
36 leader of b1 = leader of b2
37 }

FIGURE 3.4: A Boids-like system with alignment and cohesion rules.

put

FIGURE 3.5: The cohesion rule in action. Each dotted box contains a group of agents. Filled
shapes denote leaders, while the followers are outlined. One of the followers of the larger group
propagates the cohesion tuple (leader, count, posx, posy) to the lonely leader in the bottom

left, which then becomes a follower and points toward its new leader.

3.4.4 Line formation

The specification in Figure 3.6 calls back to Example 2.4: it describes a system of _n robots on a

horizontal segment of length _size. They must move so that their distance from each other is

eventually not less than _range. Each robot starts from a nondeterministic position along the

segment, stored in the pos attribute. We only assume that no agent starts on one of the endpoints

(i.e., with a value of either 0 or _size− 1 in pos). To achieve their goal, all agents repeatedly

A specification language for MAS 51

1 system {
2 extern = _range, _n, _size
3 spawn = Robot: _n
4 }
5
6 stigmergy Left {
7 link =
8 pos of 1 - pos of 2 >= 0 and
9 pos of 1 - pos of 2 <= _range
10
11 idLeft: undef
12 }
13
14 stigmergy Right {
15 link =
16 pos of 2 - pos of 1 > 0 and
17 pos of 2 - pos of 1 <= _range
18
19 idRight: undef
20 }
21
22 agent Robot {
23 interface = pos: 1.._size
24 stigmergies = Left; Right
25 Behaviour =
26 idLeft, idRight <~ id, id;
27 (
28 (idLeft != id ->
29 (pos > 0 -> pos <- pos - 1)
30 ++
31 (pos = 0 -> pos <- pos + 1))
32 ++
33 (idRight != id ->
34 (pos < _size - 1 -> pos <- pos + 1)
35 ++
36 (pos = _size - 1 -> pos <- pos - 1))
37 ++
38 (idRight = id and idLeft = id -> Skip)
39); Behaviour
40
41 }
42
43 check {
44 Distancing =
45 finally forall Robot a, forall Robot b,
46 id of a = id of b or
47 abs(pos of a - pos of b) >= _range
48 }

FIGURE 3.6: A system of line-forming agents.

write their id on two stigmergic variables idLeft, idRight (line 26). These variables reside

in stigmergies Left and Right, respectively (lines 6–20). The link predicates of Left and

Right are similar, but inverted: the predicate of Left states that the receiver must be to the

left of the sender (i.e., its position must have a lower value), while for that of Right the sender

must be to the left of the receiver. In both cases, the distance between the two must be at most

_range. Thus, when an agent notices that idLeft is different from its own id, it makes a step

to the right (and vice versa), because the value must have been set by another robot that is too

close. However, if the robot already is at one of the endpoints of the segment, it moves towards

the other robot instead (lines 28–38). The Distancing property defined at lines 44–47 states

that eventually all robots are at no less than _range steps from each other.

A specification language for MAS 52

3.4.5 Majority protocols

We now introduce two majority protocols (see Example 2.5) taken from the population protocols

literature, and show how to encode them with LAbS+. The overall structure of these examples

can be adapted to other population protocols, potentially with a higher number of states and

transitions.

Approximate majority. The system of Figure 3.7 models an approximate majority population

protocol [13]. Each agent has an initial opinion, encoded in attribute state as either 0 (N) or

1 (Y): external parameters _no and _yes represent the number of agents with initial opinion

set to 0 or 1, respectively (line 2). In this protocol, an agents that meets another with a different

opinion assumes a blank opinion, encoded as the value 2. An agent with a blank opinion, in turn,

will imitate the opinion of the next agent it meets.

To model this protocol, we exploit the environment as a communication medium. Namely, an

agent may initiate an interaction by writing its own id and state into the environment variables

initiator and message (line 6). Alternatively (lines 8–13), it may respond to another agent

by reading these values and update its own state accordingly. Assuming that _no > _yes, a

safety property of interest is that the system never reaches a state where all agents agree on Y .

This property is encoded as NoYConsensus (lines 29–31)

A correct majority protocol. Figure 3.8 describes a 4-state protocol where all agents are

initially either in state Y or in state N . When a Y -agent2 meets a N -agent, they change their

states to y and n, respectively. A n-agent changes its state to y upon meeting either a Y - or a

y-agent. On the other hand, a y-agent only changes its state to n upon meeting a N -agent. This

difference acts as a tie-breaker: a system that is initially tied will eventually reach a consensus on

y. It can be proved that this protocol successfully computes the majority. To be more precise, if

the initial number of Y -agents is greater than or equal to the number of N -agents, the system

eventually contains only Y - and y-agents. Otherwise, it stabilises to a configuration that contains

only N ’s and n’s [16].

This specification is slightly more complex than the previous one, as interactions may affect the

state of both the initiator and the responder. We encode this by letting the responder store its state

within an environment variable: the initiator will check this variable and update its own state

accordingly. To preserve the semantics of population protocols and avoid unwanted interactions,

we introduce a shared variable lock that every agent has to check before performing an action.

Our language does not require specific primitives for locks, thanks to the possibility of performing

compound assignments and the atomicity of guarded processes. Throughout the specification,
2For simplicity, we use the term x-agent to refer to an agent which is in state x

A specification language for MAS 53

1 system {
2 extern = _yes, _no
3 environment = initiator: undef; message: undef
4 spawn = Yes: _yes, No: _no
5 Protocol = (
6 (state != 2 -> initiator, message <-- id, state)
7 ++
8 (initiator != id ->
9 (message = 1 and state = 2 -> state <- 1) ++
10 (message = 1 and state = 0 -> state <- 2) ++
11 (message = 0 and state = 1 -> state <- 2) ++
12 (message = 0 and state = 2 -> state <- 0) ++
13 (message = state -> Skip)
14)
15); Protocol
16 }
17
18 agent Yes {
19 interface = state: 1
20 Behaviour = Protocol
21 }
22
23 agent No {
24 interface = state: 0
25 Behaviour = Protocol
26 }
27
28 check {
29 NoYConsensus =
30 always exists Yes y, exists No n,
31 state of y != 1 or state of n != 1
32 }

FIGURE 3.7: A population protocol for approximate majority.

states are encoded as 0 = N , 1 = Y , 2 = n, 3 = y. When lock is set to 0, agents can only

initiate a transition by writing its own id and state to the initiator and message variables,

and setting lock to 1 (lines 10–12). This value signals the other agents that a transition has

been initiated and that they are free to respond (lines 13–25). In three cases, the responder only

needs to update its own state and reset the shared variables to allow a new transition to take

place (lines 20–22). In the case of a Y N -transition, instead, the responder also stores N in the

environment variable responder and sets lock to 2 (lines 14–16). At this point, the initiator

is the only agent that can perform an action: namely, it sets its own state to y and increases lock

to 3 (lines 6–7). This value signals the responder that the transition has been fully performed, so

it can safely reset the environment variables to enable new transitions (line 17).

3.5 Syntax of the LAbS+ specification language

This section describes the LAbS+ specification language in detail.

A specification language for MAS 54

1 system {
2 extern = _yes, _no
3 environment = initiator: -1; message: -1; responder: -1; lock: 0
4 spawn = Yes: _yes, No: _no
5 Protocol = (
6 (initiator = id and lock = 2 ->
7 (state = 1 and responder = 0 -> state <- 3; lock <-- 3)
8) ++
9 (initiator != id ->
10 (lock = 0 ->
11 (state != 2 -> initiator, message, lock <-- id, state, 1)
12) ++
13 (lock = 1 ->
14 (message = 1 and state = 0 ->
15 lock, responder <-- 2, state;
16 state <- 2;
17 (lock = 3) -> initiator, responder, lock <-- -1, -1, 0
18) ++
19 ((
20 (message = 1 and state = 2 -> state <- 3) ++
21 (message = 0 and state = 3 -> state <- 2) ++
22 (message = 3 and state = 2 -> state <- 3)
23);
24 initiator, lock <-- -1, 0
25)
26))); Protocol
27 }
28
29 agent Yes {
30 interface = state: 1
31
32 Behaviour = Protocol
33 }
34
35 agent No {
36 interface = state: 0
37
38 Behaviour = Protocol
39 }
40
41 check {
42 NoYConsensus =
43 always exists Yes y, exists No n,
44 (state of y = 0 or state of y = 2)
45 or
46 (state of n = 0 or state of n = 2)
47 }

FIGURE 3.8: A correct population protocol to compute the majority opinion.

3.5.1 Basic syntactic elements

Variable names, identifiers, literals. Variable names identify local, stigmergic, and environ-

ment variables. They are formed by a lowercase letter, possibly followed by a sequence of letters,

numbers, or underscores. Keywords, listed in Table 3.13, may not be used as variable names.

Identifiers are formed by an uppercase letter and zero or more letters, numbers, or underscores.

The string Skip may not be used as an identifier, as it denotes the
√

action. A numeric literal is

a sequence of digits, optionally preceded by a sign. We use V, ID, and NUM to denote the sets

of variable names, identifiers, and numeric literals, respectively.

A specification language for MAS 55

TABLE 3.13: LAbS+ keywords.

abs

agent

always

and

environment

exists

extern

false

finally

forall

id

interface

link

max

min

of

or

spawn

stigmergies

stigmergy

system

true

undef

BNF conventions. The syntax of LAbS+ is defined in BNF notation [18]. We use italics and

typewriter fonts for nonterminal and terminal symbols, respectively. Furthermore, we use

the following notation to keep our syntax definitions compact:

• ⟨x⟩? means that term x is optional.

• ⟨x⟩∗ means that term x may occur zero or more times.

• ⟨x⟩+ means that term x may occur one or more times: it is equivalent to x⟨x⟩∗.

• ⟨x1, . . .⟩ denotes either a single occurrence of x, or multiple occurrences separated by

commas: it is equivalent to x⟨,x⟩∗.

• ⟨x1; . . .⟩ has the same meaning as ⟨x1, . . .⟩, except that occurrences of x are separated by

semicolons.

References, expressions, processes. A reference is a variable name, possibly followed by an

index between square brackets. It is forbidden to put an index in a reference to a non-array

variable. On the contrary, references to array variables must always feature an index. The

set of references is denoted by ref V. Arithmetic and Boolean expressions over references

are respectively denoted by exprV and bexprV. The syntax of references and expressions is

shown in Table 3.14a. An arithmetic expression may contain the binary operators + (sum), *
(multiplication), / (integer division), and % (modulo), and the unary operator abs (absolute

value). The - token denotes both the binary subtraction and the unary negation operators. LAbS+

provides two additional arithmetic functions, max and min, that respectively evaluate to the

maximum and the minimum of their arguments. A Boolean expression may be either a literal

(true or false), a logical negation of another expression (denoted by !), a conjunction or

disjunction of two sub-expressions, or a comparison between two arithmetic expressions. Finally,

Table 3.14b shows the LAbS+ syntax for processes. The precedence of operators, from highest to

lowest, is the following: (1) guarding; (2) sequential composition; (3) nondeterministic choice;

(4) parallel composition. Compound assignments (see Section 3.2.4) are supported, provided that

A specification language for MAS 56

TABLE 3.14: LAbS+ syntax (1).

(A) References and expressions.

ref V ::= V ⟨ [exprV] ⟩?
exprV ::= ref V | NUM

| exprV op exprV

| -exprV

| abs(exprV)
| fn(exprV, exprV)
| (exprV)

bexprV ::= true
| false
| !bexprV

| bexprV bop bexprV

| exprV cmp exprV

| (bexprV)

op ::= + | - | * | / | %
cmp ::= > | < | >= | <= | = | !=

fn ::= max | min
bop ::= and | or

(B) Processes, actions, and variable declarations.

proc ::= act
| proc ; proc
| proc ++ proc
| proc || proc
| bexprV -> proc
| (proc)
| ID

act ::= Skip
|

⟨︁
refV1 , . . .

⟩︁
asgn

⟨︁
exprV1 , . . .

⟩︁

asgn ::= <- | <~ | <--

decl ::= V⟨ [NUM] ⟩? : init
init ::= undef

| NUM
| { ⟨NUM1, . . .⟩ }
| NUM .. NUM

(a) all referenced variables match the assignment operator, and (b) the number of references on

the left-hand side matches the number of expressions on the right-hand side.

Variable declaration and initialisation. A variable declaration decl is composed of a variable

name, an optional numeric literal enclosed in square brackets, and an initialiser, which specifies

the possible values of the variable in the initial state of the system. If a numeric literal [n] is

provided, the variable is an array of length n and the initialiser applies to all its elements. The

length must be strictly positive.

The syntax of decl is shown in Table 3.14b. The undef initialiser leaves the variable in an

undefined state (⊥). If the initialiser is a single numeric literal, the variable is initialised to the

corresponding value. A set initialiser is a sequence of comma-separated numeric literals between

curly braces. A variable with a set initialiser may initially assume any of the provided values.

Lastly, the range initialiser is written m..n, where m and n are numeric literals with m < n, and

corresponds to the set initialiser {m, m+1, ..., n-1}. Notice that the upper bound n is not

included in the range.

3.5.2 Syntax of a LAbS+ specification

As stated informally in Section 3.4, a specification has the following structure: a global section,

zero or more stigmergy declarations, one or more agent declarations, and a property section

A specification language for MAS 57

TABLE 3.15: LAbS+ syntax (2).

(A) A LAbS+ specification.

spec ::= global ⟨ stigmergy ⟩∗ ⟨ agent ⟩+ check

(B) Global section.

global ::= system {
⟨ extern = ⟨extern1, . . .⟩ ⟩?
⟨ environment =
⟨decl1; . . .⟩ ⟩?
spawn = ⟨spawn1, . . .⟩
⟨ID = proc ⟩∗
}

extern ::= _V
spawn ::= ID : NUM

(C) Stigmergy declaration.

stigmergy ::= stigmergy ID {
link = bexprV×{1,2}

⟨ tupleDecl ⟩+
}

tupleDecl ::= ⟨V1, . . .⟩ : ⟨init1, . . .⟩
ref V×{1,2} ::= V ⟨ [exprV×{1,2}] ⟩? of 1

| V ⟨ [exprV×{1,2}] ⟩? of 2

(Table 3.15a).

Global section. The global section (Table 3.15b) is enclosed in braces and preceded by the

system keyword. It contains an optional extern section where external parameter names are

defined. A parameter name is a variable name preceded by an underscore. Once defined, external

parameters may be used throughout the specification, in any place where a numeric literal (NUM)

is expected. The global section may also contain an environment section with declarations of

shared variables, and it must have a spawn section that specifies the composition of the system.

Additionally, it may contain zero or more global process definitions, binding identifiers to process

terms. Process constants that occur in these process terms must refer to other processes defined

within this section.

Stigmergy declarations. A stigmergy declaration (Table 3.15c) is enclosed in braces, and

preceded by the keyword stigmergy and the name of the stigmergy. To encode link predicates,

we need to introduce link-references, denoted as ref V×{1,2}. These references are decorated

with either of 1 or of 2 to denote that they must be evaluated against the sender’s and the

receiver’s knowledge, respectively. As an example, the link-reference x of 1 corresponds to

the syntax xs as defined in Section 3.2.2. Once we introduce link-references, we can easily define

(arithmetic and Boolean) link-expressions: they are defined just as in Table 3.14a, but feature

link-references instead of plain ones. Thus, a link predicate is just a Boolean link-expression,

preceded by the link keyword and an equal sign. Furthermore, a link-reference to an array

variable may feature an arithmetic link-expression as an index. After the link predicate, there

may be one or more declarations of stigmergic variables. Tuples (see Section 3.2.4) are defined

by comma-separated sequences of variables, followed by a matching number of initialisers.

Agent declarations. An agent declaration describes the local variables and behaviour of a kind

of agent (Table 3.16a). As usual, it is enclosed in braces and preceded by the keyword agent,

A specification language for MAS 58

TABLE 3.16: LAbS+ syntax (3).

(A) Agent declarations.

agent ::= agent ID {
⟨ interface = ⟨decl1; . . .⟩ ⟩?
⟨ stigmergies = ⟨ID1; . . .⟩ ⟩?
⟨ ID = proc ⟩∗
}

(B) Property section.

check ::= check {
⟨ ID = property ⟩∗
}

property ::= modality ⟨ quantifier , ⟩∗ bexprV×V

modality ::= finally | always
quantifier ::= exists ID V | forall ID V

ref V×V ::= V ⟨ [exprV×V] ⟩? of V

plus the name of the kind. It may contain one or more local variable declarations (preceded by the

interface keyword), and a sequence of stigmergy identifiers (preceded by stigmergies),

to indicate which stigmergic variables are maintained in the agent’s local stigmergy. Then, the

agent declaration contains one or more named process definitions. One of these processes must

have the identifier Behaviour, and will be identified as the one encoding the behaviour of

this kind of agent. Process constants that occur within these process terms may refer to other,

locally-defined processes, or to global definitions.

Property section. The property section (Table 3.16b) is introduced by the check keyword

and enclosed in braces. It contains zero or more property definitions. A property is composed by

a temporal modality (finally or always), zero or more quantifiers with trailing commas, and

a state predicate. A state predicate is a Boolean expression where all references are decorated

with names. We denote the set of such references by ref V×V. Each name must appear in one

of the quantifiers of the property: for instance, forall Agent a, x of a = 0 is a valid

fragment, while forall Agent a, x of b = 0 is not.

3.6 Summary

In this chapter, we have introduced LAbS, a core language to describe agent behaviours, and

LAbS+, a machine-readable specification formalism that extends LAbS. The key feature of the

language is a distributed, decentralised data structure to model inter-agent communication, or

knowledge propagation. This data structure is based on the concept of virtual stigmergy. After

some preliminary definitions (Section 3.1), Section 3.2 introduced the basics of the language

and its operational semantics. In Section 3.3, we described how LAbS also allows to model

the external environment, i.e. a shared data repository accessible by the different agents. In

Section 3.4, we gave an informal description of LAbS+ and showed how it can be used to model a

selection of multi-agent systems. Lastly, Section 3.5 provided a formal description of the LAbS+

syntax.

Chapter 4

Sequential emulations

In this chapter, we explain how to reduce property checking of distributed systems to verification

of sequential imperative programs. We call this technique sequential emulation. Our approach is

rather general, in that it can be used to translate from any domain-specific language defined with

a structural operational semantics (SOS) to any imperative language with arrays and loops. Any

verification technique for the target language that supports standard instrumentation constructs

for automated analysis (i.e., nondeterministic initialisation, assertions, assumptions) can then

simply be used as a black box. As an immediate advantage, this approach may leverage a

comprehensive range of readily available techniques for the analysis of sequential imperative

programs. Furthermore, it can easily integrate new techniques as soon as they become available.

Our methodology is shown in the diagram below (Figure 4.1).

Concurrent
Formal

Specifications
S

Property
ϕ

Triple structure
T

Sequential
Imperative
Program

P

Program
Verification

FIGURE 4.1: Overview of our encoding procedure.

Essentially, from a formal specification of a distributed system S and a temporal property ϕ we

generate a program P in some imperative language. Depending on the property, we perform a

certain verification task on P which will determine whether ϕ holds in S.

Let us first clarify how we interpret a temporal property ϕ over a system S. The SOS of the

input language associates to S a labelled transition system S ≜ ⟨S,Λ,→⟩. Let AP be the set of

atomic propositions that appear in ϕ, and assume that we can always define a subset I ⊆ S of

initial states, as well as a labelling function L that associates to each state of S a subset of AP. 1

1These assumptions are intentionally abstract. The atomic propositions that may appear in ϕ, their interpretation
over the states of S, and the set of initial states depend on the semantics of the input specification language.

59

Sequential emulations 60

Then, the 4-ple K ≜ ⟨S, I, L,→⟩ is a Kripke structure that models S: therefore, the question of

whether ϕ holds in S is equivalent to asking whether K |= ϕ.

Our procedure currently supports basic invariants as well as simple emergent properties, cor-

responding respectively to LTL formulas of the form □ψ and ♢ψ, where ψ is a predicate over

atomic propositions. Its key ingredient is a two-phase encoding from distributed systems to

imperative programs. In the first step of the encoding (Sect. 4.1), we generate from S a triple

structure T. The triple structure acts as an intermediate representation and compactly represents

the behaviour of the input system. Such representation consists of a set of basic elements, or

transition triples, corresponding to the individual actions of the agents as they occur in their

behavioural specifications. We then introduce a mechanism to enable or disable these triples, so

that T correctly reproduces the behaviour of S. For instance, if we have to encode a sequential

composition a.b of two actions, we want T to capture that the second action b can only be

enabled after a has been consumed. To do so, we equip T with a program counter to keep

track of the current execution point, and assigning a unique identifier to a and b, (e.g., 1 and 2,

respectively). Then, we initialise the program counter of T to 1 to enable action a; we set it to

2 right after executing a to enable b, and to 0 right after consuming b, so that a or b cannot be

executed again. We can generalise this reasoning to other composition operators, e.g., choice and

parallel composition. In general, we can express the possible execution flows allowed by S in

terms of symbolic expressions over the values of the program counter right before and right after

consuming an action. Such entry and exit conditions will capture all the feasible flows of actions

in S by appropriately enabling or disabling the corresponding triples of T. Unlike an explicit LTS

encoding, this representation does not need a full enumeration of the states and transitions of S,

and thus retains the compactness of the original specification.

