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ABSTRACT
State space methods provide an automated way of verify-
ing models. However, these methods suffer from the state
space explosion problem. Many methods have been devel-
oped to cope with this problem. As a result, a user has
many different strategies to apply state space methods to
models.
Because there is such a large amount of different strategies,
it is hard for a user to select an appropriate strategy. If a
bad strategy is selected, the model may be unsolvable, or
waste resources. Additionally, the necessary intervention
of a user makes the process of validation less automated.
Therefore, it would be useful if the model checker itself is
able to select an appropriate strategy. This would make
the process fully automated and ensure that no resources
are wasted.
To allow the model checker to predict a suitable strategy, it
needs to use information present in the model itself. This
research investigates to what extent the characteristics of
Petri Net models can be used to predict an appropriate
strategy. The performance of 532 different PNML models
was determined using LTSMin for 20 selected strategies.
This data was used to create a regressor for every strategy,
which predicts the expected runtime when that strategy
is applied to a given model. These regressors were then
combined into a single classifier which could predict an
appropriate strategy.
The classifier was compared to the best single strategy,
and was shown to predict a strategy which outperforms
this fixed strategy in %17 of the predictions, and results
in an average time loss of 12.95 seconds.
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1. INTRODUCTION
Models are used to check the properties of different types
of objects or processes, from computer programs, to the
behaviour of electronic circuits, to protein synthesis. A
popular way of analysing these models is using state space
methods. These methods, however, suffer from the state
space explosion problem, where a linear increase of model
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size exponentially increases the amount of states the model
can exist in [26]. This makes it really difficult to analyse
large models. Many methods have been developed in the
past decades to cope with this problem, and as a result,
many different strategies exist to apply these methods on
the analysis of models.

Since there are so many possible combinations of meth-
ods that can be used, it can be extremely hard for a user,
especially an inexperienced one, to select an appropriate
strategy. A bad strategy may make the model unsolv-
able or lead to an excessive waste of time and memory. If
model checking tools were able to select the most suitable
strategy by themselves without user intervention, it would
ensure that resources are used optimally, and allow for a
greater amount of automation.

These models contain features which might provide enough
information to predict an appropriate strategy to analyse
the model. This research aims to find these features and
create a machine learning classifier capable of accurately
predicting an appropriate strategy for model analysis.

If the classifier causes a larger number of models to be
solved with fewer resources used, when compared to using
a fixed strategy, the classifier can be considered a success.

If model checking tools themselves could decide what strat-
egy to apply to verify a given model, more and larger
models can be verified, with less trained personnel. This
research will investigate whether machine learning algo-
rithms can be used to select an appropriate strategy using
only the information embedded within the model.

Is it possible to train a machine learning classifier, that
recommends a strategy if given a model, which outperforms
the use of a single strategy?

In order to recommend a strategy, the classifier needs in-
formation (called features) of a model. This gives rise to
the following research question:

What features can be found within models?

It is not necessary to train a classifier that finds the best
strategy available. It is sufficient to train a classifier that
finds a strategy, such that on average, it is better than
using a fixed strategy.

2. BACKGROUND
During the creation of software, it is almost impossible to
create a fully fault-free product. An obvious way of in-
creasing the quality of software is to track down and fix
these faults. One popular way of achieving this is through
testing, which can be a lengthy and costly procedure, and
will not guarantee the absence of other errors. More ad-
vanced techniques are necessary in order to guarantee the
absence of errors, or guarantee the presence of other prop-
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Figure 1. Example of a Petri Net [7]

erties.

Formal verification is one such technique, allowing one to
prove or disprove whether a program follows some speci-
fied behaviour. When the presence of a desirable property
cannot be proven, it may indicate that the program will
not always behave according to specification. This infor-
mation can then be used to improve the program.

Formal verification can also be used to verify properties
of hardware, specifications of protocols or other designs.
In the field of biology, formal verification can be used to
analyse the behaviour of cells and other systems. It is
common to create a specification which captures the most
important behaviour of the object under verification. A
model of the object is then checked on whether it meets
that specification.

This research focuses Petri Net models. An example of a
Petri Net can be seen in Figure 1.

2.1 State space methods
One form of formal verification is the verification of a
model using state space methods. State space methods
work by constructing the entire state space of a model,
covering all possible states that it can exist in. The ques-
tion for the object under verification can then be answered
by examining this state space. State space methods can
be grouped into two distinct categories: Explicit meth-
ods and Symbolic methods. These categories differ in the
way states are encoded during the exploration of a model.
Explicit methods allocate a fixed amount of memory for
each state, while symbolic methods use binary decision di-
agrams (BDDs), or a variant of these, to store the state
space.

A BDD is a graph, which like a tree, starts at a single root
node and ends in one or more leaf nodes. Unlike a tree,
nodes in a BDD may have more than one parent node and
may interlink. A BDD is constructed in such a way, that
every path through a BDD indicates a state of the model.
This allows one to represent a large amount of states using
relatively few nodes.

An example of a binary decision tree of a function f(x1,x2,x3)
is shown in Figure 2. Its corresponding BDD is shown in
Figure 3.