In the second step (Sect. 4.2), we obtain an emulation program P from T. The global variables

of P represent the state of S. For each triple in T, we generate an emulation function in P that

mimics the corresponding action of S. To do so, the function manipulates the global variables of

P as prescribed by the SOS rules for that action. The emulation function also enforces the entry

condition of the triple by means of an assumption over program counter variables; similarly, it

encodes the exit condition through a (possibly nondeterministic) assignment to these variables.

This approach is semantics-based: to encode a language, one has to devise the appropriate

global variables and emulation functions so as to encode the SOS of the source language. If the

semantics of the input language specifies additional transitions that S may perform, we introduce

additional emulation functions to represent them.

We then complete P with its main function, that models the evolution of S by repeatedly calling

the emulation functions. Finally, we instrument P for property checking. In particular, depending

on ϕ, we reduce the problem of checking whether S |= ϕ to either reachability in, or termination

of, P.

Sequential emulations 61

Our procedure only requires a one-time manual effort that has not been automated yet. Namely,

one has to render the semantics of the actions of the source language as code fragments that

have to be expanded within the emulation functions stubs in the target program. Once these

fragments have been provided, the procedure does not require any user interaction. To have a fully-

automated semantic-based synthesis of program verifiers, we plan to support machine-readable

rule formats, such as MSOS [184].

4.1 From Formal Specifications to Symbolically Linked Triples

We first transform S into a triple structure T by encoding the actions of the former into triples

of the latter. Intuitively, each triple of T symbolically represents transitions in the LTS of the

encoded process. The execution of S is modelled by keeping track of which transitions may be

performed at any given time. This is achieved by equipping the triple structure with a program

counter and by guarding each triple with an appropriate predicate over it.

Definition 4.1. A program counter pc = ⟨pc0, pc1, . . . , pcl⟩ is a vector of integers.

Definition 4.2. A transition triple (or triple, for short) consists of an entry condition, an action,

and an exit condition (see Definitions 4.3, 4.4, and 4.5), and is denoted as

t = ⟨▷(t), µ(t),◁(t)⟩.

Definition 4.3. The entry condition ▷(t) is a predicate over the elements of a program counter.

More specifically, it is always in the form of a conjunction of clauses ▷0 ∧▷1 ∧ · · · ∧▷l, where

the i-th clause predicates over pci. Given a program counter pc, we write pc |= ▷ to denote that

the elements of pc are a valid assignment for ▷.

Definition 4.4. The action µ(t) is either an action in the language of the specification S, or a

distinguished null action λ. We will use the null action for triples that do not directly encode the

specification, but are needed for our encoding to behave correctly.

Definition 4.5. The exit condition ◁(t) is also a predicate over the elements of pc. We write

◁i = (·) to denote that pci is unconstrained in an exit condition ◁.

Definition 4.6. A symbolically linked triple structure (SLTS; triple structure, for short) is a pair

T = ⟨T, pc⟩, where T is a set of transition triples and pc is a program counter. With a slight

abuse of notation, we may write t ∈ T whenever a triple t is a member of the set of triples of T.

Definition 4.7. A triple t ∈ T is enabled in a triple structure ⟨T, pc⟩ iff. pc |= ▷(t). In general,

any number of triples may be enabled for any given value of pc.

Sequential emulations 62

Definition 4.8. The evolution condition of a triple structure is the least relation induced by the

following inference rule:

t ∈ T pc |= ▷(t) pc′ |= ◁(t) ◁i(t) = (·) ⇒ pc′i = pci

⟨T, pc⟩ µ(t)−−→ ⟨T, pc′⟩

We call each element ⟨T, µ(t),T′⟩ in the evolution condition an evolution of T into T′ via t.

Whenever such an evolution exists, we say that T may evolve to T′ via t.

The evolution condition has four premises. The first two state that T contains an enabled triple

t; the last two define the new value of the program counter, and therefore the set of triples that

will be enabled, after the triple structure has evolved. Intuitively, the third premise says that the

new program counter pc′ must satisfy exit condition ◁(t). The fourth additionally states that

every component pc′i that was unconstrained by ◁(t) should have the same value as before the

transition. Therefore, the execution of two triples with the same exit condition will not necessarily

yield the same sets of enabled triples.

Definition 4.9 (Symbolic links). Let t an enabled triple in a triple structure T, and assume that T
may evolve to T′ via t. For each enabled triple t′ ∈ T′, we say that t is symbolically linked to t′.

We say that a triple t is symbolically linked to another triple t′ iff. t is enabled in T and there

exists an evolution of T into a T′ such that t′ is enabled in T′. Notice that multiple triples may be

enabled at the same time, and that the update operation may return multiple feasible values for

the program counter. Thus, each triple may be linked to several other ones.

Intuitively, we can construct a triple structure that mimics the LTS of any given process by giving

appropriate entry and exit conditions to each triple. We will formalise an encoding function J·K
that maps process terms to triple structures. We assume that each elementary sub-expression µ of

the encoded process term is given a unique identifier, i.e., a positive number id(µ). Notice that,

even though two sub-expressions may be identical, their identifiers are still distinct. For instance,

if the encoded process contain several occurrences of the same action, we will reserve a separate

identifier for each occurrence. The encoding function considers three process composition

operators: binary sequential composition (P ;Q); n-ary nondeterministic choice (ΣiPi); and

n-ary parallel composition (ΠiPi). We treat action prefixing (denoted a.P in CCS [180]) as a

special case of sequential composition. Processes within a parallel composition may perform

two-party synchronisation according to a (language-specific) synchronisation algebra [246]. The

encoded process may also contain process constants: we assume that these constants always refer

to the process itself. We also restrict the use of recursion, by disallowing recursion within parallel

composition (as in P ≜ a.0 | b.P), as well as unguarded recursion (as in P ≜ P + a).

Sequential emulations 63

Elementary examples. Before we formalise the encoding procedure, let us consider a couple

of elementary processes expressed in CCS, their LTSs as defined by the semantics of the language,

and the corresponding triple structures . (Figures 4.2a and 4.2b). In both examples, triples are

represented by boxes containing their entry condition, action, and exit condition, with edges

between two triples to denote that they are symbolically linked. To make our triple structure

diagrams more readable, we use the following graphical conventions:

• Each entry condition is represented as a vector of length n. In each component i of the

vector (i = 0, 1, . . .), we write k if the entry condition contains a clause pci = k, or · if the

component is unconstrained.

• We represent exit conditions likewise, but allow multiple feasible values for each compo-

nent (denoting a disjunction). For instance, after executing the a-triple of Fig. 4.2a, pc0 is

nondeterministically assigned to either 2 or 3. Note that multiple triples may be enabled at

the same time, and that each triple may be symbolically linked to many triples; conversely,

many triples may be linked to the same triple.

Notice that both examples feature a triple with an entry condition pc = pc⋆ and a null action

(λ). We call them start triples (t⋆). A start triple does not correspond to any concrete action in S,

but is always guaranteed to be executed at the very beginning. We ensure this by initialising the

program counter to a value pc⋆ that only enables the start triple (which is given a unique entry

condition). In turn, the exit condition ◁(t⋆) sets up the program counter so as to only enable

those triples corresponding to initial actions of the encoded process.

In Fig. 4.2a we consider the LTS (left) and triple structure (right) of a process a.(b.0 + c.0). In

this example, the program counter contains a single component pc0. Since the process must

necessarily perform a as its first action, the start triple t⋆ is symbolically linked with the a-triple

only. In turn, the exit condition of the a-triple may enable either the b-triple or the c-triple,

mimicking the semantics of the choice operator +. The other two triples instead update pc0 to 0

to denote that the process terminates after performing either of them.

Fig. 4.2b shows how a parallel process Π ≜ a.0 | b.0 | c.0 is encoded by a triple structure with

four triples and a program counter of length 4. The first component of the program counter, pc0,

tracks the execution of the overall process Π (the parent), while each of the other component

pc1,2,3 tracks one of the sub-processes within the parallel composition (the children of Π). Process

Π may perform any permutation of actions a, b, and c. Therefore, the exit condition of t⋆ enables

all their corresponding triples. We also track the termination of Π by adding a join triple tjoin that

has entry condition pc1 = pc2 = pc3 = 0 and no action. This entry condition is only satisfied

when all children of Π have terminated. If this is the case, the triple sets the element pc0 to 0 so

as to signal that Π itself has terminated as well. This addition may not seem necessary at this

Sequential emulations 64

a.(b.0 + c.0)

b.0 + c.0

0 0

a

b c

[︁
1
]︁
a

[︁
2,3

]︁

[︁
4
]︁
λ

[︁
1
]︁

[︁
2
]︁
b

[︁
0
]︁ [︁

3
]︁
c

[︁
0
]︁

(A) a.(b.0 + c.0).

a.0 | b.0 | c.0

b.0 | c.0

c.0 b.0

a.0 | c.0

c.0 a.0

a.0 | b.0

b.0 a.0

0 0 0 0 0 0

a b c

b c a c a b

c b c a b a

⎡
⎢⎢⎣

·
·
1
·

⎤
⎥⎥⎦ a

⎡
⎢⎢⎣

·
·
0
·

⎤
⎥⎥⎦

⎡
⎢⎢⎣

·
1
·
·

⎤
⎥⎥⎦ b

⎡
⎢⎢⎣

·
0
·
·

⎤
⎥⎥⎦

⎡
⎢⎢⎣

1
·
·
·

⎤
⎥⎥⎦ c

⎡
⎢⎢⎣

0
·
·
·

⎤
⎥⎥⎦

⎡
⎢⎢⎣

2
2
2
2

⎤
⎥⎥⎦ λ

⎡
⎢⎢⎣

1
1
1
1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

0
0
0
·

⎤
⎥⎥⎦ λ

⎡
⎢⎢⎣

·
·
·
0

⎤
⎥⎥⎦

(B) a.0 | b.0 | c.0.

FIGURE 4.2: LTSs and triple structures for two simple CCS processes.

point, but is needed when the parallel process is sequentially composed with another process

(Π;Q). In this case, the join triple updates the program counter so that the Q process may start

upon termination of Π.

Notice that each µ-triple (µ = a, b, c) symbolically represents all µ-transitions of the LTS of Π.

The vectorial program counter keeps track of all interleavings within the parallel composition

without explicitly representing them. This retains compactness.

Encoding sequentiality and choices. Let us start by considering processes with no parallel

composition. To encode these processes, a program counter with a single component pc0 is

sufficient. An action µ is encoded as a triple that has entry condition pc0 = id(µ) and action

µ. The exit condition of this µ-triple depends on the actions that may follow µ in the encoded

process. If µ is followed by a generic process term P , we can define a function ◁ [P]0 returning

an exit condition over pc0. This exit condition only enables the correct triples generated from

P , i.e., those corresponding to actions that may directly follow µ. Thus, we call ◁ [P]0 the

enabler of P . To model recursion, we simply compute the enabler of the entire process and

use it as the exit condition of the triples preceding the recursive call. For instance, consider

a process P ≜ a.P . The exit condition of the a-triple is ◁ [P]0 = ◁ [a.P]0. In general, we

define the enabler of a sequential composition P ;Q to be the enabler of P : intuitively, the triples

generated from Q cannot be enabled until P has terminated. Since we treat action prefixing as

a specific case of sequential composition, we apply this definition to obtain ◁ [a.P]0 = ◁ [a]0.

Sequential emulations 65

a.0 | a.0

a.0 a.0

0

a a

τ

a a

⎡
⎣
·
1
·

⎤
⎦ a

⎡
⎣
·
0
·

⎤
⎦

⎡
⎣
1
1
·

⎤
⎦ τ

⎡
⎣
0
0
·

⎤
⎦

⎡
⎣
1
·
·

⎤
⎦ a

⎡
⎣
0
·
·

⎤
⎦

⎡
⎣
2
2
2

⎤
⎦ λ

⎡
⎣
1
1
1

⎤
⎦

⎡
⎣
0
0
·

⎤
⎦ λ

⎡
⎣
·
·
0

⎤
⎦

FIGURE 4.3: LTS and triple structure for a process with synchronisation.

Therefore, the a-triple enables itself after being performed, and the recursive nature of P is

encoded properly.

To illustrate the procedure in detail, let us see how the process a.(b.0 + c.0) is encoded as the

triple structure shown in Fig. 4.2a. Let us assume that id(a) = 1, id(b) = 2, id(c) = 3, and let

us start by encoding the b.0 sub-term. To do so, we encode b and 0 separately and then use the

enabler of 0 as the exit condition of b. The encoding JbK is a single triple with entry condition

▷[b]0 ≜ pc0 = 2; on the other hand, 0 is the deadlocked process and thus its encoding is the

empty set. We define its enabler to be ◁ [0]0 ≜ pc0 := 0, which we use as the exit condition of

the b-triple. We encode the sub-term c.0 likewise. Finally, we encode the sequential composition

of a with the choice b.0+ c.0. First, we construct an a-triple with entry condition pc0 = 1. Then,

we compute the enabler of the choice term as the disjunction of the enablers of its sub-terms

(pc0 := 2 ∨ pc0 := 3). Informally, this exit condition will set pc0 to either 2 or 3.

Encoding of a parallel process. Let us now consider processes that contain a parallel compo-

sition operator, such as the one shown in Fig. 4.2b. To encode such a process, we give additional,

unique identifiers id(ΠiPi), id(Pi) to all parallel composition terms and their sub-terms. Each

child process within a parallel composition Π ≜ Πi Pi may evolve independently of the others.

To model that, we encode each child process as a separate set of triples, whose entry and exit

conditions consider separate elements pcid(Pi) of the program counter. The enabler of Π is the

sequence of the enablers of its children: this encodes the fact that all children are enabled from

the start. Furthermore, we add to the sequence another assignment pck := id(Π). Intuitively, by

setting pck to such a value, we guarantee that only triples from within Π may be performed until

Π terminates.

This encoding captures the interleaving of the children processes, which progress by alternating

the execution of their actions. However, many process algebras also allow parallel processes

to synchronise on pairs of actions. A general way to represent this behaviour is by means of

a synchronisation algebra σ (see Section 2.3.3). For instance, in CCS we have σ(a, b) = τ

iff. b = a, and σ(a, b) = ⊥ otherwise. Furthermore, σ(a, ∗) = a for any action a, meaning

Sequential emulations 66

that a process may always interleave its actions with others. Our approach to model two-party

synchronisation, then, is to first compute the interleaving triple structure, and then insert a

transition for each pair of actions that may synchronise. We illustrate this approach on the simple

CCS process a.0 | a.0 (Fig. 4.3). Its triple structure is obtained by first computing the interleaving

triple structure, resulting in one a-triple ta and one a-triple ta. Then, we introduce a third triple

with entry condition ▷(ta) ∧ ▷(ta), action σ(a, a) = τ , and exit condition ◁(ta),◁(ta). By

definition, whenever ta and ta are enabled, so is this newly created τ -triple. If the τ -triple is

performed, it applies ◁(ta) to the current program counter and then applies ◁(ta) to the result,

therefore setting all components of pc to 0.

Formal definitions. We formally define our translation from a behaviour S to a set of triples

via a function JP K◁k (Table 4.1), where P is a syntactic fragment of S, k is a program counter

index, and ◁ is an exit condition. Both the deadlocked process 0 and the recursive invocation

K translate to the empty set. The translation JµK◁k of a single action µ only contains one triple.

This triple has an entry condition checking that pck matches the identifier of µ, action µ, and

exit condition ◁. To translate a sequential composition P ;Q, we translate the two processes

separately and use the enabler of Q as the exit condition parameter when translating P . The

translation of a choice is the union of the translations of its terms. Finally, translating the

parallel composition of n process terms Pi requires translating each Pi with a different program

counter index, namely id(Pi). Then, a synchronisation triple is added for each pair of triples

corresponding to synchronising actions. Lastly, the join triple must be added, so that, when

all child processes have terminated, the exit condition ◁ of the parent may be applied. Finally,

Table 4.2 contains a formal definition of the enabler function which has been informally described

thus far. Both definitions are given by induction on the structure of syntactic fragments P .

Definition 4.10 (Encoding of a process). Given a process S, let T = JSKpc0=0
0 and let pc⋆ be

a program counter that does not enable any triple in T . Then, the encoding of S is the triple

structure T = ⟨T ∪ {t⋆}, pc⋆⟩, where t⋆ ≜ ⟨pc = pc⋆,⊥,◁ [S]0⟩.

System-level encoding. We consider a system S to be a composition of concurrent processes

(i.e., the agents), which we assume to be different from each other and possibly recursive. We

also assume that agents may synchronise on the pairs of actions specified in a synchronisation

algebra σS.

Definition 4.11 (Encoding of a system). Let S = {S1, . . . , Sn}. Let Ti = ⟨Ti, pc
i⋆⟩ the encoding

of Si. Then the encoding of S is a triple structure ⟨T ∪ Tσ, pc
⋆⟩ where:

• T is the union of all Ti, with appropriate adjustments to the entry and exit conditions of

triples to avoid spurious symbolic links;

Sequential emulations 67

TABLE 4.1: Definition of the translation function J·K.

J0K◁k ≜ ∅
JKK◁k ≜ ∅
JµK◁k ≜ {⟨pck = id(µ), µ, ◁⟩}

JP ;QK◁k ≜ JP K◁[Q]k
k ∪ JQK◁k

JΣiPiK◁k ≜
⋃︁

iJPiK◁k
JΠiPiK◁k ≜

⋃︁
iTi ∪

⋃︁
i̸=j {Jti, tjKσ | ti ∈ Ti, tj ∈ Tj ,σ(µ(ti), µ(tj)) ̸= ⊥} ∪ tjoin

where Ti = JPiK
(pcid(Pi)

=0)

id(Pi)

Jt, t′Kσ =
⟨︁
▷(t) ∧▷(t′),σ(µ(t), µ(t′)),

(︁
◁(t),◁(t′)

)︁⟩︁

tjoin =
⟨︂⋀︁

ipcid(Pi) = 0,⊥,◁
⟩︂

TABLE 4.2: Definition of the enabler function ◁ [·]k.

◁ [0]k ≜ (pck = 0)

◁ [K]k ≜ ◁ [P]k iff. K ≜ P

◁ [µ]k ≜ (pck = id(µ))

◁ [P ;Q]k ≜ ◁ [P]k

◁ [ΣiPi]k ≜
⋁︁

i ◁ [Pi]k

◁ [ΠiPi]k ≜ (pck = id(ΠiPi)) ∧
⋀︁

i ◁ [Pi]id(Pi)

• Tσ contains a triple for each pair of triples ti ∈ Ti, tj ∈ Tj such that i ̸= j and the actions

of the two triples may synchronise according to σS;

• pc⋆ is the concatenation of all pci⋆.

Intuitively, when we construct T we need to adjust entry and exit conditions of each Ti so that

they refer to the correct components of the concatenated program counter.

To illustrate the system encoding procedure, we will describe and encode a simplified two-phase

commit (2PC) scenario [112]. A two-phase commit protocol involves a number of workers, which

must collectively decide whether to commit or rollback a transaction by interacting through a

coordinator. In the first phase, the coordinator asks the workers to cast a vote. Each worker may

either agree or disagree on committing the transaction. In the second phase, if all workers have

agreed, the coordinator tells them to commit the transaction; otherwise, the coordinator sends

them a rollback request. In any case, the workers send an acknowledgement message back to the

coordinator and finalise the transaction. We consider a system composed of one coordinator and

Sequential emulations 68

one worker, which act according to the following CCS processes:

COORD ≜ vote.
(︁
agree.commit .commit .ok .0 + disagree.rollback .rollback .nok .0

)︁
(4.1)

WORKER ≜ vote.agree.
(︁
commit .commit .WORKER + rollback .rollback .WORKER

)︁
(4.2)

The set of triples that encode this system is shown in Fig. 4.4. It includes the individual triple

structure of each agent, namely COORD (Fig. 4.4a) and WORKER (Fig. 4.4b), and an additional

set of τ -triples, one for each pair of complementary actions (Fig. 4.4c). The program counter

of the whole system has two components, respectively tracking the evolution of WORKER and

COORD.

Since WORKER always agrees to commit, we would expect the nok action (denoting that a

transaction has been rolled back) to be unreachable. However, CCS processes are not forced

to synchronise: they might simply perform their actions independently from each other. As a

consequence, this system (and its triple structure) admits several traces leading to nok: one of

them, namely ⟨τ, disagree, agree, τ, rollback ,nok⟩, is graphically represented in Fig. 4.5. Each

diagram in the figure represents the triple structure of Fig. 4.4: black circles denote enabled

triples.

Language-specific interaction rules. In some process algebras there is a strict difference

between terms that may freely occur within the structure of a process, and terms that may only

appear at the top level. These operators typically describe additional rules related to the interaction

between agents. For instance, in our encoding of CCS we assume that the restriction operator

P \Θ (where Θ is a set of actions) may only be used on the top-level process. This does not lead to

any loss of generality for our encoding: a CCS process with any number of restriction sub-terms

may always be expressed as a process with a single restriction, by means of a suitable α-renaming

to avoid unwanted name capture. Encoding a restricted system S \ Θ is straightforward: we

simply encode S, then remove any triple whose action is (equal or complementary to) a member

of Θ.

To show the effect of restriction, let us consider a variant of the 2PC example where we restrict

the system by Θ ≜ {agree, disagree, commit , rollback}. This restriction forces the coordinator

to synchronise with the worker on all actions within Θ: since WORKER is never willing to

disagree, the action nok becomes unreachable. The triple structure of the restricted 2PC system

is obtained from the one of Fig. 4.4 by removing all triples except the ones encoding ok, nok, and

the synchronisations.

Supporting multi-party synchronisation. Several process algebras, such as CSP and LOTOS,

feature multi-party synchronisation between parallel processes. As an example, let us consider

Sequential emulations 69

[︃
·
1

]︃
vote

[︃
·

2,3

]︃

[︃
·
10

]︃
λ

[︃
·
1

]︃

[︃
·
2

]︃
agree

[︃
·
4

]︃ [︃
·
3

]︃
disagree

[︃
·
5

]︃

[︃
·
4

]︃
commit

[︃
·
6

]︃

[︃
·
6

]︃
commit

[︃
·
8

]︃

[︃
·
8

]︃
ok

[︃
·
0

]︃

[︃
·
5

]︃
rollback

[︃
·
7

]︃

[︃
·
7

]︃
rollback

[︃
·
9

]︃

[︃
·
9

]︃
nok

[︃
·
0

]︃

(A) COORD.

[︃
11
·

]︃
vote

[︃
12
·

]︃

[︃
17
·

]︃
λ

[︃
11
·

]︃

[︃
12
·

]︃
agree

[︃
13,14

·

]︃

[︃
13
·

]︃
commit

[︃
15
·

]︃ [︃
14
·

]︃
rollback

[︃
16
·

]︃

[︃
15
·

]︃
commit

[︃
11
·

]︃ [︃
16
·

]︃
rollback

[︃
11
·

]︃

(B) WORKER.

[︃
11
1

]︃
τ

[︃
12
2,3

]︃ [︃
12
2

]︃
τ

[︃
13,14

4

]︃ [︃
13
4

]︃
τ

[︃
15
6

]︃ [︃
14
5

]︃
τ

[︃
16
7

]︃ [︃
15
6

]︃
τ

[︃
11
8

]︃ [︃
16
7

]︃
τ

[︃
11
9

]︃

(C) Synchronisation triples.

FIGURE 4.4: Triple structure generated from the specifications of the two-phase commit (2PC)
example.

τ−→ disagree−−−−−→ agree−−−→ τ−→ rollback−−−−−→

FIGURE 4.5: Graphical representation of a possible execution of the 2PC example.

Hoare’s parallel composition operator P |[L]|Q, where L is a set of actions. Intuitively, P and Q

may interleave the execution of all actions that are not in L, and they are forced to synchronise on

those in L. Whenever they do synchronise on an action a ∈ L, the parallel composition performs

an a-move. This allows an external process to synchronise with the a action again. For instance,

a process a |[{a}]| a |[{a}]| a may perform a single a-move and become
√

. This behaviour is

formalised by the following semantic rules:

P
µ−→ P ′ µ ̸∈ L

P |[L]|Q µ−→ P ′ |[L]|Q
Q

µ−→ Q′ µ ̸∈ L

P |[L]|Q µ−→ P |[L]|Q′
P

a−→ P ′ Q
a−→ Q′ a ∈ L

P |[L]|Q a−→ P ′ |[L]|Q′

A synchronisation algebra σ such that σ(a, a) = a and σ(a, ∗) = ⊥ for all a ∈ L can fully

capture Hoare’s operator · |[L]| ·. However, the encoding function of Table 4.1 only accounts for

operators such as Milner’s, where σ(a, ∗) = a for all actions. Algorithm 1 sketches a possible

approach to generate the set of triples for a process P defined as n processes composed together

Sequential emulations 70

input :A parallel composition P1 |[L]|P2 |[L]| · · · |[L]|Pn, and a synchronisation algebra σ
that captures · |[L]| ·

output :A set of transition triples T

1 Ti ← JPiK
(pcid(Pi)

=0)

id(Pi)
, i = 1, . . . , n

2 T ← {t ∈ T1 | ∃α ̸= ∗.σ(µ(t),α) ̸= ⊥}
3 foreach i = 2, . . . , n do
4 I ← ∅, R ← ∅
5 foreach (t, t′) ∈ T × Ti.σ(µ(t), µ(t

′)) ̸= ⊥ do
6 I ← I ∪ Jt, t′Kσ
7 R ← R ∪ t

8 end
9 foreach t ∈ T do

10 if ∀α.σ(µ(t),α) ̸= ⊥.∀t′ ∈ Ti.µ(t
′) ̸= α then

11 R ← R ∪ t
12 end
13 end
14 T ← (T \R) ∪ I

15 end
16 foreach t ∈ {T1 ∪ · · · ∪ Tn}.σ(µ(t), ∗) ̸= ⊥ do
17 T ← T ∪ t
18 end
19 T ← T ∪ tjoin

Algorithm 1: Encoding Hoare’s parallel operator as a set of transition triples.

with Hoare’s operator: P ≜ P1 |[L]| . . . |[L]| Pn. In the rest of this paragraph we will also use

the shorter notation P ≜ |[L]|n
i=1

Pi.

First, a set of triples Ti is generated for each process Pi (line 1). Then, we accumulate a set T

of triples that initially contains all triples in T1 whose may synchronise with some other action

α (line 2). Then, for each Ti, i = 2, . . . , n, we accumulate two set of triples which will be

either inserted into T (I) or removed from it (R). Both are initially empty (line–4). For each pair

of triples (t, t′) in (T × Ti) such that their actions may synchronise, we add a synchronisation

triple to I (line 6) and add the triple t to R (line 7). We also add to R all triples t ∈ T such

that µ(t) cannot synchronise with any triple in Ti (lines 9–12). Intuitively, we need to remove

such triples because Hoare’s parallel operator requires all processes to synchronise on the same

action. If Ti contains no triple with such an action, it means that Pi is not willing to perform that

action. Therefore, a triple t ∈ T that cannot synchronise with any triple in Ti encodes a transition

that cannot happen, and thus must be removed. At the end of each iteration of the outer loop,

we update T by removing all triples that also belong to R, and then adding the triples from I

(line–14) . Once all Ti have been processed, we also add to T those triples of T1, . . . , Tn whose

actions are not forced to synchronise (lines 16–18), and finally add the join triple (line 19).

Having described how Algorithm 1 works, we now state two lemmas concerning its time

Sequential emulations 71

complexity and its correctness when computing the SLTS for a process P ≜ |[L]|n
i=1

Pi.

Intuitively, Lemma 4.12 states that Algorithm 1 runs in polynomial time, while Lemma 4.13

shows that each triple within the output of the algorithm represents either an action that does not

belong to L, or one that is in L and upon which all processes are willing to synchronise. Thus, T

correctly emulates the behaviour of Hoare’s parallel operator.

Lemma 4.12 (Time complexity of Algorithm 1). Let P ≜ |[L]|n
i=1

Pi, and let σ be a synchroni-

sation algebra that captures · |[L]| ·. Assume that each Pi contains at most m actions, and that

no two actions within each Pi may synchronise. Then, Algorithm 1 with input ⟨P,σ⟩ terminates

in time O(n ·m2).

Proof. The lack of synchronisation within each Pi implies that each triple structure Ti contains

no synchronisation triples. Thus, each Ti contains at most O(m) triples and may be generated

in time O(m). Therefore, both line 1 and the loop at lines 16–18 run in time O(n ·m). Let us

now focus on the loop at lines 3–15. The inner loop at lines 5–8 features a Cartesian product

between two triple structures T , Ti. As said above, Ti contains O(m) triples. We claim that

T also contains O(m), for all iterations of the outer loop. In fact, T is initialised to a subset

of T1, so it contains O(m) triples before the first iteration of the outer loop (line 2). At each

iteration, T is updated by adding and removing triples that belong to sets I and R, respectively

(line 14). Notice, however, that I and R are empty at the beginning of each iteration of the outer

loop (line 4), and that every time time a triple is added to I one is also added to R (lines 6–7).

Therefore, T always contains O(m) elements. The inner loop, then, must check O(m) ·O(m)

pairs of triples, and thus runs in time O(m2). Therefore, the outer loop runs in time O(n ·m2)

and dominates the overall running time of the algorithm.

Lemma 4.13 (Correctness of Algorithm 1). Let P ≜ |[L]|n
i=1

Pi, σ a synchronisation algebra

that captures · |[L]| ·, and T the triple structure obtained by running Algorithm 1 on input ⟨P,σ⟩.
Additionally, let T1, . . . , Tn the triple structures generated after executing line 1 of Algorithm 1.

Then, a triple t belongs to T if and only if one of the following holds:

1. t belongs to some Ti and σ(µ(t), ∗) ̸= ⊥;

2. t is the join triple;

3. There exist t1 ∈ T1, t2 ∈ T2, . . . , tn ∈ Tn such that t = J. . . JJt1, t2Kσ, . . .Kσ, tnKσ.

Proof. All triples that satisfy (1) or (2) are added to T at lines 16–19. To show that (3) is a

sufficient condition for t being in T , let us consider how triples are added to T throughout the

algorithm. Initially, T contains those triples of T1 whose actions may synchronise according to

L (line 2). Whenever we find within some Ti a triple t′ that may synchronise with some triple

t ∈ T , we replace t with the synchronisation triple Jt, t′Kσ (lines 5–8). Furthermore, if for some

Sequential emulations 72

t ∈ T , some Ti contains no such triple, we remove t from T (lines 9–12). Therefore, when the

loop at lines 3–15 ends, only those triples that satisfy (2) are in T .

Since no other triples are added to T , a triple that satisfies neither (1), nor (2), nor (3) cannot be

in T when the algorithm terminates.

4.2 From Symbolically Linked Triples to Imperative Programs

We now describe how to generate the emulation program P for the system S, relying on T as

an intermediate representation for the individual behaviours of the agents. The structure of P is

shown in Fig. 4.6, where N denotes the total number of agents in S, pc[N] the program counter,

and agent, action respectively the identifier of the agent and of the action of S currently

being emulated. Separate emulation functions in P encode the transition triples obtained by the

procedure from Section 4.1. The program in the figure represents a simplified version of the

encoding for 2PC system described in the previous section and whose STLS is shown in Fig. 4.4.

For instance, function vote emulates the triple vote in Fig. 4.4a. The assume statement at the

beginning implements the entry condition of the triple (see e.g. line 4). The nondeterministic

assignment and the assume statement at the end implement the exit condition. For conciseness

we do not report the other emulation functions. When dealing with more sophisticated SOS

rules, it may be necessary to define additional global variables to represent other information

about the state of S. The emulation functions can manipulate such global variables following

the operational semantics of the specification language. Notice that, if multiple agents have the

same behaviour, we only need to encode that behaviour into emulations functions once. Then,

we may use a global variable id within each function to determine which agent is performing

the corresponding action (not shown in the program). Thus, we can concisely represent systems

that contain multiple agents with the same behaviour. In principle, such an encoding could also

support the creation of additional agents during the evolution of the system by using dynamic

arrays. However, for simplicity we assume that the number of agents is fixed.

In the rest of the encoding of Figure 4.6, we embed the scheduler (lines 28–41) along with a

few ancillary functions. The scheduler initialises the global state of the program by invoking

function init() (line 29), that also initialises the program counters of the agents according to

the exit conditions of their start triples. This is equivalent to implementing each start triple as an

emulation function and initialising the program counters according to pc⋆.

At each iteration of the main loop, the scheduler nondeterministically picks an agent to simulate,

say agent = i, by invoking next() (lines 22–26). Then, it simulates an action of Si by

invoking the corresponding emulation function. Any of the emulation functions can be selected

Sequential emulations 73

1 int pc[N], agent, action;
2
3 vote() {
4 assume(pc[agent] = 1);
5 action := vote;
6 pc[agent] := *;
7 assume(pc[agent] = 2 ∨ pc[agent] = 3);
8 }
9
10 ... // Other emulation functions
11
12 init() {
13 pc[1] := 11; // Worker
14 pc[0] := 1; // Coord
15 }
16
17 check() {
18 if(¬always) error;
19 if(eventually) exit;
20 }
21
22 next() {
23 if (fair) agent := (agent + 1) % N;
24 else agent := *;
25 assume(agent < N);
26 }
27
28 main() {
29 init();
30
31 while (true) {
32 next();
33
34 choice := *;
35 if (choice = 1) vote();
36 if (choice = 2) agree();
37 ...
38
39 check();
40 }
41 }

FIGURE 4.6: Emulation program for the 2PC system.

at each iteration of the scheduler. However, the assumptions on the program counter of agent

will prune away unfeasible executions by enforcing the entry conditions.

The nondeterministic choice of the agent to simulate models the interleaving of the behavioural

processes of the agents. In addition, the scheduler may nondeterministically attempt to invoke a

system-level emulation function (i.e., synchronisation in CCS). This linearises the concurrent

execution of agent-level transitions (S1, . . . , Sn) and of system-level transitions and yields

different advantages. First, it models the interleaving compactly: thanks to symbolic expressions

and nondeterministic updates to the program counters, it can represent an exponential number of

feasible executions. Second, it removes concurrency and therefore allows to use program analysis

techniques that only support sequential programs. Third, it allows to model scheduling variations

by simply restricting the nondeterminism over the interleaving of agents, i.e., by overriding the

next() function. Currently, we provide a completely nondeterministic scheduler as well as a

round-robin one, depending on the flag fair.

Sequential emulations 74

A function check() encodes the property ϕ to verify (lines 17–20). The code sample shows

both types of encodings; however, in practice only one property at a time is encoded. In the case

of an invariant property, we simply add the formula to the program as an assertion, which is

checked at every step of the scheduler. For instance, if we want to instrument the program of

Fig. 4.6 to verify whether the fail action is unreachable in the 2PC system, we simply replace the

body of function check() with the statement if (action = fail) error;. To deal with

emergent properties, we use the state formula as a termination condition for the whole program.

Then, we can perform termination analysis on the generated program. Since the program can

only terminate when ϕ holds, verifying that the program unconditionally terminates is equivalent

to verifying that ϕ holds in S. In our example program, we can check whether an ok action is

always reached in the 2PC system with the statement if (action = ok) exit;. If the

source language defines agents with individual states, we can easily support properties over them,

possibly containing existential and universal quantifiers over the agents. To do so, we first apply

quantifier elimination and then encode the resulting first-order formula into a predicate over the

variables of P that encode the state of the agents.

Size of the emulation program. The encoding function of Sect. 4.1 generates at most one

triple for each elementary action in the system (triples corresponding to restricted actions are

removed), plus one triple for each pair of synchronising actions. The emulation program, then,

will contain one emulation function for each of these triples. The size of the program counter for

each agent is linear in the number of parallel processes in its behaviour.

Correctness sketch. We now sketch a correctness proof for our two-step encoding. Intuitively,

such proof shows that, given a system S and an invariant property ϕ, an error state is reachable in

the emulation program P generated from them if and only if S violates ϕ.

As shown in Figure 4.6, P is composed of a scheduler, and separate functions to emulate the

transitions of S. We assume that each emulation function correctly reproduces the semantics of

its corresponding action by performing adequate assignments to the state variables of P. At each

iteration, the scheduler emulates a transition by calling one of these functions. The interleaving

between agents is modelled by the nondeterministic assignment to the agent variable (lines 22–

26). State variables are only altered within an emulation function, and the property check is

performed right after each emulation step (line 39), so that a violation of ϕ in S will immediately

cause an assertion failure in P.

The problem, then, is to show that the flow of actions for the individual agents of S is preserved

in P. In particular, we wish P to reproduce any possible trace of S without introducing spurious

executions. Intuitively, this is guaranteed in P by the entry guards and the exit assignments within

the emulation functions: the entry guards restrict the possible emulation functions that can be

Sequential emulations 75

invoked by the scheduler at the current emulation step; the exit assignments update the set of

emulation functions from which the scheduler can nondeterministically pick at the next emulation

step. For example, considering Figure 4.2a, right after executing action a, nondeterministically

either b or c can be executed.

Lemma 4.14 (Completeness of Sequential Emulation). For each feasible execution f of S, there

exists a feasible execution g of P such that in g the emulation functions are invoked exactly in the

same order as their corresponding actions in f .

Proof. The proof is by induction on the length of the execution trace f of S. In the following, we

assume for simplicity that S is composed of a single agent.

In the init() function (lines 12–15), we initialise the program counter of P so that only the

emulation functions for the initial actions of S are enabled, and thus only these functions can be

executed in the first iteration of the scheduler (Section 4.2). Thus, the lemma holds for all traces

of length 1.

Now, assuming that P correctly emulates S up to n− 1 actions, let β be the n-th action for some

trace of S, and α the action immediately preceding β. We need to show that there exists an

execution of P such that the (n− 1)-th and n-th emulation steps invoke their emulation functions

fα and fβ , respectively. By the inductive hypothesis P emulates S up to n− 1 actions, therefore

there must exist an execution of P where fα is invoked at the (n− 1)-th emulation step.

If β immediately follows α within a sequential composition in S, the exit assignment of the

program counter at the end of fα will match the guard at the beginning of fβ , and thus fβ may

be invoked right after emulating α.

If β and α occur as parallel actions in S, then β might have been performed instead of α as the

(n− 1)-th action for some other trace of S. In that case, by inductive hypothesis, fβ would have

been invoked instead of fα. This means that the guard for fβ is already satisfied at the (n− 1)-th

iteration of the scheduler. The exit assignments and entry guards within fα and fβ in P work on

different elements of the program counter, and thus cannot interfere with each other (Fig. 4.2b).

Therefore, fβ can be executed right after fα.

Lemma 4.15 (Soundness of Sequential Emulation). For each feasible execution g of P, there

exists a feasible execution f of S such that the actions in f follow the same order in which the

emulation functions are invoked in g.

Proof. If g has length 1, then it is composed by a call to an emulation function. By construction

of the intermediate representation T, and of the start triple in particular, this function must

necessarily correspond to an initial action of S. Thus, all executions of length 1 satisfy the lemma.

Sequential emulations 76

Let us now assume by way of contradiction that there exists an execution of P where fγ is

invoked at the n-th emulation step right after fα, but γ never follows α in any trace of S. Assume,

again, that P correctly emulates S up to the first n − 1 actions (inductive hypothesis). If fγ is

called at the n-th iteration of the scheduler, then its guard must be satisfied. Two cases may apply:

either the guard was also satisfied at the previous emulation step, or it was not.

In the first case, there exists another execution of P where fγ is the (n−1)-th called function. By

the inductive hypothesis, γ must be the (n− 1)-th action for some trace of S. If α and γ can both

be the (n− 1)-th action, either they are parallel actions or they occur within a nondeterministic

choice in S. If they are parallel actions, then we have found a contradiction: there must be a trace

of S where γ follows α. On the other hand, if there is a nondeterministic choice between α and γ,

then the exit assignment in fα is constructed so that the entry guard of fγ can never be satisfied

(Fig. 4.2a). Thus there cannot be any execution of P where fα is followed by fγ .

The second case implies that an exit assignment at the end of fα causes the guard of fγ to be

satisfied. To do that, the exit assignment of fα must take into account the guard of fγ . However,

this only happens when α is the last action of some sub-process of S, which in turn is sequentially

composed with some other sub-process that has γ as a potential initial action. But then there

must exist a trace where γ follows α.

Theorem 4.16 (Correctness of Sequential Emulation of Invariant Properties). Assuming that ϕ is

an invariant property, given the system specification S and the property ϕ, program P contains a

reachable assertion failure if and only if ϕ does not hold in S, i.e., there exists a feasible execution

trace of S that violates ϕ.

Proof. The theorem follows from Lemma 4.14 and Lemma 4.15.