As mentioned above, the state space explosion problem
makes it hard to analyse large models. To deal with this
problem, a large number of measures have been developed.
These measures include techniques such as partial order
reduction, abstraction and the limiting to specific verifi-
cation questions. Techniques to traverse the state space
more efficiently have also been developed. Many different
tools exist which implement one or more of these tech-
niques [4]. As a result, end users have many options to

Figure 2. Binary decision tree [1]

Figure 3. Binary decision diagram corresponding
to the Binary decision tree in Figure 2 [1]

consider when applying state space methods to their mod-
els. Henceforth, we will call combinations of these tech-
niques strategies. These strategies describe how a state
space method is applied to a model, which in practice,
could be the combination of the chosen algorithm with
one or more settings of a tool. This research will make use
of the tool called LTSMin [16].

One advantage of state space methods is that their process
is mostly automated, but since there is such a large variety
of strategies, users have to learn about the methods and
tools before they can be used effectively. Furthermore,
the large variety of models makes it almost impossible to
learn a good strategy beforehand. Thus, finding a good
strategy takes either a lot of experience, or a lot of trial
and error. The strategies on which this research focuses
on are discussed in Sections 3.2 and 3.3.

When exploring the state space of a model, one wants to
use as little time as possible. Therefore, it is important to
select a good strategy, even more in large models where
the state space can be enormous. When a bad strategy
is selected, verifying the model will use more resources,
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or may even cause the verification to fail. Ideally, the
user only has to select the model for verification, and the
verification tool itself will choose an appropriate strategy
to verify the model without user intervention. This would
allow for the optimal usage of the available resources.

3. RELATED WORK
First, we will discuss several of the methods which aim to
mitigate the state space explosion problem. Afterwards,
we will examine previous work on strategy prediction.

3.1 BDD construction
The state space explosion problem manifests itself into
the BDD node explosion problem for symbolic state space
methods. It usually appears halfway during exploration,
when the number of nodes in the BDD grows extremely
fast before contracting into its final form, which is usually
much more compact [13]. This peak size must be kept as
small as possible so that larger models can be explored.

The size of a BDD depends on the way the variables are
ordered within the BDD. Reordering these variables can
reduce the size of the BDD, but determining the opti-
mal order is an NP-complete problem [11]. This makes
it unfeasible to perform reordering according to the best
variable order during state space exploration.

Since maintaining the best variable ordering during ex-
ploration is unfeasible, other methods were proposed to
reduce the peak size of the BDD. Some methods aim to
find a good order before exploration [14], [17], [24], others
try to maintain a good ordering during exploration [23].

3.2 State space traversal methods
The way a BDD is constructed also depends on the order
in which states are discovered during exploration. Because
of this, the traversal algorithm used also affects the peak
size of a BDD. Multiple traversal algorithms have been
suggested over the past years.

The traditional breadth-first-search (BFS) algorithm is one
algorithm suitable for state space exploration. An alter-
native to this, is the algorithm called chaining, which was
proposed by Roig et al in [22]. They applied chaining to
Petri Nets and found that it resulted in an improvement in
speed of two orders of magnitude when compared to BFS.
These results were not verified on large models, however.

A variation of both BFS and chaining was proposed in
[13], where all states are used instead of only the previous
discovered layer of states. Their results show that these
variations are slightly better than the original algorithms
overall, but that they perform worse for some models. Ad-
ditionally, they showed that chaining is marginally better
than BFS, but this too was presented using only five se-
lected models.

Solé et al [25] introduced four additional algorithms which
were aimed at improving the state space exploration for
concurrent systems, and found that in most cases an im-
provement can be achieved. However, chaining was still
found to be a good alternative to these algorithms.

3.3 Saturation
Saturation is a method which can drastucally reduce the
peak size of a BDD [13] [12]. It works by firing only the
transitions at a certain level of the BDD. Once all transi-
tions at a level have been fired, it is saturated and a higher
level is explored. By saturating all levels in the BDD, the
size of the BDD can be kept small. This method has been
reported to improve performance by several orders of mag-

nitude [12].

3.4 Strategy prediction
Pelánek’s work is closely related to this research. He de-
fined the properties of state spaces and specifies groups of
state spaces [19],[21]. These characteristics were used to
find an appropriate strategy for a model beforehand. This
led to the development of EMMA, which implements the
prediction strategy for a model [20]. However, his work
is limited to explicit state space methods and only uses
models from the BEEM database [18].

Heijblom’s work focused on symbolic state space methods
[15]. He made use of the LTSmin toolset [16], which is a
model checker that offers multiple state space exploration
tools, multiple options to guide state space exploration
and can be used for multiple types of models. In his re-
search, Heijblom found that there is no single strategy that
can solve all models optimally. He attempted to train a
classifier that would try to optimise the compute-time of
checking a model, and one that would try to optimise the
memory-usage. Ultimately, the memory-optimising classi-
fier was marginally better than using a fixed strategy, and
the time-optimising classifier was decidedly worse than us-
ing a fixed strategy.

In his research, he defined 11 features of models. These
features are all derived from a matrix that is constructed
from a model by LTSmin, which is called the ’dependency
matrix’. This dependency matrix is an abstraction of a
model, where the rows indicate nodes in the model and
the columns indicate the transitions in the model. This ab-
stract representation of a model does not include any lan-
guage specific characteristics. The features are described
in