4.3 Summary

In this chapter, we have proposed a semantics-based technique that reduces property checking of

distributed systems to verification of sequential programs. An encoding procedure translates the

initial system under consideration and a property of interest into a sequential program, over which

reachability or termination analysis can be performed. The analysis verdict attests whether the

property of interest holds in the initial system. Section 4.1 presented the first step of our encoding

procedure and introduced the concept of symbolically linked triple structures (SLTS), which

we use as an intermediate representation between input specification and output programs. In

Section 4.2, we described how an SLTS is translated into a sequential program, and we sketched

a correctness proof of our encoding procedure.

Chapter 5

Prototype implementation

In this chapter we present SLiVER, a prototype tool for the analysis of multi-agent systems de-

scribed in our specification language (Chapter 3) that relies on the encoding procedure introduced

in Chapter 4. The source code of SLiVER is publicly available at the URL https://github.

com/labs-lang/sliver, which also contains binary releases for the GNU/Linux operating

system.

5.1 Usage

SLiVER may be invoked on a specification file spec.labs with the following command line:

sliver.py spec.labs [params] [--fair] [--backend b] [--steps s]

where square brackets denote optional parts of the command line. The params argument is

a comma-separated sequence of param=value pairs. For instance, a valid value of params

might be n=5,size=10. This argument must specify a value for every external parameter that

appears in spec.labs. The --fair flag tells SLiVER to enforce round-robin scheduling

of the agents (see Section 4.2). The user may select the desired analysis back end by adding

--backend b to the command line. Currently, b must be either cadp [100], cbmc [59],

cseq [138], or esbmc [97]. The default back end is CBMC. This choice was mostly driven by

experience gained while developing both SLiVER itself and the LAbS+ specifications shown in

Section 3.4: namely, we found that bit-precise BMC with a shallow verification bound quickly

discovered subtle bugs in the specifications, and also allowed us to detect errors in early prototypes

of the encoding procedure itself.

Lastly, option --steps s tells SLiVER to verify the system up to s transitions. This is done

by replacing the endless scheduler loop in the emulation program (Figure 4.6, line 31) with one

77

Prototype implementation 78

1 <initialization>
2 fork[0] <-- 0
3 fork[1] <-- 0
4 fork[2] <-- 0
5 fork[3] <-- 0
6 fork[4] <-- 0
7 Phil 0: status <- 0
8 Phil 1: status <- 0
9 Phil 2: status <- 0
10 Phil 3: status <- 0
11 Phil 4: status <- 0
12 <end initialization>
13 Phil 0: fork[0] <-- 1
14 Phil 4: fork[4] <-- 1
15 Phil 4: status <- 1
16 Phil 3: fork[3] <-- 1
17 Phil 3: status <- 1
18 Phil 2: fork[2] <-- 1
19 Phil 2: status <- 1
20 Phil 1: fork[1] <-- 1
21 Phil 1: status <- 1
22 Phil 0: status <- 1
23 <property violated>

(A) A counterexample trace for property
NoDeadlock of Listing 3.1a.

1 <initialization>
2 Node 0: leader <~ 3,0
3 Node 1: leader <~ 3,1
4 Node 2: leader <~ 3,2
5 <end initialization>
6 Node 0: leader <~ 0,3
7 Node 2: leader <~ 2,4
8 <Node 0: confirm ‘leader’>
9 Node 1: leader <~ 0,3
10 <Node 0: end confirm ‘leader’>
11 <Node 1: propagate ‘leader’>
12 <Node 1: end propagate ‘leader’>
13 <Node 0: propagate ‘leader’>
14 <Node 0: end propagate ‘leader’>
15 <Node 2: confirm ‘leader’>
16 Node 0: leader <~ 2,4
17 Node 1: leader <~ 2,4
18 <Node 2: end confirm ‘leader’>
19 <Node 0: propagate ‘leader’>
20 <Node 0: end propagate ‘leader’>
21 Node 0: leader <~ 0,8
22 <Node 0: propagate ‘leader’>
23 Node 1: leader <~ 0,8
24 Node 2: leader <~ 0,8
25 <Node 0: end propagate ‘leader’>
26 <property satisfied>
27 <deadlock>

(B) A simulation of the leader election system
(Listing 3.1b).

FIGURE 5.1: Example of SLiVER outputs.

that exits after s iterations. If this option is omitted, or s is set to 0, SLiVER attempts to verify

the full system.

The tool supports other flags, not shown above. If an invocation is enriched with --verbose,

SLiVER will print the full output from the back end. The --debug flag enables the output of

additional messages for diagnostic purposes. Finally, the --show flag forces SLiVER to print

the emulation program and quit without performing any analysis.

Example 5.1 (Verification of a LAbS+ system). Let us consider the dining philosophers system

of Figure 3.1a. To verify whether a system of, say, 5 philosophers violates the invariant property

NoDeadlock, we invoke SLiVER with the command line

sliver.py philosophers.labs n=5

The resulting counterexample is translated back into a LAbS+-like syntax and shown to the

user (Figure 5.1a). The output is divided into two parts: an initial section, delimited by

<initialization>...<end initialization>, which describes the initial state of

the system for the counterexample; and the actual trace, i.e., a sequence of LAbS+ assignments

that leads to a property violation.

Prototype implementation 79

Front end Encoder Encoder Instrumenter Backend Translator

Backend wrapper

OutcomeInput file

params

fair

backend

φ

S T P P′ output

(A) Encoding and analysis of C emulation programs.

Front end Encoder Encoder

Evaluator

Executor

Translator

CADP wrapper

OutcomeInput file

params

fair

backend

simulate, steps

S

φ

T P

cex

trace(s)

(B) Encoding into LNT programs and analysis with CADP tools.

FIGURE 5.2: SLiVER analysis workflows.

5.2 Analysis workflow

In this section we describe how SLiVER analyses a given LAbS+ specification. Roughly, the

workflow involves performing the encoding procedure of Chapter 4 and then running an analysis

backend on the resulting emulation program.

As of now, SLiVER may generate emulation programs in either the C programming lan-

guage [141] or the LNT process calculus [103]. We chose C because of its relevance as a

programming language and of the abundance of existing verification tools targeting it. We chose

to also generate LNT programs for two reasons. We wanted to show that the procedure of

Chapter 4 is general with respect to the language chosen for the emulation program, and we alo

wanted to leverage the CADP analysis toolbox [100], which contains a wide range of tools for the

simulation and verification of LNT programs and supports an expressive property language [170].

In this work, we have avoided encoding our specifications into formalisms that may be directly

understood by a solver, such as the SMT-LIB input format [24]. This choice has several motiva-

tions. First, it allows us to experiment with a wide selection of analysis techniques provided by

mature verification tools. Also, while SLiVER currently generates verification-oriented code,

we envision that it may also generate executable code in the future. Thus, a behaviour could be

first proved safe through formal verification, and then compiled to run on real agents. Having an

encoding procedure that targets general-purpose languages makes this goal more reachable. The

main drawback of this approach is that the tools which we use to verify the SLiVER-generated

programs usually perform their own translation towards another format, which is then fed to a

solver. If SLiVER directly performed its encoding towards such a format rather than using C (or

Prototype implementation 80

LNT) as an intermediate language, the resulting problem would likely be more compact and thus

easier for the solver to analyse. However, this is not a fundamental limitation, as the architecture

of our tool allows us to easily add a translation towards, e.g., SMT-LIB in the future.

C-based workflow. Figure 5.2a shows the workflow that SLiVER follows to encode and verify

a specification as a C program. First, a front end parses and preprocesses a LAbS+ input file (see

Section 3.5). During the preprocessing step, external parameters in the input file are replaced

with the values provided by the user via the parameters argument. The front end returns a

specification S and a property φ.

Then, the two-step encoding described in Chapter 4 is performed. In the first step, the tool creates

a triple structure for each Behaviour process defined in the specifications, and then merges

them in a triple structure T that encodes the entire system. The second step of the encoding uses

T, along with φ and some information from S (such as the total number of agents to encode)

to generate the emulation program P. The fair flag specifies whether the emulation program

should implement a round-robin scheduler (see Section 4.2).

Finally, the emulation program is passed to a backend wrapper. The wrapper first instruments

the program for compatibility with the chosen backend (e.g., by using the correct syntax to

model nondeterministic initialisation of variables, assertions, and assumptions). Then, it calls

the backend analysis tool with appropriate settings. These settings may change according to the

property φ to verify, as well as the values of simulate and steps. The wrapper also takes

care of translating the output returned by the backend into a LAbS-like syntax before showing it

to the user. This makes the output easier to understand and effectively hides the details of the

emulation program from the end user.

LNT-based workflow. The workflow for LNT emulation programs is similar to the one used

for C programs. The main difference is that it also supports simulation of the given system: if

SLiVER is invoked with --simulate n (where n > 0) it will generate n simulation traces of

the given system (provided that the chosen backend supports simulation). The length of each

trace may be bounded to s by using the option --steps s.

The workflow makes use of two tools from the CADP toolbox, namely Evaluator and Executor.

Evaluator, on the one hand, is a model checker that can evaluate properties expressed in the

language MCL [170], a temporal logic based on the modal µ-calculus extended with regular

action formulas. MCL also features value-passing constructs, but we currently do not use them.

Executor, on the other hand, performs a bounded random exploration of the state space of a given

program. Starting from the initial state, it repeatedly enumerates and then randomly chooses one

of the transitions going out of the current state, until it has generated a sequence of the requested

Prototype implementation 81

length. Explorations can be made reproducible by manually providing a seed for the internal

pseudo-random number generator.

The LNT-based workflow is shown in Figure 5.2b, where all those components whose behaviour

does not change with respect to the C-based workflow are dimmed. Of course, the second step of

the encoder outputs a program written in LNT, rather than in C. Then, a CADP wrapper checks

the value of the simulate option and launches the appropriate analysis tool. If simulate

is omitted or set to 0, the wrapper invokes Evaluator to model-check P. If a counterexample is

found, a translation module converts it to a LAbS-like syntax and shows it to the user; otherwise,

the user is notified that φ holds in S. In case the user asked instead for one or more simulation

traces, SLiVER calls Executor to generate them. Each trace is then translated back into LAbS+

and shown to the user. Simulation traces will also contain information about an invariant property

being violated or an emergent property becoming satisfied.

Example 5.2 (Simulation of a LAbS+ system). Now, assume that we want to simulate the

evolution of the leader election system of Figure 3.1b. To do so, we invoke SLiVER with the

following command line:

sliver.py leader.labs n=3 --backend cadp

--simulate 1 --steps 100

This command tells SLiVER to generate an LNT emulation program from spec.labs and then

pass it to the Executor tool provided by CADP. The program is instrumented so that SLiVER will

print a message whenever property LeaderIs0 is satisfied during the simulation. A possible

output for this command is shown in Figure 5.1b. Again, the output describes first the initial state

of the system, and then the steps of the simulation trace. Notice that all stigmergic assignments

within the trace show both the new value and timestamp for the assigned variable. In the first

steps of this trace, nodes 0 and 2 update leader to their respective ids. Then, node 0 sends a

confirmation message for leader. It does so because it had to compute the guard leader >

id. Node 1 picks up the message and updates its value of leader accordingly (lines 8–10).

On the other hand, node 2 ignores the message, since its own value of leader has a higher

timestamp. After a sequence of messaging rounds, during which node 0 sets leader to 2

(line 16), the same node updates yet again leader to 0 (line 21). Then, a propagation message

from node 0 forces the other nodes to accept that value for leader, and property LeaderIs0

becomes satisfied (line 26). At this point, the system reaches a deadlocked state since no agent is

able to perform any action, and the trace ends (line 27).

Implementation details. The LAbS+ parser and encoder are implemented in about 2500 lines

of F#. The encoder generates emulation programs by relying on code templates which amount to

Prototype implementation 82

450 additional lines for each supported language (currently, C and LNT). The rest of SLiVER

consists of roughly 1000 lines of Python. F# belongs to the ML family of strongly-typed

functional programming languages [181], and thus provides advanced features such as (possibly

recursive) algebraic data types, pattern matching, type inference, and higher-order functions [228].

These features were useful in the development of the LAbS+ parser and the implementation of

the encoding procedure. The Python layer of SLiVER accepts and validates user input, invokes

the parser/encoder binary so as to generate the emulation program, feeds it to a verification back

end, and performs the conterexample translation (if a counterexample is found). We chose to

implement these facilities in Python due to its dynamic nature and its extensive standard library,

which allow for rapid development.

5.3 Handling language-specific features

We now discuss how SLiVER encodes some features that are specific to LAbS and LAbS+, and

therefore were not covered by the general description of the encoding procedure.

Stigmergic interaction. According to the semantics of LAbS, an agent may send a propagation

or confirmation message whenever it has at least one element in its sets of pending messages Zp

and Zc. We encode this behaviour by inserting two additional emulation functions, propagate

and confirm, into the emulation program. These functions nondeterministically pick up an

agent with a pending message and emulate the stigmergic message-passing transitions formalised

by the rules of Table 3.8. At each iteration, the scheduler may decide to call one of these functions

(assuming that there is at least one agent with a pending message), or another emulation function

instead. This models the asynchronous nature of stigmergic interaction.

Guards. As described in Section 3.2, LAbS allows to define a guarded process g → P that

behaves as P on the condition that predicate g holds. We encode this construct by decorating

emulation functions with additional assumption statements that model the guards in the input

specifications. Consider for instance the leader election system specified by Figure 3.1b. Agents

in that system follow a guarded recursive behaviour: they can assign their id to variable

leader, but only if the id of the current leader is greater than theirs (Figure 5.3a). The triple

structure for this behaviour has a start triple, plus another triple that encodes action leader

↝id. SLiVER encodes the latter by means of the emulation function shown in Figure 5.3b.

There, L[i][0] stores the value of the stigmergic variable leader for the i-th agent, and

Ltstamp[i][0] contains its associated timestamp. Note that the first assumption statement in

the function (line 2) compares the active agent’s value of leader with its own id. If this assumption

holds, then the emulation function may proceed by first evaluating the entry condition (line 3),

Prototype implementation 83

1 Behaviour =
2 leader > id ->
3 leader <~ id;
4 Behaviour

(A) LAbS+ specification.

1 void emulation_fn() {
2 assume(L[id][0] > id);
3 assume(pc[id][0] == 1);
4
5 // Implement rule LSTIG (Table 3.7)
6 assume(Zc = Zp = ∅);
7 L[id][0] = id;
8 Ltstamp[id][0] = tod();
9 Zp[id][0] = 1;
10
11 pc[id][0] = 1;
12 }

(B) Guarded emulation function for leader ↝id.

FIGURE 5.3: Encoding LAbS+ guards in C.

then by performing action leader ↝id (lines 7–9), and finally by updating the program

counter (line 11).

To properly decorate emulation functions, SLiVER performs a separate static analysis on each

agent’s behaviour within the input specifications. The result of this analysis is a mapping γ

from elementary actions to predicates. Then, whenever we have to encode a triple t into an

emulation function, SLiVER adds an assumption statement assume(γ(µ(t))) at the beginning

of the function body. The static analysis may be formalised as a function Γ (5.1) that recursively

accumulates guards while visiting the structure of a LAbS process.

Γ [µ]g ≜ ⟨µ, g⟩
Γ
[︁
g′ → P

]︁g ≜ Γ [P]g∧g
′

Γ [P ;Q]g ≜ Γ [P]g ∪ Γ [Q]true

Γ [
∑︁

iPi]
g≜

⋃︁
iΓ [Pi]

g

Γ [
∏︁

iPi]
g≜

⋃︁
iΓ [Pi]

g∨∃j.run(Pj)

(5.1)

When recursion reaches an elementary action µ, the latter is mapped to the currently accumulated

guard g. When we encounter a guarded process g′ → P , we accumulate g′ into the current guard.

The other rules state that guards only affect the first process in a sequential composition P ;Q,

and distribute over the choice operator. Finally, let us consider a guarded parallel process g → P ,

where P = P1 | . . . | Pn. We cannot simply distribute g over its child processes, because g only

needs to be satisfied once to enable all of the child processes of P . Rather, we define a predicate

run(Pi) which holds if and only if the child process Pi has started its execution by performing

the first transition. This predicate may be simply implemented as a check on the program counter.

Then, we can recur on each child process by using g ∨ ∃j.run(Pj) as accumulated guard. This

disables the guard g on the actions of Pi, as soon as one of its siblings Pj performs an action.

Prototype implementation 84

Quantified properties. As described in Section 3.5.2, a LAbS+ property may contain universal

or existential quantifiers over the agents. SLiVER currently applies quantifier elimination [230]

to obtain a quantifier-free predicate, which is then encoded in the emulation program. In principle,

this approach may be applied to formulas with any combination of existential and universal

quantifiers. However, in practice it produces inconveniently long predicates whenever alternate

quantifiers are involved. Therefore, SLiVER currently limits its support to alternation-free

properties.

5.4 Experimental evaluation

We evaluate our approach to the verification of multi-agent systems by using SLiVER to encode

a selection of LAbS+ specifications from Section 3.4 as C or LNT programs, and then attempting

to verify them with a selection of existing tools.

5.4.1 Benchmark description and experimental setup

We now describe our selection of benchmark verification tasks. First, we list the programs

under analysis and their corresponding LAbS+ specifications. Then, we informally describe the

properties of interest and provide their encoding in the LAbS+ property language.

• approx-a and approx-b encode the approximate majority system of Figure 3.7 with

parameters (_yes = 1, _no = 2) and (_yes = 2, _no = 3), respectively.

• boids encodes the system of flocking agents of Figure 3.4, with parameters (_birds =

3, _size = 5, _delta = 5). For this system we assume round-robin scheduling.

• flock encodes the simpler system of flocking agents shown in Figure 3.2, with parameters

(_birds = 3, _size = 5, _delta = 5). For this system we assume round-robin

scheduling.

• formation encodes the line-forming system of Figure 3.6, instantiated with parame-

ters (_size = 10,_n = 3,_range = 2). For this system we assume round-robin

scheduling.

• maj encodes the majority protocol of Figure 3.8 with parameters (_yes = 1, _no = 2).

The invariance experiments consist of the following verification tasks:

Prototype implementation 85

• For approx-a and approx-b, we verify that the agents never reach a consensus on the

minority opinion. This is equivalent to checking that there is always some agent that does

not agree on that opinion. Thus, we use the following LAbS+ property:

always exists Yes y, exists No n,

state of y != 1 or state of n != 1,

where variable state represents the opinion of an agent, and value 1 encodes the minority

opinion.

• For maj, we similarly want to verify that a consensus on the minority opinion is unreach-

able. Since this opinion is encoded as two separate values of the state variable, we have

to use a slightly different LAbS+ property:

always exists Yes y, exists No n,

(state of y = 0 or state of y = 2) or

(state of n = 0 or state of n = 2),

which informally means that there is always at least one agent that follows the majority

opinion.

• For formation, we check that no robot ever reaches a position outside of the range

[0,_size− 1]. This is encoded by a predicate on their pos attribute:

always forall Robot r,

pos of r >= 0 and pos of r < _size.

The emergence experiments are the following:

• For formation, we check that all robots eventually are no closer than _range from

each other:

finally forall Robot a, forall Robot b,

id of a = id of b or

abs(pos of a - pos of b) >= _range.

We add the id of a = id of b clause to bypass the check whenever a and b refer

to the same robot.

• For flock, we check that all agents eventually move in the same direction:

finally forall Bird b1, forall Bird b2,

dirX of b1 = dirX of b2 and

dirY of b1 = dirY of b2.

• For boids, we check that all agents eventually select the same leader:

Prototype implementation 86

finally forall Bird b1, forall Bird b2,

leader of b1 = leader of b2.

• For maj, we check that all agents eventually agree on the majority opinion:

finally forall Yes y, forall No n,

(state of y = 0 or state of y = 2) and

(state of n = 0 or state of n = 2).

The techniques and tools used in the experimental evaluation have been described in Sections 2.4.1

and 2.4.2. Specifically, we used the following releases:

• 2LS [55]: version 0.7.0;

• CADP [100]: version 2020-d;

• CBMC [59]: version 5.4 for the invariance benchmark and a competition release, submitted

to SV-COMP 2019, for emergence benchmarks;

• CPAchecker [28]: version 1.8;

• ESBMC [97]: version 5.1.0 for BMC experiments and version 6.4.0 for k-induction

experiments;

• Seahorn [117]: version 0.1.0-rc3-7cba65c9;

• SMACK [205]: version 2.4.0;

• Symbiotic [54]: version 6.0.3;

• Ultimate Automizer [121]: competition release, submitted to SV-COMP 2020;

• VVT [116]: competition release, submitted to SV-COMP 2016.

In a preliminary experimental phase, we also tried other tools, namely: AProve [106] (which

performs termination analysis based on symbolic execution), HiFrog [9] (SMT-based function

summarisation), IKOS [45] (abstract interpretation), and Kratos [56] (lazy predicate abstraction).

However, these tools did not produce any conclusive results on our programs and thus we did

not consider them for the final selection of verification tasks. It may be interesting to investigate

whether future versions of these tools would be able to provide conclusive verdicts for our

emulation programs.

By choosing different configurations for some of these tools, we end up with 48 and 16 verification

tasks for the invariance and emergence benchmarks, respectively. All the experiments were

performed on a dedicated 64-bit GNU/Linux workstation with kernel 4.9.95, equipped with

128GB of physical memory and a dual 3.10GHz Xeon E5-2687W 8-core processor. We set a

time limit of 12 hours and a memory limit of 32 GB for all experiments.

Prototype implementation 87

TABLE 5.1: Results of the invariance verification tasks for C emulation programs. –a: Timeout
(12 hours). –b: Inconclusive analysis reported by the tool. –c: Out of memory (32 GB). –*: The

tool requires an array-free encoding.

Systems
formation approx-a approx-b maj

Te
ch

ni
qu

es
Symbolic execution (Symbiotic) 0.01 ✓ 206.83 ✕ 60.47 ✕ –a

Bit-precise BMC (CBMC) –a 0.01 ✕ 0.01 ✕ –a

Word-level BMC (ESBMC) –a 0.08 ✕ 0.07 ✕ –a

Word-level BMC (SMACK) –a 0.67 ✕ 1.83 ✕ –a

Explicit-value analysis (CPAchecker)* –c 337.08b –c 1.03 ✓

Predicate abstraction+CEGAR (CPAchecker)* 0.34 ✓ 0.08 ✕ 0.03 ✕ –c

Automata+CEGAR (Automizer) 5.98 ✓ 1.17 ✕ 45.7 ✕ –a

k-induction (CPAchecker)* –c 0.17 ✕ 0.01 ✕ –c

k-induction (2LS)* 0.01 ✓ 0.12 ✕ 0.05 ✕ –a

k-induction (ESBMC) 0.01 ✓ 0.01 ✕ 0.05 ✕ 0.01 ✓

PDR (Seahorn) 0.3 ✓ 0.03 ✕ 0.5 ✕ 4.67 ✓

PDR (VVT) 0.03 ✓ 0.01 ✕ 0.01 ✕ 0.01 ✓

✓ ✕ ✕ ✓

5.4.2 Experimental results: C emulation programs

Tables 5.1 and 5.2 report our experimental results in invariance (reachability) and emergence

(termination) analysis of C emulation programs. In both tables, the top row and the leftmost

column refer to the considered multi-agent system and the program analysis technique (along with

the specific implementation), respectively. For each tool, we cite the specific implementation and,

when possible, the analysis technique that it implements. As pointed out in Section 2.4.2, some of

these tools (marked by an asterisk in both tables) have little to no support for C arrays: in order to

use them, we provided an equivalent, array-free version of the programs under verification. The

bottom of the table reports the verdict we were able to draw by only inspecting the experimental

results, without exploiting any previous knowledge of the benchmarks. In the internal cells of the

two tables, we report the partial verdicts along with the decision time (in minutes) for each tool

and system. Conclusive results are marked with ✓ or ✕ to respectively denote that the property

under analysis was successfully verified or violated. Superscripts provide further details on the

inconclusive experiments.

Main insights. By looking at the separate columns of both Tables 5.1 and 5.2, we observe that

for each of the systems under consideration at least one tool is able to generate a conclusive

verification verdict, and that the conclusive verdicts for a given system are always consistent.

Therefore, we can confidently draw a verdict for every system. Interestingly, our verdicts do

confirm all the known results from the literature: specifically, for approx-a, approx-b, and

Prototype implementation 88

maj we can confirm the findings in [16, 37]. Even more interestingly, we manage to successfully

verify an emergent property for boids. It is worth observing that this requires analysis of the

flock’s behaviour up to an unbounded number of steps. Besides simulation [190], successful

analysis of this system was previously limited to the bounded case [83]. We are not aware of

previous attempts of unbounded verification of this system.

Invariance benchmarks. As shown in Table 5.1, symbolic execution [143] gives correct results

but seems to have issues with performance. The analysis of both approx-a and approx-b

takes three and one hour, respectively, and the tool is not able to verify maj due to timeout.

Bounded model checking [31] is consistently quick in detecting property violations, with either

SAT or SMT decision procedures, and all the considered tools for this category were able to

generate precise violation witnesses. However, this technique alone cannot provide conclusive

results in the absence of property violations, such as formation and maj. For these systems,

we repeatedly increased the verification bound until timing out, to double-check the consistency

with the other approaches.

Abstraction-based analysers [30, 110, 121] seem to complement these limitations, as they can

successfully determine the safety for formation and maj in half of the cases. In contrast, the

results on the unsafe instances (confidently claimed as such via bounded analysis) are sometimes

inconclusive. Analysis procedures based on CEGAR loops [62] correctly identify the approx

programs as unsafe and the formation program as safe, but they run into memory or time

limits issues when considering the more complex maj program. This confirms once again that

under- and over-approximation are orthogonal to each other.

Interestingly, we observe the superiority of inductive techniques, i.e., k-induction1 [219] and

property directed reachability [44], over the other approaches we considered. These techniques

exhibit outstanding performances with consistent verdicts; produce precise witnesses for vio-

lated properties, with comparable performances to the fastest bounded model checker; and are

competitive, if not superior, to abstraction-based tools on safe systems.

Emergence benchmarks. In Table 5.2 we observe overall less data points as well as a smaller

portion of conclusive verdicts with respect to Table 5.1. In fact, the presence of arrays and

non-linear operations appears to be a major hindrance for the tools that we have considered for

termination analysis. Nevertheless, we do manage to find at least one conclusive verdict for each

verification task except maj. In particular, 2LS can confirm the termination of flock when

using the equalities abstract domain. We also consider a competition release of CBMC, which
1As implemented by ESBMC 6, which also infers invariants through interval analysis. As shown in Table 5.1, the

other implementations that we have considered (CPAchecker and 2LS) sometimes report inconclusive results on safe
systems.

Prototype implementation 89

TABLE 5.2: Results of the emergence verification tasks for C emulation programs. –a: Timeout
(12 hours). –b: Inconclusive analysis reported by the tool. –*: The tool requires an array-free

encoding.

Systems
formation flock boids maj

Te
ch

ni
qu

es
Symbolic execution (Symbiotic) 488.40b –a –a 338.67b

BMC+completeness threshold (CBMC) 214.32 ✓ 243.84 ✓ 49.15 ✓ –a

Summarization+intervals (2LS)* 0.08b 0.03b 32.15b 0.01b

Summarization+equalities (2LS)* 319.40b 107.72 ✓ –a 0.38b

✓ ✓ ✓

TABLE 5.3: Experimental results for LNT emulation programs. –a: Out of memory (32 GB).

(A) Invariance benchmarks.

formation approx-a approx-b maj

–a 0.03 ✕ 15.1 ✕ 0.12 ✓

(B) Emergence benchmarks.

formation flock boids maj

–a –a –a 0.13 ✓

performs termination analysis by repeatedly unrolling all loops with an increasing bound and

using BMC to check unwinding assertions until a completeness threshold is found [63]. This

approach can verify the termination for all systems under verification except maj.

5.4.3 Experimental results: LNT emulation programs

In order to assess the capabilities of our encoding into LNT programs, we generated an LNT

emulation program for each system in our benchmark selection. We then used the Evaluator

explicit-state model checker to perform all verification tasks. The results (Tables 5.3a and 5.3b)

show that this approach appears to be competitive with C-based back ends on systems without

stigmergic interaction, namely approx-a, approx-b, and maj: in these cases, the model

checker is able to provide verdicts that are always consistent with those presented in Section 5.4.2.

Interestingly, Evaluator is also able to prove an emergent property on maj, unlike C-based tools.

On the other hand, systems that contain one or more stigmergic variables are not as amenable

to verification, with Evaluator hitting the memory limit (32GB) on all tasks. In this case, the

symbolic techniques implemented by C-based back ends seem to have an advantage. This is likely

a consequence of the large state space of these systems, which in turn is due to the asynchronous

nature of stigmergic interaction. Our sequential emulation program encodes asynchrony (as well

as concurrency) through non-deterministic assignments, which may not be a good fit for the

enumeration-based approach of Evaluator.

Prototype implementation 90

5.5 Summary

In this chapter, we have described SLiVER, our implementation of the encoding procedure

described in Chapter 4 for LAbS+ specifications. The tool implements the encoding procedure

described in Chapter 4, and thus shows that this procedure can be fully automated. The tool

also proves that our intermediate representation allows us to generate emulation program in a

variety of languages. In Section 5.1, we described how to invoke SLiVER from the command

line to verify or simulate a LAbS+ system. Section 5.2 showed the workflows used by SLiVER to

generate and analyse C and LNT programs, while Section 5.3 discussed how we supported some

language features that are specific to LAbS+. Lastly, in Section 5.4, we showed that our tool can

be effectively used to verify both invariant and emergent properties of multi-agent systems, by

relying on a selection of mature program verification tools.

Chapter 6

Conclusions

In this work, we have pointed out that the multi-agent system paradigm is appropriate for

modelling many scenarios of interest across several research areas.

Modelling an existing system may allow researchers to test hypotheses and gain a deeper insight

into their systems of interest. At the same time, agent-based models may be used as an artefact

to design new systems and analyse their correctness before they are built and deployed. In

any case, the complexity of the scenarios of interest is ever-increasing. First, the interactions

between agents may give rise to unexpected, even surprising consequences even though each

agent may have a very simple behaviour. Furthermore, many interesting features of these systems

are precisely an emergent result of this apparently chaotic evolution. These observations rule out

informal reasoning for all but the simplest systems, and call for innovative languages and tools to

specify and formally analyse complex multi-agent systems.

To address these needs, we have introduced a formal language built around the concept of virtual

stigmergies. This form of asynchronous, indirect communication may be the key to concisely

model many complex scenarios of interest. Specifically, we have provided a core process algebra,

LAbS that formally specifies how agents perform their actions and communicate (via either

stigmergic or shared variables). Then, we have introduced a specification language, LAbS+, that

allows to fully describe a multi-agent system. Besides the behavioural specifications, written in a

machine-readable version of LAbS, this language allows to specify other important information,

such as the initial state of the system, its composition, and the properties it should satisfy.

We have then described a semantics-based encoding procedure that translates specifications of

concurrent systems into sequential imperative programs. The procedure relies on an intermediate

representation where a process (i.e., the behaviour of an agent within the system) is split into its

elementary actions, while its structure is preserved by symbolic links between the actions. This

representation is then used to construct the sequential program. We have shown that relevant

91

Conclusions 92

collective properties of a given concurrent system may be verified by (i) encoding the system

specifications as a sequential program through this procedure, (ii) decorating this program with

statements encoding the properties of interest, and (iii) running a verification tool developed for

the language used to write the program.

To prove effectiveness of our approach, we developed SLiVER, a prototype implementation of

our encoding technique for the LAbS+ language. We used SLiVER to generate a collection of

sequential programs that encode several real-world multi-agent systems in either the C or the

LNT language, and showed that the generated programs are amenable to formal verification by

means of multiple state-of-the-art verification tools. We are not claiming that our results represent

an actual breakthrough in formal verification of multi-agent systems. In fact, verifying systems

larger than those featured in our experimental evaluation is still a challenging task. However, our

approach is definitely competitive with tailored end-to-end platforms for MAS modelling and

analysis. Namely, while some of these platforms may provide more advanced features such as

parameterised verification [37, 149], they either restrict the capabilities of the agents and of the

overall system under analysis (e.g., by disallowing value-passing), or limit the range of supported

properties, or bind themselves to a specific verification technique. Our approach does not have

these restrictions: in fact, it may support specification languages featuring complex interactions,

such as those of attribute-based stigmergic communication. Furthermore, the ease with which we

can naturally support new verification techniques leads us to believe that sequential emulation,

together with ever-improving back ends, may have long-term relevance. Finally, the ability to

adapt the encoding procedure to different domain-specific languages may allow scholars from

different research disciplines to formally verify their agent-based models.

Future directions

Obviously, our work could be extended along many different directions. Below we just sketch

some research ideas that in our opinion deserve further attention.

Language. The specification language could be extended in several ways. For instance, we

could add a behavioural primitive allowing an agent to spawn new ones, so as to describe open-

ended systems. With respect to stigmergic interactions, we have described a mechanism where

values are timestamped and agents always prefer the value with a higher timestamp. However,

one may think of different mechanisms, e.g., letting agents prefer the minimum (or maximum)

value, which may be better suited for some scenarios. It would be interesting to explore such

alternatives and find a way to include them within a LAbS+ specification. We could also introduce

language constructs to enable reuse and modularity of the specifications, such as a macro system,

parameterised process invocation, or the capability to include code from other files. Most of these

Conclusions 93

new functionalities may be added without revising the formal semantics of the language. They

would enable us to develop standard libraries of behaviours and patterns (e.g., for link predicates)

commonly observed in the multi-agent literature, and would in general simplify the specification

of complex systems.

Encoding. The correctness proof sketched in Section 4.2 may be formalised as a behavioural

equivalence between the LTS of the input system (as given by its semantics) and the evolution

condition of its corresponding triple structure. Currently, our encoding requires a one-time

manual effort: one has to write a “template” code block for each action in the input language.

Such a template is then used to construct emulation functions. It is reasonable to expect that

this effort could be mechanised as well (at least for a chosen target language): given a machine-

readable SOS of the action, a tool could automatically generate templates for the corresponding

emulation functions. While the second step of our procedure currently generates sequential

programs, it could be adapted so as to generate concurrent programs instead. Broadly speaking,

such a program would instantiate a sub-process for each agent and have them evolve concurrently:

this might be beneficial when efficient verification techniques may be applied on the generated

concurrent program. In the case of LNT, compositional verification [102, 156, 157] might be

one such technique. It would also be interesting to investigate other fairness guarantees besides

plain round-robin scheduling, and how they may be enforced in both sequential and concurrent

programs. Understanding whether the proposed encoding may support verification of more

expressive properties (e.g., arbitrary LTL formulas) would be another research direction worth

pursuing.

Implementation. The SLiVER tool may be improved in several ways so as to efficiently verify

large multi-agent systems. We could investigate parallel and distributed implementations for some

of the verification techniques reviewed in Section 2.4.1, such as bounded model checking [137],

property directed reachability [166], and explicit-state model checking [101]. Moreover, to deal

with even larger systems, we could exploit the simulation capabilities of SLiVER to implement

statistical model checking techniques [218].

Bibliography

[1] Y. Abd Alrahman, R. De Nicola, and G. Garbi. GoAt: Attribute-based interaction in

Google Go. In T. Margaria and B. Steffen, editors, 8th International Symposium on

Leveraging Applications of Formal Methods, Verification and Validation (ISoLA), volume

11246 of LNCS, pages 288–303. Springer, 2018. doi:10.1007/978-3-030-03424-5_19.

[2] Y. Abd Alrahman, R. De Nicola, and M. Loreti. A calculus for collective-adaptive

systems and its behavioural theory. Information and Computation, 268, 2019.

doi:10.1016/j.ic.2019.104457.

[3] G. Agha and C. Hewitt. Actors: A conceptual foundation for concurrent object-oriented

programming. MIT Press, 1987.

[4] P. E. Agre and D. Chapman. Pengi: An implementation of a theory of activity. In K. D.

Forbus and H. E. Shrobe, editors, 6th National Conference on Artificial Intelligence (AAAI),

pages 268–272. Morgan Kaufmann, 1987.

[5] P. E. Agre and D. Chapman. What are plans for? Robotics and Autonomous Systems, 6

(1-2):17–34, 1990. doi:10.1016/S0921-8890(05)80026-0.

[6] S. B. Akers Jr. Binary decision diagrams. IEEE Transactions on Computers, 27(6):

509–516, 1978. doi:10.1109/TC.1978.1675141.

[7] J. F. Allen. Towards a general theory of action and time. Artificial Intelligence, 23(2):

123–154, 1984. doi:10.1016/0004-3702(84)90008-0.

[8] J. F. Allen and J. A. G. M. Koomen. Planning using a temporal world model. In A. Bundy,

editor, 8th International Joint Conference on Artificial Intelligence (IJCAI), pages 741–747.

William Kaufmann, 1983.

[9] L. Alt, S. Asadi, H. Chockler, K. Even-Mendoza, G. Fedyukovich, A. E. J. Hyvärinen, and

N. Sharygina. HiFrog: SMT-based function summarization for software verification. In

A. Legay and T. Margaria, editors, 23rd International Conference on Tools and Algorithms

for the Construction and Analysis of Systems (TACAS), volume 10206 of LNCS, pages

207–213. Springer, 2017. doi:10.1007/978-3-662-54580-5_12.

94

Bibliography 95

[10] R. Alur, R. K. Brayton, T. A. Henzinger, S. Qadeer, and S. K. Rajamani. Partial-order

reduction in symbolic state space exploration. In O. Grumberg, editor, 9th International

Conference on Computer Aided Verification (CAV), volume 1254 of LNCS, pages 340–351.

Springer, 1997. doi:10.1007/3-540-63166-6_34.

[11] H. R. Andersen. Model checking and boolean graphs. Theoretical Computer Science, 126

(1):3–30, 1994. doi:10.1016/0304-3975(94)90266-6.

[12] D. Angluin, J. Aspnes, Z. Diamadi, M. J. Fischer, and R. Peralta. Computation in networks

of passively mobile finite-state sensors. In S. Chaudhuri and S. Kutten, editors, 23rd

Symposium on Principles of Distributed Computing (PODC), pages 290–299. ACM, 2004.

doi:10.1145/1011767.1011810.

[13] D. Angluin, J. Aspnes, and D. Eisenstat. A simple population protocol for fast robust

approximate majority. Distributed Computing, 21(2):87–102, 2008. doi:10.1007/s00446-

008-0059-z.

[14] A. Armando, J. Mantovani, and L. Platania. Bounded model checking of software

using SMT solvers instead of SAT solvers. In A. Valmari, editor, 13th Interna-

tional SPIN Workshop (SPIN), volume 3925 of LNCS, pages 146–162. Springer, 2006.

doi:10.1007/11691617_9.

[15] J. Armstrong. Erlang. Communications of the ACM, 53(9):68–75, 2010.

doi:10.1145/1810891.1810910.

[16] J. Aspnes and E. Ruppert. An introduction to population protocols. In B. Garbinato,

H. Miranda, and L. E. T. Rodrigues, editors, Middleware for Network Eccentric and

Mobile Applications, pages 97–120. Springer, 2009. doi:10.1007/978-3-540-89707-1_5.

[17] R. L. Axtell, J. M. Epstein, J. S. Dean, G. J. Gumerman, A. C. Swedlund, J. Harburger,

S. Chakravarty, R. Hammond, J. Parker, and M. Parker. Population growth and collapse in

a multiagent model of the Kayenta Anasazi in Long House Valley. Proceedings of the Na-

tional Academy of Sciences, 99(suppl 3):7275–7279, 2002. doi:10.1073/pnas.092080799.

[18] J. W. Backus. The syntax and semantics of the proposed international algebraic language

of the Zurich ACM-GAMM conference. In 1st International Conference on Information

Processing, pages 125–131. UNESCO, 1959.

[19] A. Bakst, K. von Gleissenthall, R. G. Kici, and R. Jhala. Verifying distributed pro-

grams via canonical sequentialization. PACMPL, 1(OOPSLA):110:1–110:27, 2017.

doi:10.1145/3133934.

[20] M. Ballerini, N. Cabibbo, R. Candelier, A. Cavagna, E. Cisbani, I. Giardina, V. Lecomte,

A. Orlandi, G. Parisi, A. Procaccini, M. Viale, and V. Zdravkovic. Interaction ruling animal

Bibliography 96

collective behavior depends on topological rather than metric distance: Evidence from a

field study. Proceedings of the National Academy of Sciences, 105(4):1232–1237, 2008.

doi:10.1073/pnas.0711437105.

[21] A.-L. Barabási and R. Albert. Emergence of scaling in random networks. Science, 286

(5439):509–512, 1999. doi:10.1126/science.286.5439.509.

[22] M. Barnett, B.-Y. E. Chang, R. DeLine, B. Jacobs, and K. R. M. Leino. Boogie: A

modular reusable verifier for object-oriented programs. In F. S. de Boer, M. M. Bonsangue,

S. Graf, and W. P. de Roever, editors, 4th International Symposium on Formal Methods

for Components and Objects (FMCO), volume 4111 of LNCS, pages 364–387. Springer,

2005. doi:10.1007/11804192_17.

[23] C. W. Barrett, R. Sebastiani, S. A. Seshia, and C. Tinelli. Satisfiability modulo theories.

In A. Biere, M. Heule, H. van Maaren, and T. Walsh, editors, Handbook of Satisfiability,

volume 185 of Frontiers in Artificial Intelligence and Applications, pages 825–885. IOS

Press, 2009. doi:10.3233/978-1-58603-929-5-825.

[24] C. W. Barrett, L. M. de Moura, S. Ranise, A. Stump, and C. Tinelli. The SMT-LIB initiative

and the rise of SMT - (HVC 2010 award talk). In S. Barner, I. G. Harris, D. Kroening, and

O. Raz, editors, 6th International Haifa Verification Conference (HVC), volume 6504 of

LNCS, page 3. Springer, 2010. doi:10.1007/978-3-642-19583-9_2.

[25] J. A. Bergstra and J. Tucker. Top-down design and the algebra of communicating pro-

cesses. Science of Computer Programming, 5(2):171–199, 1985. doi:10.1016/0167-

6423(85)90010-3.

[26] J. A. Bergstra, J. W. Klop, and J. V. Tucker. Algebraic tools for system construction. In

G. Goos, J. Hartmanis, D. Barstow, W. Brauer, P. Brinch Hansen, D. Gries, D. Luckham,

C. Moler, A. Pnueli, G. Seegmüller, J. Stoer, N. Wirth, E. Clarke, and D. Kozen, editors,

Workshop on Logics of Programs, volume 164 of LNCS, pages 34–44. Springer, 1983.

ISBN 978-3-540-12896-0 978-3-540-38775-6. doi:10.1007/3-540-12896-4_353.

[27] D. Beyer. Automatic verification of C and Java programs: SV-COMP 2019. In D. Beyer,

M. Huisman, F. Kordon, and B. Steffen, editors, 25th International Conference on Tools

and Algorithms for the Construction and Analysis of Systems (TACAS), volume 11429 of

LNCS, pages 133–155. Springer, 2019. doi:10.1007/978-3-030-17502-3_9.

[28] D. Beyer and M. E. Keremoglu. CPAchecker: A tool for configurable software verifi-

cation. In G. Gopalakrishnan and S. Qadeer, editors, 23rd International Conference on

Computer Aided Verification (CAV), volume 6806 of LNCS, pages 184–190. Springer,

2011. doi:10.1007/978-3-642-22110-1_16.

Bibliography 97

[29] D. Beyer and T. Lemberger. Symbolic execution with CEGAR. In T. Margaria and

B. Steffen, editors, 7th International Symposium on Leveraging Applications of Formal

Methods, Verification and Validation (ISoLA), volume 9952 of LNCS, pages 195–211.

Springer, 2016. doi:10.1007/978-3-319-47166-2_14.

[30] D. Beyer and S. Löwe. Explicit-state software model checking based on CEGAR and

interpolation. In V. Cortellessa and D. Varró, editors, 16th International Conference on

Fundamental Approaches to Software Engineering (FASE), volume 7793 of LNCS, pages

146–162. Springer, 2013. doi:10.1007/978-3-642-37057-1_11.

[31] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu. Symbolic model checking without

BDDs. In R. Cleaveland, editor, 5th International Conference on Tools and Algorithms for

Construction and Analysis of Systems (TACAS), volume 1579 of LNCS, pages 193–207.

Springer, 1999. doi:10.1007/3-540-49059-0_14.

[32] A. Biere, A. Cimatti, E. M. Clarke, O. Strichman, and Y. Zhu. Bounded model checking.

Advances in Computers, 58:117–148, 2003. doi:10.1016/S0065-2458(03)58003-2.

[33] J. Birgmeier, A. R. Bradley, and G. Weissenbacher. Counterexample to induction-guided

abstraction-refinement (CTIGAR). In A. Biere and R. Bloem, editors, 26th International

Conference on Computer Aided Verification (CAV), volume 8559 of LNCS, pages 831–848.

Springer, 2014. doi:10.1007/978-3-319-08867-9_55.

[34] K. Birman and T. Joseph. Exploiting virtual synchrony in distributed systems. In 11th

Symposium on Operating System Principles (SOSP), volume 21, pages 123–138. ACM,

1987. doi:10.1145/41457.37515.

[35] K. P. Birman. The process group approach to reliable distributed computing. Communica-

tions of the ACM, 36(12):37–53, 1993. doi:10.1145/163298.163303.

[36] S. Blom, J. van de Pol, and M. Weber. LTSmin: Distributed and symbolic reachability.

In T. Touili, B. Cook, and P. B. Jackson, editors, 22nd International Conference on

Computer Aided Verification (CAV), volume 6174 of LNCS, pages 354–359. Springer,

2010. doi:10.1007/978-3-642-14295-6_31.

[37] M. Blondin, J. Esparza, and S. Jaax. Peregrine: A tool for the analysis of population

protocols. In H. Chockler and G. Weissenbacher, editors, 30th International Conference

on Computer Aided Verification (CAV), volume 10981 of LNCS, pages 604–611. Springer,

2018. doi:10.1007/978-3-319-96145-3_34.

[38] E. Bonabeau. Agent-based modeling: Methods and techniques for simulating human

systems. Proceedings of the National Academy of Sciences, 99(suppl 3):7280–7287, 2002.

doi:10.1073/pnas.082080899.

Bibliography 98

[39] E. Bonabeau, M. Dorigo, and G. Theraulaz. Swarm intelligence - From natural to artificial

systems. Studies in the Sciences of Complexity. Oxford University Press, 1999. ISBN

978-0-19-513159-8.

[40] R. H. Bordini, J. F. Hübner, and R. Vieira. Jason and the golden fleece of agent-oriented

programming. In R. H. Bordini, M. Dastani, J. Dix, and A. E. Fallah-Seghrouchni,

editors, Multi-Agent Programming: Languages, Platforms and Applications, volume 15

of Multiagent Systems, Artificial Societies, and Simulated Organizations, pages 3–37.

Springer, 2005.

[41] R. H. Bordini, L. Braubach, M. Dastani, A. E. Fallah-Seghrouchni, J. J. Gómez-Sanz,

J. Leite, G. M. P. O’Hare, A. Pokahr, and A. Ricci. A survey of programming languages

and platforms for multi-agent systems. Informatica, 30(1):33–44, 2006.

[42] R. H. Bordini, J. F. Hbner, and M. Wooldridge. Programming Multi-Agent

Systems in AgentSpeak using Jason. Wiley, 2007. ISBN 978-0-470-06184-8.

doi:10.1002/9780470061848.

[43] J. C. Bradfield and C. Stirling. Modal mu-calculi. In P. Blackburn, J. F. A. K. van

Benthem, and F. Wolter, editors, Handbook of Modal Logic, volume 3, pages 721–756.

North-Holland, 2007. doi:10.1016/s1570-2464(07)80015-2.

[44] A. R. Bradley. SAT-based model checking without unrolling. In R. Jhala and D. A.

Schmidt, editors, 12th International Conference on Verification, Model Checking, and

Abstract Interpretation (VMCAI), volume 6538 of LNCS, pages 70–87. Springer, 2011.

doi:10.1007/978-3-642-18275-4_7.

[45] G. Brat, J. A. Navas, N. Shi, and A. Venet. IKOS: A Framework for Static Analysis

Based on Abstract Interpretation. In D. Giannakopoulou and G. Salaün, editors, 12th

International Conference on Software Engineering and Formal Methods (SEFM), volume

8702 of LNCS, pages 271–277. Springer, 2014. doi:10.1007/978-3-319-10431-7_20.

[46] M. Bratman. Intention, plans, and practical reason. Harvard University Press, 1987.

ISBN 978-0-674-45818-5.

[47] R. A. Brooks. Intelligence without reason. In 12th International Joint Conference on

Artificial Intelligence (IJCAI), pages 569–595. Morgan Kaufmann, 1991. ISBN 1-55860-

160-0.

[48] R. A. Brooks. Intelligence without representation. Artificial Intelligence, 47(1-3):139–159,

1991. doi:10.1016/0004-3702(91)90053-M.

[49] E. Buchanan, A. Pomfret, and J. Timmis. Dynamic task partitioning for foraging robot

swarms. In M. Dorigo, M. Birattari, X. Li, M. López-Ibáñez, K. Ohkura, C. Pinciroli, and

Bibliography 99

T. Stützle, editors, 10th International Conference on Swarm Intelligence (ANTS), volume

9882 of LNCS, pages 113–124. Springer, 2016. ISBN 978-3-319-44426-0 978-3-319-

44427-7. doi:10.1007/978-3-319-44427-7_10.

[50] O. Bunte, J. F. Groote, J. J. A. Keiren, M. Laveaux, T. Neele, E. P. de Vink, W. Wesselink,

A. Wijs, and T. A. C. Willemse. The mCRL2 toolset for analysing concurrent systems

- improvements in expressivity and usability. In T. Vojnar and L. Zhang, editors, 25th

International Conference on Tools and Algorithms for the Construction and Analysis of

Systems (TACAS), volume 11428 of LNCS, pages 21–39. Springer, 2019. doi:10.1007/978-

3-030-17465-1_2.

[51] V. Buravlev, R. De Nicola, and C. A. Mezzina. Tuple spaces implementations and their

efficiency. In 18th International Conference on Coordination Models and Languages

(COORDINATION), volume 9686 of LNCS, pages 51–66. Springer, 2016. ISBN 978-3-

319-39518-0. doi:10.1007/978-3-319-39519-7_4.

[52] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang. Symbolic model

checking: 1020 states and beyond. In 5th Symposium on Logic in Computer Science (LICS),

pages 428–439. IEEE, 1990. doi:10.1109/LICS.1990.113767.

[53] B. F. Caviness, J. R. Johnson, B. Buchberger, and G. E. Collins, editors. Quantifier

Elimination and Cylindrical Algebraic Decomposition. Texts and Monographs in Symbolic

Computation. Springer, 1998. doi:10.1007/978-3-7091-9459-1.

[54] M. Chalupa, T. Jasek, L. Tomovic, M. Hruska, V. Soková, P. Ayaziová, J. Strejcek, and

T. Vojnar. Symbiotic 7: Integration of Predator and more - (competition contribution). In

A. Biere and D. Parker, editors, 26th International Conference on Tools and Algorithms

for the Construction and Analysis of Systems (TACAS), volume 12079 of LNCS, pages

413–417. Springer, 2020. doi:10.1007/978-3-030-45237-7_31.

[55] H.-Y. Chen, C. David, D. Kroening, P. Schrammel, and B. Wachter. Synthesising inter-

procedural bit-precise termination proofs. In M. B. Cohen, L. Grunske, and M. Whalen,

editors, 30th International Conference on Automated Software Engineering (ASE), pages

53–64. IEEE, 2015. doi:10.1109/ASE.2015.10.

[56] A. Cimatti, A. Griggio, A. Micheli, I. Narasamdya, and M. Roveri. Kratos - A software

model checker for SystemC. In G. Gopalakrishnan and S. Qadeer, editors, 23rd Interna-

tional Conference on Computer Aided Verification (CAV), volume 6806 of LNCS, pages

310–316. Springer, 2011. doi:10.1007/978-3-642-22110-1_24.

[57] F. Ciocchetta and J. Hillston. Bio-PEPA: An extension of the process algebra PEPA

for biochemical networks. Electronic Notes in Theoretical Computer Science, 194(3):

103–117, 2008. doi:10.1016/j.entcs.2007.12.008.

Bibliography 100

[58] F. Ciocchetta and J. Hillston. Bio-PEPA for epidemiological models. Electronic Notes in

Theoretical Computer Science, 261:43–69, 2010. doi:10.1016/j.entcs.2010.01.005.

[59] E. Clarke, D. Kroening, and F. Lerda. A tool for checking ANSI-C programs. In K. Jensen

and A. Podelski, editors, 10th International Conference on Tools and Algorithms for the

Construction and Analysis of Systems (TACAS), LNCS, pages 168–176. Springer, 2004.

ISBN 1045389020279. doi:10.1007/978-3-540-24730-2_15.

[60] E. M. Clarke and E. A. Emerson. Design and synthesis of synchronization skeletons

using branching-time temporal logic. In D. Kozen, editor, Logics of Programs Workshop,

volume 131 of LNCS, pages 52–71. Springer, 1981. doi:10.1007/BFb0025774.

[61] E. M. Clarke, E. A. Emerson, S. Jha, and A. P. Sistla. Symmetry reductions in model

checking. In A. J. Hu and M. Y. Vardi, editors, 10th International Conference on Com-

puter Aided Verification (CAV), volume 1427 of LNCS, pages 147–158. Springer, 1998.

doi:10.1007/BFb0028741.

[62] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided abstrac-

tion refinement for symbolic model checking. Journal of the ACM, 50(5):752–794, 2003.

doi:10.1145/876638.876643.

[63] E. M. Clarke, D. Kroening, J. Ouaknine, and O. Strichman. Completeness and complexity

of bounded model checking. In B. Steffen and G. Levi, editors, 5th International Confer-

ence on Verification, Model Checking, and Abstract Interpretation (VMCAI), volume 2937

of LNCS, pages 85–96. Springer, 2004. doi:10.1007/978-3-540-24622-0_9.

[64] E. M. Clarke, W. Klieber, M. Novácek, and P. Zuliani. Model checking and the state

explosion problem. In B. Meyer and M. Nordio, editors, LASER International Summer

School 2011, volume 7682 of LNCS, pages 1–30. Springer, 2011. doi:10.1007/978-3-642-

35746-6_1.

[65] E. M. Clarke, T. A. Henzinger, and H. Veith. Introduction to model checking. In E. M.

Clarke, T. A. Henzinger, H. Veith, and R. Bloem, editors, Handbook of Model Checking,

pages 1–26. Springer, 2018. doi:10.1007/978-3-319-10575-8_1.

[66] R. Cleaveland and S. Sims. The NCSU Concurrency Workbench. In R. Alur and T. A.

Henzinger, editors, 8th International Conference on Computer Aided Verification (CAV),

volume 1102 of LNCS, pages 394–397. Springer, 31. doi:10.1007/3-540-61474-5_87.

[67] A. Colorni, M. Dorigo, and V. Maniezzo. Distributed optimization by ant colonies. In

European Conference on Artificial Life (ECAL), pages 134–142. Elsevier, 1991.

[68] P. Cousot. Abstract interpretation based static analysis parameterized by semantics. In

P. V. Hentenryck, editor, 4th International Symposium on Static Analysis (SAS), volume

1302 of LNCS, pages 388–394. Springer, 1997. doi:10.1007/BFb0032759.

Bibliography 101

[69] P. Cousot and R. Cousot. Static determination of dynamic properties of programs. In

B. Robinet, editor, 2nd International Symposium on Programming, pages 106–130. Dunod,

1976.

[70] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static analysis

of programs by construction or approximation of fixpoints. In R. M. Graham, M. A.

Harrison, and R. Sethi, editors, 4th Symposium on Principles of Programming Languages

(POPL), pages 238–252. ACM, 1977. doi:10.1145/512950.512973.

[71] P. Cousot and R. Cousot. Abstract interpretation frameworks. Journal of Logic and

Computation, 2(4):511–547, 1992. doi:10.1093/logcom/2.4.511.

[72] W. Craig. Three uses of the Herbrand-Gentzen theorem in relating model theory and proof

theory. Journal of Symbolic Logic, 22(3):269–285, 1957. doi:10.2307/2963594.

[73] O.-J. Dahl and K. Nygaard. SIMULA - an ALGOL-based simulation language. Communi-

cations of the ACM, 9(9):671–678, 1966. doi:10.1145/365813.365819.

[74] M. Dastani, M. B. van Riemsdijk, and J.-J. C. Meyer. Programming multi-agent systems in

3APL. In R. H. Bordini, M. Dastani, J. Dix, and A. E. Fallah-Seghrouchni, editors, Multi-

Agent Programming: Languages, Platforms and Applications, volume 15 of Multiagent

Systems, Artificial Societies, and Simulated Organizations, pages 39–67. Springer, 2005.

[75] E. De Angelis, F. Fioravanti, A. Pettorossi, and M. Proietti. Semantics-based generation

of verification conditions by program specialization. In M. Falaschi and E. Albert, editors,

17th International Symposium on Principles and Practice of Declarative Programming

(PPDP), pages 91–102. ACM, 2015. doi:10.1145/2790449.2790529.

[76] R. De Nicola. Behavioral equivalences. In D. A. Padua, editor, Encyclopedia of Parallel

Computing, pages 120–127. Springer, 2011. doi:10.1007/978-0-387-09766-4_517.

[77] R. De Nicola. Process algebras. In D. A. Padua, editor, Encyclopedia of Parallel Comput-

ing, pages 1624–1636. Springer, 2011. doi:10.1007/978-0-387-09766-4_450.

[78] R. De Nicola, M. Loreti, R. Pugliese, and F. Tiezzi. A formal approach to autonomic

systems programming: The SCEL language. ACM Transactions on Autonomous and

Adaptive Systems, 9(2):7:1–7:29, 2014. doi:10.1145/2619998.

[79] R. De Nicola, D. Latella, A. L. Lafuente, M. Loreti, A. Margheri, M. Massink,

A. Morichetta, R. Pugliese, F. Tiezzi, and A. Vandin. The SCEL language: Design,

implementation, verification. In M. Wirsing, M. M. Hölzl, N. Koch, and P. Mayer, editors,

Software Engineering for Collective Autonomic Systems - The ASCENS Approach, volume

8998 of LNCS, pages 3–71. Springer, 2015. ISBN 978-3-319-16309-3 978-3-319-16310-9.

doi:10.1007/978-3-319-16310-9_1.

Bibliography 102

[80] R. De Nicola, L. Di Stefano, and O. Inverso. Toward formal models and lan-

guages for verifiable multi-robot systems. Frontiers in Robotics and AI, 5:94, 2018.

doi:10.3389/frobt.2018.00094.

[81] R. De Nicola, T. Duong, O. Inverso, and C. Trubiani. AErlang: Empowering Erlang with

attribute-based communication. Science of Computer Programming, 168:71–93, 2018.

doi:10.1016/j.scico.2018.08.006.

[82] R. De Nicola, T. Duong, and M. Loreti. ABEL - A domain specific framework for program-

ming with attribute-based communication. In H. R. Nielson and E. Tuosto, editors, 21st

International Conference on Coordination Models and Languages (COORDINATION),

volume 11533 of LNCS, pages 111–128. Springer, 2019. doi:10.1007/978-3-030-22397-

7_7.

[83] R. De Nicola, L. Di Stefano, and O. Inverso. Multi-agent systems with virtual stigmergy.

Science of Computer Programming, 187:102345, 2020. doi:10.1016/j.scico.2019.102345.

[84] J. L. Deneubourg, S. Aron, S. Goss, J. M. Pasteels, and G. Duerinck. Random behaviour,

amplification processes and number of participants: How they contribute to the foraging

properties of ants. Physica D, 22(1):176–186, 1986. doi:10.1016/0167-2789(86)90239-3.

[85] L. A. Dennis, B. Farwer, R. H. Bordini, and M. Fisher. A flexible framework for verifying

agent programs. In L. Padgham, D. C. Parkes, J. P. Müller, and S. Parsons, editors, 7th

International Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS),

volume 3, pages 1303–1306. IFAAMAS, 2008.

[86] C. Detrain and J.-L. Deneubourg. Scavenging by Pheidole pallidula: A key for under-

standing decision-making systems in ants. Animal Behaviour, 53(3):537–547, 1997.

doi:10.1006/anbe.1996.0305.

[87] L. Di Stefano, F. Lang, and W. Serwe. Combining SLiVER with CADP to analyze multi-

agent systems. In S. Bliudze and L. Bocchi, editors, 22nd International Conference on

Coordination Models and Languages (COORDINATION), volume 12134 of LNCS, pages

370–385. Springer, 2020. doi:10.1007/978-3-030-50029-0_23.

[88] E. W. Dijkstra. Hierarchical ordering of sequential processes. Acta Informatica, 1:115–138,

1971. doi:10.1007/BF00289519.

[89] B. Dimsdale and H. M. Markowitz. A Description of the SIMSCRIPT Language. IBM

Systems Journal, 3(1):57–67, 1964. doi:10.1147/sj.31.0057.

[90] G. Echeverria, S. Lemaignan, A. Degroote, S. Lacroix, M. Karg, P. Koch, C. Lesire, and

S. Stinckwich. Simulating complex robotic scenarios with MORSE. In D. Hutchison,

T. Kanade, J. Kittler, J. M. Kleinberg, F. Mattern, J. C. Mitchell, M. Naor, O. Nierstrasz,

Bibliography 103

C. Pandu Rangan, B. Steffen, M. Sudan, D. Terzopoulos, D. Tygar, M. Y. Vardi, G. Weikum,

I. Noda, N. Ando, D. Brugali, and J. J. Kuffner, editors, 3rd International Conference on

Simulation, Modeling, and Programming for Autonomous Robots (SIMPAR), volume 7628

of LNCS, pages 197–208. Springer, 2012. doi:10.1007/978-3-642-34327-8_20.

[91] A. M. El-Sayed, P. Scarborough, L. Seemann, and S. Galea. Social network analysis and

agent-based modeling in social epidemiology. Epidemiologic Perspectives & Innovations,

9(1):1, 2012. doi:10.1186/1742-5573-9-1.

[92] J. M. Epstein and R. Axtell. Growing artificial societies: Social science from the bottom

up. MIT Press, 1996. ISBN 978-0-262-05053-1.

[93] J. D. Farmer and D. Foley. The economy needs agent-based modelling. Nature, 460(7256):

685–686, 2009. doi:10.1038/460685a.

[94] R. D. Fennell and V. R. Lesser. Parallelism in artificial intelligence problem solving:

A case study of Hearsay II. IEEE Transactions on Computers, 26(2):98–111, 1977.

doi:10.1109/TC.1977.5009289.

[95] R. Fikes and N. J. Nilsson. STRIPS: A new approach to the application of theorem proving

to problem solving. Artificial Intelligence, 2(3/4):189–208, 1971. doi:10.1016/0004-

3702(71)90010-5.

[96] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of distributed consensus with

one faulty process. Journal of the ACM, 32(2):374–382, 1985. doi:10.1145/3149.214121.

[97] M. Y. R. Gadelha, F. R. Monteiro, J. Morse, L. C. Cordeiro, B. Fischer, and D. A. Nicole.

ESBMC 5.0: An industrial-strength C model checker. In M. Huchard, C. Kästner, and

G. Fraser, editors, 33rd International Conference on Automated Software Engineering

(ASE), pages 888–891. ACM, 2018. doi:10.1145/3238147.3240481.

[98] H. Garavel. Revisiting sequential composition in process calculi. Journal of Logical and Al-

gebraic Methods in Programming, 84(6):742–762, 2015. doi:10.1016/j.jlamp.2015.08.001.

[99] H. Garavel, F. Lang, R. Mateescu, and W. Serwe. CADP 2010: A toolbox for the

construction and analysis of distributed processes. In P. A. Abdulla and K. R. M. Leino,

editors, 17th International Conference on Tools and Algorithms for the Construction and

Analysis of Systems (TACAS), volume 6605 of LNCS, pages 372–387. Springer, 2011.

doi:10.1007/978-3-642-19835-9_33.

[100] H. Garavel, F. Lang, R. Mateescu, and W. Serwe. CADP 2011: A toolbox for the

construction and analysis of distributed processes. Software Tools for Technology Transfer,

15(2):89–107, 2013. doi:10.1007/s10009-012-0244-z.

Bibliography 104

[101] H. Garavel, R. Mateescu, and W. Serwe. Large-scale distributed verification using CADP:

Beyond clusters to grids. Electronic Notes in Theoretical Computer Science, 296:145–161,

2013. doi:10.1016/j.entcs.2013.07.010.

[102] H. Garavel, F. Lang, and R. Mateescu. Compositional verification of asynchronous concur-

rent systems using CADP. Acta Informatica, 52(4-5):337–392, 2015. doi:10.1007/s00236-

015-0226-1.

[103] H. Garavel, F. Lang, and W. Serwe. From LOTOS to LNT. In J.-P. Katoen, R. Langerak,

and A. Rensink, editors, ModelEd, TestEd, TrustEd, volume 10500 of LNCS, pages 3–26.

Springer, 2017. doi:10.1007/978-3-319-68270-9_1.

[104] H. Garcia-Molina. Elections in a distributed computing system. IEEE Transactions on

Computers, 31(1):48–59, 1982. doi:10.1109/TC.1982.1675885.

[105] R. Gerth, D. A. Peled, M. Y. Vardi, and P. Wolper. Simple on-the-fly automatic verification

of linear temporal logic. In P. Dembinski and M. Sredniawa, editors, 15th International

Symposium on Protocol Specification, Testing and Verification (PSTV), pages 3–18. Chap-

man & Hall, 1995.

[106] J. Giesl, C. Aschermann, M. Brockschmidt, F. Emmes, F. Frohn, C. Fuhs, J. Hensel,

C. Otto, M. Plücker, P. Schneider-Kamp, T. Ströder, S. Swiderski, and R. Thiemann.

Analyzing program termination and complexity automatically with AProVE. Journal of

Automated Reasoning, 58(1):3–31, 2017. doi:10.1007/s10817-016-9388-y.

[107] P. Godefroid. Partial-order methods for the verification of concurrent systems - An

approach to the state-explosion problem, volume 1032 of LNCS. Springer, 1996. ISBN

3-540-60761-7. doi:10.1007/3-540-60761-7.

[108] M. Goldsmith and I. Zakiuddin. Critical systems validation and verification with CSP

and FDR. In D. Hutter, W. Stephan, P. Traverso, and M. Ullmann, editors, International

Workshop on Current Trends in Applied Formal Method (FM-Trends), volume 1641 of

LNCS, pages 243–250. Springer, 1998. doi:10.1007/3-540-48257-1_15.

[109] V. Goranko and A. Rumberg. Temporal logic. In E. N. Zalta, editor, The Stanford

Encyclopedia of Philosophy. Stanford University, 2020.

[110] S. Graf and H. Saïdi. Construction of abstract state graphs with PVS. In O. Grumberg,

editor, 9th International Conference on Computer Aided Verification (CAV), volume 1254

of LNCS, pages 72–83. Springer, 1997. doi:10.1007/3-540-63166-6_10.

[111] P.-P. Grassé. La reconstruction du nid et les coordinations interindividuelles chez Belli-

cositermes natalensis et Cubitermes sp. la théorie de la stigmergie: Essai d’interprétation

Bibliography 105

du comportement des termites constructeurs. Insectes Sociaux, 6(1):41–80, 1959.

doi:10.1007/BF02223791.

[112] J. Gray. Notes on data base operating systems. In M. J. Flynn, J. Gray, A. K. Jones,

K. Lagally, H. Opderbeck, G. J. Popek, B. Randell, J. H. Saltzer, and H.-R. Wiehle, editors,

Operating Systems, An Advanced Course, volume 60 of LNCS, pages 393–481. Springer,

1978. doi:10.1007/3-540-08755-9_9.

[113] V. Grimm and S. F. Railsback. Agent-based models in ecology: Patterns and alternative

theories of adaptive behaviour. In F. C. Billari, T. Fent, A. Prskawetz, and J. Scheffran,

editors, Agent-Based Computational Modelling: Applications in Demography, Social,

Economic and Environmental Sciences, Contributions to Economics, pages 139–152.

Physica-Verlag, 2006. ISBN 978-3-7908-1721-8. doi:10.1007/3-7908-1721-X_7.

[114] V. Grimm, E. Revilla, U. Berger, F. Jeltsch, W. M. Mooij, S. F. Railsback, H.-H. Thulke,

J. Weiner, T. Wiegand, and D. L. DeAngelis. Pattern-oriented modeling of agent-

based complex systems: Lessons from ecology. Science, 310(5750):987–991, 2005.

doi:10.1126/science.1116681.

[115] J. F. Groote and M. R. Mousavi. Modeling and analysis of communicating systems. MIT

Press, 2014. ISBN 978-0-262-02771-7.

[116] H. Günther, A. Laarman, and G. Weissenbacher. Vienna Verification Tool: IC3 for parallel

software - (competition contribution). In M. Chechik and J.-F. Raskin, editors, 22nd

International Conference on Tools and Algorithms for the Construction and Analysis of

Systems (TACAS), volume 9636 of LNCS, pages 954–957. Springer, 2016. doi:10.1007/978-

3-662-49674-9_69.

[117] A. Gurfinkel, T. Kahsai, A. Komuravelli, and J. A. Navas. The SeaHorn verification

framework. In D. Kroening and C. S. Pasareanu, editors, 27th International Conference

on Computer Aided Verification (CAV), volume 9206 of LNCS, pages 343–361. Springer,

2015. doi:10.1007/978-3-319-21690-4_20.

[118] J. Harrison. Theorem proving for verification (invited tutorial). In A. Gupta and S. Malik,

editors, 20th International Conference on Computer Aided Verification (CAV), volume

5123 of LNCS, pages 11–18. Springer, 2008. doi:10.1007/978-3-540-70545-1_4.

[119] K. Havelund and T. Pressburger. Model checking Java programs using Java PathFinder.

Software Tools for Technology Transfer, 2(4):366–381, 2000. doi:10.1007/s100090050043.

[120] M. Heizmann, J. Hoenicke, J. Leike, and A. Podelski. Linear ranking for linear lasso

programs. In D. Van Hung and M. Ogawa, editors, 11th International Symposium on

Automated Technology for Verification and Analysis (ATVA), volume 8172 of LNCS, pages

365–380. Springer, 2013. doi:10.1007/978-3-319-02444-8_26.

Bibliography 106

[121] M. Heizmann, J. Hoenicke, and A. Podelski. Software model checking for people who

love automata. In N. Sharygina and H. Veith, editors, 25th International Conference on

Computer aided verification (CAV), volume 8044 of LNCS, pages 36–52. Springer, 2013.

doi:10.1007/978-3-642-39799-8_2.

[122] M. Heizmann, Y. Chen, D. Dietsch, M. Greitschus, J. Hoenicke, Y. Li, A. Nutz, B. Musa,

C. Schilling, T. Schindler, and A. Podelski. Ultimate Automizer and the search for perfect

interpolants - (competition contribution). In D. Beyer and M. Huisman, editors, 24th Inter-

national Conference on Tools and Algorithms for the Construction and Analysis of Systems

(TACAS), volume 10806 of LNCS, pages 447–451. Springer, 2018. doi:10.1007/978-3-

319-89963-3_30.

[123] M. Hennessy and R. Milner. On observing nondeterminism and concurrency. In J. W.

de Bakker and J. van Leeuwen, editors, 7th International Colloquium on Automata,

Languages and Programming (ICALP), volume 85 of LNCS, pages 299–309. Springer,

1980. doi:10.1007/3-540-10003-2_79.

[124] J. Hensel, J. Giesl, F. Frohn, and T. Ströder. Termination and complexity analysis for pro-

grams with bitvector arithmetic by symbolic execution. Journal of Logical and Algebraic

Methods in Programming, 97:105–130, 2018. doi:10.1016/j.jlamp.2018.02.004.

[125] T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy abstraction. In J. Launchbury

and J. C. Mitchell, editors, 29th Symposium on Principles of Programming Languages

(POPL), pages 58–70. ACM, 2002. doi:10.1145/503272.503279.

[126] C. Hewitt, P. Bishop, and R. Steiger. A universal modular ACTOR formalism for artificial

intelligence. In 3rd International Joint Conference on Artificial Intelligence (IJCAI), pages

235–245. Morgan Kaufmann, 1973.

[127] F. Heylighen. Stigmergy as a universal coordination mechanism I: Definition and compo-

nents. Cognitive Systems Research, 38:4–13, 2016. doi:10.1016/j.cogsys.2015.12.002.

[128] D. Hiebeler. The Swarm Simulation System and individual-based modeling. In Decision

Support 2001: Advanced Technology for Natural Resource Management, 1994.

[129] J. Hillston, J. Pitt, M. Wirsing, and F. Zambonelli. Collective adaptive systems: Qualitative

and quantitative modelling and analysis (Dagstuhl seminar 14512). Dagstuhl Reports, 4

(12):68–113, 2014. doi:10.4230/DagRep.4.12.68.

[130] K. V. Hindriks, F. S. de Boer, W. van der Hoek, and J.-J. C. Meyer. Agent program-

ming in 3APL. Autonomous Agents and Multi-Agent Systems, 2(4):357–401, 1999.

doi:10.1023/A:1010084620690.

Bibliography 107

[131] C. A. R. Hoare. Procedures and parameters: An axiomatic approach. In E. Engeler, editor,

Symposium on Semantics of Algorithmic Languages, volume 188 of Lecture Notes in

Mathematics, pages 102–116. Springer, 1971. doi:10.1007/BFb0059696.

[132] C. A. R. Hoare. Communicating sequential processes. Prentice-Hall, 1985. ISBN

0-13-153271-5.

[133] K. Hoder and N. Bjørner. Generalized property directed reachability. In A. Cimatti

and R. Sebastiani, editors, 15th International Conference on Theory and Applications

of Satisfiability Testing (SAT), volume 7317 of LNCS, pages 157–171. Springer, 2012.

doi:10.1007/978-3-642-31612-8_13.

[134] J. H. Holland. Complex adaptive systems. Daedalus, 121(1):17–30, 1992.

[135] S. M. Imam and V. Sarkar. Savina - An actor benchmark suite: Enabling empirical

evaluation of actor libraries. In E. G. Boix, P. Haller, A. Ricci, and C. Varela, editors, 4th

International Workshop on Programming based on Actors Agents & Decentralized Control

(AGERE), pages 67–80. ACM, 2014. doi:10.1145/2687357.2687368.

[136] M. E. Inchiosa and M. T. Parker. Overcoming design and development challenges in

agent-based modeling using ASCAPE. Proceedings of the National Academy of Sciences,

99(suppl 3):7304–7308, 2002. doi:10.1073/pnas.082081199.

[137] O. Inverso and C. Trubiani. Parallel and distributed bounded model checking of multi-

threaded programs. In R. Gupta and X. Shen, editors, 25th Symposium on Princi-

ples and Practice of Parallel Programming (PPoPP), pages 202–216. ACM, 2020.

doi:10.1145/3332466.3374529.

[138] O. Inverso, T. L. Nguyen, B. Fischer, S. La Torre, and G. Parlato. Lazy-CSeq: A

context-bounded model checking tool for multi-threaded C-programs. In M. B. Cohen,

L. Grunske, and M. Whalen, editors, 30th International Conference on Automated Software

Engineering (ASE), pages 807–812. IEEE, 2015. doi:10.1109/ASE.2015.108.

[139] F. Iozzi, F. Trusiano, M. Chinazzi, F. C. Billari, E. Zagheni, S. Merler, M. Ajelli,

E. Del Fava, and P. Manfredi. Little Italy: An agent-based approach to the estima-

tion of contact patterns- fitting predicted matrices to serological data. PLoS Computational

Biology, 6(12), 2010. doi:10.1371/journal.pcbi.1001021.

[140] ISO/IEC. Information processing systems - Open systems interconnection - LOTOS - A

formal description technique based on the temporal ordering of observational behaviour.

International Standard 8807, ISO, 1989.

[141] ISO/IEC. Programming languages- C. International Standard 9899:1999(E), ISO, 1999.

Bibliography 108

[142] H. Kaul and Y. Ventikos. Investigating biocomplexity through the agent-based paradigm.

Briefings in Bioinformatics, 16(1):137–152, 2015. doi:10.1093/bib/bbt077.

[143] J. C. King. Symbolic execution and program testing. Communications of the ACM, 19(7):

385–394, 1976. doi:10.1145/360248.360252.

[144] N. P. Koenig and A. Howard. Design and use paradigms for Gazebo, an open-source

multi-robot simulator. In International Conference on Intelligent Robots and Systems

(IROS), pages 2149–2154. IEEE, 2004. doi:10.1109/IROS.2004.1389727.

[145] A. Komuravelli, A. Gurfinkel, and S. Chaki. SMT-based model checking for recursive

programs. In A. Biere and R. Bloem, editors, 26th International Conference on Com-

puter Aided Verification (CAV), volume 8559 of LNCS, pages 17–34. Springer, 2014.

doi:10.1007/978-3-319-08867-9_2.

[146] K. Konolige. A first order formalization of knowledge and action for a multi-agent

planning system. Machine Intelligence, 10, 1982.

[147] K. Konolige and N. J. Nilsson. Multiple-agent planning systems. In R. Balzer, editor, 1st

National Conference on Artificial Intelligence (AAAI), pages 138–142. AAAI Press/MIT

Press, 1980.

[148] A. Koubâa, M.-F. Sriti, H. Bennaceur, A. Ammar, Y. Javed, M. Alajlan, N. Al-Elaiwi,

M. Tounsi, and E. M. Shakshuki. COROS: A multi-agent software architecture for

cooperative and autonomous service robots. In A. Koubâa and J. R. M. de Dios, editors,

Cooperative Robots and Sensor Networks 2015, volume 604 of Studies in Computational

Intelligence, pages 3–30. Springer, 2015. doi:10.1007/978-3-319-18299-5_1.

[149] P. Kouvaros and A. Lomuscio. A counter abstraction technique for the verification of robot

swarms. In B. Bonet and S. Koenig, editors, 29th Conference on Artificial Intelligence

(AAAI), pages 2081–2088. AAAI, 2015.

[150] D. Kozen. Results on the propositional mu-calculus. Theoretical Computer Science, 27:

333–354, 1983. doi:10.1016/0304-3975(82)90125-6.

[151] J. Lächele, A. Franchi, H. H. Bülthoff, and P. Robuffo Giordano. SwarmSimX: Real-time

simulation environment for multi-robot systems. In D. Hutchison, T. Kanade, J. Kittler,

J. M. Kleinberg, F. Mattern, J. C. Mitchell, M. Naor, O. Nierstrasz, C. Pandu Rangan,

B. Steffen, M. Sudan, D. Terzopoulos, D. Tygar, M. Y. Vardi, G. Weikum, I. Noda,

N. Ando, D. Brugali, and J. J. Kuffner, editors, 3rd International Conference on Simulation,

Modeling, and Programming for Autonomous Robots (SIMPAR), volume 7628 of LNCS,

pages 375–387. Springer, 2012. doi:10.1007/978-3-642-34327-8_34.

Bibliography 109

[152] J. E. Laird, A. Newell, and P. S. Rosenbloom. SOAR: An architecture for general

intelligence. Artificial Intelligence, 33(1):1–64, 1987. doi:10.1016/0004-3702(87)90050-

6.

[153] L. Lamport. Proving the correctness of multiprocess programs. IEEE Transactions on

Software Engineering, 3(2):125–143, 1977. doi:10.1109/TSE.1977.229904.

[154] L. Lamport. Time, clocks, and the ordering of events in a distributed system. Communica-

tions of the ACM, 21(7):558–565, 1978. doi:10.1145/359545.359563.

[155] L. Lamport. The implementation of reliable distributed multiprocess systems. Computer

Networks, 2:95–114, 1978. doi:10.1016/0376-5075(78)90045-4.

[156] F. Lang, R. Mateescu, and F. Mazzanti. Compositional verification of concurrent systems

by combining bisimulations. In M. H. ter Beek, A. McIver, and J. N. Oliveira, editors,

3rd World Congress on Formal Methods (FM), volume 11800 of LNCS, pages 196–213.

Springer, 2019. doi:10.1007/978-3-030-30942-8_13.

[157] F. Lang, R. Mateescu, and F. Mazzanti. Sharp congruences adequate with temporal

logics combining weak and strong modalities. In A. Biere and D. Parker, editors, 26th

International Conference on Tools and Algorithms for the Construction and Analysis of

Systems (TACAS), volume 12079 of LNCS, pages 57–76, Dublin, Ireland, 2020. Springer.

doi:10.1007/978-3-030-45237-7_4.

[158] C. G. Langton. Studying artificial life with cellular automata. Physica D, 22(1):120–149,

1986. doi:10.1016/0167-2789(86)90237-X.

[159] C. Lattner and V. S. Adve. LLVM: A compilation framework for lifelong program analysis

& transformation. In 2nd International Symposium on Code Generation and Optimization

(CGO), pages 75–88. IEEE, 2004. doi:10.1109/CGO.2004.1281665.

[160] T. Lev-Ami, R. Manevich, and S. Sagiv. TVLA: A system for generating abstract inter-

preters. In R. Jacquart, editor, 18th World Computer Congress, topical sessions (WCC),

volume 156 of IFIP-AICT, pages 367–375. Kluwer/Springer, 2004. doi:10.1007/978-1-

4020-8157-6_28.

[161] M. Li, Z. Cai, X. Yi, Z. Wang, Y. Wang, Y. Zhang, and X. Yang. ALLIANCE-ROS:

A software architecture on ROS for fault-tolerant cooperative multi-robot systems. In

R. Booth and M.-L. Zhang, editors, 14th Pacific Rim International Conference on Ar-

tificial Intelligence (PRICAI), volume 9810 of LNCS, pages 233–242. Springer, 2016.

doi:10.1007/978-3-319-42911-3_19.

[162] A. Lomuscio, H. Qu, and F. Raimondi. MCMAS: An open-source model checker for the

verification of multi-agent systems. Software Tools for Technology Transfer, 19(1):9–30,

2017. doi:10.1007/s10009-015-0378-x.

Bibliography 110

[163] M. Loreti and J. Hillston. Modelling and analysis of collective adaptive systems with

CARMA and its tools. In M. Bernardo, R. De Nicola, and J. Hillston, editors, 16th

International School on Formal Methods for the Design of Computer, Communication,

and Software Systems (SFM), Advanced Lectures, volume 9700 of LNCS, pages 83–119.

Springer, 2016. doi:10.1007/978-3-319-34096-8_4.

[164] S. Luke, C. Cioffi-Revilla, L. Panait, K. Sullivan, and G. C. Balan. MA-

SON: A multiagent simulation environment. Simulation, 81(7):517–527, 2005.

doi:10.1177/0037549705058073.

[165] J. Malhotra, R. M. Shapiro, S. A. Smolka, and A. Giacalone. Winston: A tool for

hierarchical design and simulation of concurrent systems. In C. Rattray, editor, Workshop

on Specification and Verification of Concurrent Systems, Workshops in Computing, pages

140–152. Springer, 1988. doi:10.1007/978-1-4471-3534-0_7.

[166] M. Marescotti, A. Gurfinkel, A. E. J. Hyvärinen, and N. Sharygina. Designing parallel

PDR. In D. Stewart and G. Weissenbacher, editors, 17th international Conference on

Formal Methods in Computer Aided Design (FMCAD), pages 156–163. IEEE, 2017.

doi:10.23919/FMCAD.2017.8102254.

[167] M. Massink, D. Latella, A. Bracciali, and J. Hillston. Modelling non-linear crowd dynamics

in Bio-PEPA. In D. Giannakopoulou and F. Orejas, editors, 14th International Conference

on Fundamental Approaches to Software Engineering (FASE), volume 6603 of LNCS,

pages 96–110. Springer, 2011. doi:10.1007/978-3-642-19811-3_8.

[168] M. Massink, M. Brambilla, D. Latella, M. Dorigo, and M. Birattari. On the use of

Bio-PEPA for modelling and analysing collective behaviours in swarm robotics. Swarm

Intelligence, 7(2-3):201–228, 2013. doi:10.1007/s11721-013-0079-6.

[169] M. J. Matarić. Designing emergent behaviors: From local interactions to collective

intelligence. In J.-A. Meyer, H. L. Roitblat, and S. W. Wilson, editors, 2nd International

Conference on Simulation of Adaptive Behavior (SAB), pages 432–441. MIT Press, 1993.

[170] R. Mateescu and D. Thivolle. A model checking language for concurrent value-passing

systems. In J. Cuéllar, T. S. E. Maibaum, and K. Sere, editors, 15th International Sympo-

sium on Formal Methods (FM), volume 5014 of LNCS, pages 148–164. Springer, 2008.

doi:10.1007/978-3-540-68237-0_12.

[171] T. Mazur and G. Lowe. CSP-based counter abstraction for systems with node identifiers.

Science of Computer Programming, 81:3–52, 2014. doi:10.1016/j.scico.2013.03.018.

[172] T. J. McCabe. A Complexity Measure. IEEE Transactions on Software Engineering, 2(4):

308–320, 1976. doi:10.1109/TSE.1976.233837.

Bibliography 111

[173] T. J. McCabe and C. W. Butler. Design complexity measurement and testing. Communica-

tions of the ACM, 32(12):1415–1425, 1989. doi:10.1145/76380.76382.

[174] C. McCaig, R. Norman, and C. Shankland. Process algebra models of population dy-

namics. In K. Horimoto, G. Regensburger, M. Rosenkranz, and H. Yoshida, editors,

3rd International Conference on Algebraic Biology (AB), volume 5147 of LNCS, pages

139–155. Springer, 2008. doi:10.1007/978-3-540-85101-1_11.

[175] J. McCarthy and P. J. Hayes. Some philosophical problems from the standpoint of artificial

intelligence. In B. Meltzer and D. Michie, editors, Machine Intelligence, volume 4, pages

463–502. Edinburgh University Press, 1969.

[176] B. McDaniel. Issues in distributed artificial intelligence. In 1st International Conference on

Data Engineering (ICDE), pages 293–297. IEEE, 1984. doi:10.1109/ICDE.1984.7271285.

[177] K. L. McMillan. Applying SAT methods in unbounded symbolic model checking. In

E. Brinksma and K. G. Larsen, editors, 14th International Conference on Computer Aided

Verification (CAV), volume 2404 of LNCS, pages 250–264. Springer, 2002. doi:10.1007/3-

540-45657-0_19.

[178] K. L. McMillan. Lazy abstraction with interpolants. In T. Ball and R. B. Jones, editors,

18th International Conference on Computer Aided Verification (CAV), volume 4144 of

LNCS, pages 123–136. Springer, 2006. doi:10.1007/11817963_14.

[179] J.-J. C. Meyer, J. Broersen, and A. Herzig. BDI logics. In H. van Ditmarsch, J. Y. Halpern,

W. van der Hoek, and B. Kooi, editors, Handbook of Epistemic Logic. College Publications,

2015. ISBN 978-1-84890-158-2.

[180] R. Milner. A calculus of communicating systems, volume 92 of LNCS. Springer, 1980.

ISBN 3-540-10235-3. doi:10.1007/3-540-10235-3.

[181] R. Milner, M. Tofte, and R. Harper. Definition of standard ML. MIT Press, 1990. ISBN

978-0-262-63132-7.

[182] M. Mirolli, L. Tummolini, and C. Castelfranchi. Stigmergic cues and their uses in

coordination: An evolutionary approach. In A. M. Uhrmacher and D. Weyns, editors,

Multi-Agent Systems - Simulation and Applications, Computational Analysis, Synthesis,

and Design of Dynamic Systems, pages 243–265. CRC Press / Taylor & Francis, 2009.

doi:10.1201/9781420070248.ch8.

[183] M. Mobilia, A. Petersen, and S. Redner. On the role of zealotry in the voter model.

Journal of Statistical Mechanics: Theory and Experiment, 2007(08):P08029, 2007.

doi:10.1088/1742-5468/2007/08/P08029.

Bibliography 112

[184] P. D. Mosses. Modular structural operational semantics. Journal of Logic and Algebraic

Programming, 60-61:195–228, 2004. doi:10.1016/j.jlap.2004.03.008.

[185] D. E. Nadales Agut. A compositional interchange format for hybrid systems: Design

and implementation. PhD Thesis, Technische Universiteit Eindhoven, Eindhoven, The

Netherlands, 2012.

[186] A. Newell and H. A. Simon. GPS, a program that simulates human thought. In H. Billing,

editor, Lernende Automaten, pages 109–124. Oldenbourg, 1961. doi:10.1016/B978-1-

4832-1446-7.50040-6.

[187] T. L. Nguyen, B. Fischer, S. La Torre, and G. Parlato. Lazy sequentialization for the safety

verification of unbounded concurrent programs. In C. Artho, A. Legay, and D. Peled,

editors, 14th International Symposium on Automated Technology for Verification and

Analysis (ATVA), volume 9938 of LNCS, pages 174–191, 2016. doi:10.1007/978-3-319-

46520-3_12.

[188] N. J. Nilsson. Logic and artificial intelligence. Artificial Intelligence, 47(1-3):31–56, 1991.

doi:10.1016/0004-3702(91)90049-P.

[189] P. W. O’Hearn, J. C. Reynolds, and H. Yang. Local reasoning about programs that alter data

structures. In L. Fribourg, editor, 15th International Workshop on Computer Science Logic

(CSL), volume 2142 of LNCS, pages 1–19. Springer, 2001. doi:10.1007/3-540-44802-0_1.

[190] R. Olfati-Saber. Flocking for multi-agent dynamic systems: Algorithms and theory. IEEE

Transactions on Automatic Control, 51(3):401–420, 2006. doi:10.1109/TAC.2005.864190.

[191] D. Olner. An agent-based modelling approach to spatial economic theory. PhD Thesis,

University of Leeds, Leeds, UK, 2014.

[192] D. Olner, A. J. Evans, and A. J. Heppenstall. An agent model of urban economics:

Digging into emergence. Computers, Environment and Urban Systems, 54:414–427, 2015.

doi:10.1016/j.compenvurbsys.2014.12.003.

[193] R. Ostreiher. Is mobbing altruistic or selfish behaviour? Animal Behaviour, 66(1):145–149,

2003. doi:10.1006/anbe.2003.2165.

[194] H. V. D. Parunak. “Go to the ant”: Engineering principles from natural multi-agent systems.

Annals of Operations Research, 75(0):69–101, 1997. doi:10.1023/A:1018980001403.

[195] A. Philippou, M. Toro, and M. Antonaki. Simulation and verification in a process calculus

for spatially-explicit ecological models. Scientific Annals of Computer Science, 23(1):

119–167, 2013. doi:10.7561/SACS.2013.1.119.

Bibliography 113

[196] C. Pinciroli and G. Beltrame. Buzz: An extensible programming language for

heterogeneous swarm robotics. In International Conference on Intelligent Robots

and Systems (IROS), pages 3794–3800. IEEE, 2016. ISBN 978-1-5090-3762-9.

doi:10.1109/IROS.2016.7759558.

[197] C. Pinciroli, V. Trianni, R. O’Grady, G. Pini, A. Brutschy, M. Brambilla, N. Mathews,

E. Ferrante, G. Di Caro, F. Ducatelle, M. Birattari, L. M. Gambardella, and M. Dorigo.

ARGoS: A modular, parallel, multi-engine simulator for multi-robot systems. Swarm

Intelligence, 6(4):271–295, 2012. doi:10.1007/S11721-012-0072-5.

[198] C. Pinciroli, A. Lee-Brown, and G. Beltrame. A tuple space for data sharing in robot

swarms. In J. Suzuki, T. Nakano, and H. Hess, editors, 9th International Conference

on Bio-Inspired Information and Communications Technologies (BICT), pages 287–294.

ICST/ACM, 2015.

[199] L. Pitonakova, R. Crowder, and S. Bullock. Information flow principles for plasticity in

foraging robot swarms. Swarm Intelligence, 10(1):33–63, 2016. doi:10.1007/s11721-016-

0118-1.

[200] G. D. Plotkin. A structural approach to operational semantics. Technical Report DAIMI

FN-19, Computer Science Department, Aarhus University, 1981.

[201] A. Pnueli. The temporal logic of programs. In 18th Symposium on Foundations of

Computer Science (FOCS), pages 46–57. IEEE, 1977. doi:10.1109/SFCS.1977.32.

[202] A. Pnueli, J. Xu, and L. D. Zuck. Liveness with (0, 1,∞)-counter abstraction. In

E. Brinksma and K. G. Larsen, editors, 14th International Conference on Computer Aided

Verification (CAV), volume 2404 of LNCS, pages 107–122. Springer, 2002. doi:10.1007/3-

540-45657-0_9.

[203] S. Qadeer and D. Wu. KISS: Keep it simple and sequential. In W. Pugh and C. Chambers,

editors, Conference on Programming Language Design and Implementation (PLDI), pages

14–24. ACM, 2004. doi:10.1145/996841.996845.

[204] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, E. Berger, R. Wheeler, and

A. Y. Ng. ROS: An open-source robot operating system. In ICRA Workshop on Open

Source Software, 2009.

[205] Z. Rakamaric and M. Emmi. SMACK: Decoupling Source Language Details from Verifier

Implementations. In A. Biere and R. Bloem, editors, 26th International Conference on

Computer Aided Verification (CAV), volume 8559 of LNCS, pages 106–113. Springer,

2014. doi:10.1007/978-3-319-08867-9_7.

Bibliography 114

[206] A. S. Rao. AgentSpeak(L): BDI Agents Speak Out in a Logical Computable Language.

In W. V. de Velde and J. W. Perram, editors, 7th European Workshop on Modelling

Autonomous Agents in a Multi-Agent World (MAAMAW), volume 1038 of LNCS, pages

42–55. Springer, 1996. doi:10.1007/BFb0031845.

[207] A. S. Rao and M. P. Georgeff. BDI agents: From theory to practice. In 1st International

Conference on Multiagent Systems (ICMAS), pages 312–319. MIT Press, 1995.

[208] C. W. Reynolds. Flocks, herds and schools: A distributed behavioral model. In M. C. Stone,

editor, 14th Conference on Computer Graphics and Interactive Techniques (SIGGRAPH),

pages 25–34. ACM, 1987. doi:10.1145/37402.37406.

[209] A. Riesco. Model checking parameterized by the semantics in Maude. In J. P. Gal-

lagher and M. Sulzmann, editors, 14th International Symposium on Functional and

Logic Programming (FLOPS), volume 10818 of LNCS, pages 198–213. Springer, 2018.

doi:10.1007/978-3-319-90686-7_13.

[210] E. Rohmer, S. P. N. Singh, and M. Freese. V-REP: A versatile and scalable robot simulation

framework. In International Conference on Intelligent Robots and Systems (IROS), pages

1321–1326. IEEE, 2013. doi:10.1109/IROS.2013.6696520.

[211] R. J. Ross, R. W. Collier, and G. M. P. O’Hare. AF-APL - Bridging principles and

practice in agent oriented languages. In R. H. Bordini, M. Dastani, J. Dix, and A. E.

Fallah-Seghrouchni, editors, 2nd International Workshop on Programming Multi-Agent

Systems (ProMAS), volume 3346 of LNCS, pages 66–88. Springer, 2004. doi:10.1007/978-

3-540-32260-3_4.

[212] S. E. Russell, H. R. Jordan, G. M. P. O’Hare, and R. W. Collier. Agent Factory: A

framework for prototyping logic-based AOP languages. In F. Klügl and S. Ossowski,

editors, 9th German Conference on Multiagent System Technologies (MATES), volume

6973 of LNCS, pages 125–136. Springer, 2011. doi:10.1007/978-3-642-24603-6_13.

[213] S. J. Russell and P. Norvig. Artificial intelligence - A modern approach. Pearson Education,

3rd edition, 2010. ISBN 978-0-13-207148-2.

[214] E. Sahin. Swarm robotics: From sources of inspiration to domains of application. In

E. Sahin and W. M. Spears, editors, 1st International Workshop on Swarm Robotics,

volume 3342 of LNCS, pages 10–20. Springer, 2004. doi:10.1007/978-3-540-30552-1_2.

[215] D. Sangiorgi and D. Walker. The pi-calculus - A theory of mobile processes. Cambridge

University Press, 2001. ISBN 978-0-521-78177-0.

[216] A. Scheidler, A. Brutschy, E. Ferrante, and M. Dorigo. The k-unanimity rule for self-

organized decision-making in swarms of robots. IEEE Transactions on Cybernetics, 46

(5):1175–1188, 2016. doi:10.1109/TCYB.2015.2429118.

Bibliography 115

[217] M. Schlosser. Agency. In E. N. Zalta, editor, The Stanford Encyclopedia of Philosophy.

Stanford University, 2019.

[218] K. Sen, M. Viswanathan, and G. Agha. Statistical model checking of black-box proba-

bilistic systems. In R. Alur and D. A. Peled, editors, 16th International Conference on

Computer Aided Verification (CAV), volume 3114 of LNCS, pages 202–215. Springer,

2004. doi:10.1007/978-3-540-27813-9_16.

[219] M. Sheeran, S. Singh, and G. Stålmarck. Checking safety properties using induction and

a SAT-solver. In W. A. H. Jr. and S. D. Johnson, editors, 3rd International Conference

on Formal Methods in Computer-Aided Design (FMCAD), volume 1954 of LNCS, pages

108–125. Springer, 2000. doi:10.1007/3-540-40922-X_8.

[220] Y. Shoham. Agent-oriented programming. Artificial Intelligence, 60(1):51–92, 1993.

doi:10.1016/0004-3702(93)90034-9.

[221] M. Sipper. Fifty years of research on self-replication: An overview. Artificial Life, 4(3):

237–257, 1998. doi:10.1162/106454698568576.

[222] E. Sklar. NetLogo, a multi-agent simulation environment. Artificial Life, 13(3):303–311,

2007. doi:10.1162/artl.2007.13.3.303.

[223] H. Skubch, M. Wagner, R. Reichle, and K. Geihs. A modelling language for co-

operative plans in highly dynamic domains. Mechatronics, 21(2):423–433, 2011.

doi:10.1016/j.mechatronics.2010.10.006.

[224] A. Stefanescu, D. Park, S. Yuwen, Y. Li, and G. Rosu. Semantics-based program verifiers

for all languages. In E. Visser and Y. Smaragdakis, editors, International Conference on

Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA), pages

74–91. ACM, 2016. doi:10.1145/2983990.2984027.

[225] J. E. Stiglitz and M. Gallegati. Heterogeneous interacting agent models for un-

derstanding monetary economies. Eastern Economic Journal, 37(1):6–12, 2011.

doi:10.1057/eej.2010.33.

[226] T. Ströder, J. Giesl, M. Brockschmidt, F. Frohn, C. Fuhs, J. Hensel, P. Schneider-Kamp,

and C. Aschermann. Automatically proving termination and memory safety for pro-

grams with pointer arithmetic. Journal of Automated Reasoning, 58(1):33–65, 2017.

doi:10.1007/s10817-016-9389-x.

[227] I. Suzuki and M. Yamashita. Distributed anonymous mobile robots: Forma-

tion of geometric patterns. SIAM Journal on Computing, 28(4):1347–1363, 1999.

doi:10.1137/S009753979628292X.

Bibliography 116

[228] D. Syme. The early history of F#. Proceedings of the ACM on Programming Languages,

4(HOPL):75:1–75:58, 2020. doi:10.1145/3386325.

[229] J. Sztipanovits. Composition of cyber-physical systems. In 14th International Conference

and Workshop on Engineering of Computer Based Systems (ECBS), pages 3–6. IEEE,

2007. ISBN 0769527728. doi:10.1109/ECBS.2007.25.

[230] A. Tarski. A decision method for elementary algebra and geometry. Technical Report

R-109, RAND Corporation, 1951. Reprinted in [53].

[231] L. Tesfatsion. Agent-based computational economics: Growing economies from the

bottom up. Artificial Life, 8(1):55–82, 2002. doi:10.1162/106454602753694765.

[232] L. Tesfatsion and K. Judd. Handbook of computational economics, volume 2 of Handbooks

in Economics. Elsevier, 2006. ISBN 978-0-444-51253-6.

[233] G. Theraulaz and E. Bonabeau. A brief history of stigmergy. Artificial Life, 5(2):97–116,

1999. doi:10.1162/106454699568700.

[234] C. M. N. Tofts. A synchronous calculus of relative frequency. In J. C. M. Baeten and J. W.

Klop, editors, International Conference on Concurrency Theory (CONCUR), volume 458

of LNCS, pages 467–480. Springer, 1990. doi:10.1007/BFb0039078.

[235] C. M. N. Tofts. Process algebra as modelling. Electronic Notes in Theoretical Computer

Science, 162:323–326, 2006. doi:10.1016/j.entcs.2005.12.114.

[236] J. Toner and Y. Tu. Flocks, herds, and schools: A quantitative theory of flocking. Physical

Review E, 58(4):4828–4858, 1998. doi:10.1103/PhysRevE.58.4828.

[237] A. van Deursen, P. Klint, and J. Visser. Domain-specific languages: An annotated

bibliography. ACM SIGPLAN Notices, 35(6):26–36, 2000. doi:10.1145/352029.352035.

[238] M. Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program verifi-

cation (preliminary report). In Symposium on Logic in Computer Science (LICS), pages

332–344. IEEE, 1986.

[239] R. Vaughan. Massively multi-robot simulation in Stage. Swarm Intelligence, 2(2-4):

189–208, 2008. doi:10.1007/s11721-008-0014-4.

[240] G. Vidal. Symbolic execution as a basis for termination analysis. Science of Computer

Programming, 102:142–157, 2015. doi:10.1016/j.scico.2015.01.007.

[241] M. Weiser. Program slicing. IEEE Transactions on Software Engineering, 10(4):352–357,

1984. doi:10.1109/TSE.1984.5010248.

Bibliography 117

[242] D. Weyns, M. Schumacher, A. Ricci, M. Viroli, and T. Holvoet. Environments

in multiagent systems. Knowledge Engineering Review, 20(2):127–141, 2005.

doi:10.1017/S0269888905000457.

[243] U. Wilensky. Modeling nature’s emergent patterns with multi-agent languages. In Euro-

Logo, 2001.

[244] G. Wilson and S. Shpall. Action. In E. N. Zalta, editor, The Stanford Encyclopedia of

Philosophy. Stanford University, 2016.

[245] M. Winikoff. Assurance of agent systems: What role should formal verification play? In

Specification and Verification of Multi-Agent Systems. Springer, 2010. ISBN 978-1-4419-

6983-5 978-1-4419-6984-2. doi:10.1007/978-1-4419-6984-2_12.

[246] G. Winskel. Event structure semantics for CCS and related languages. In M. Nielsen

and E. M. Schmidt, editors, 9th Colloquium on Automata, Languages and Programming

(ICALP), volume 140 of LNCS, pages 561–576. Springer, 1982. doi:10.1007/BFb0012800.

[247] M. Wooldridge and N. R. Jennings. Intelligent agents: Theory and practice. Knowledge

Engineering Review, 10(2):115–152, 1995. doi:10.1017/S0269888900008122.

[248] M. J. Wooldridge. The logical modelling of computational multi-agent systems. PhD

thesis, University of Manchester, 1992.

View publication statsView publication stats

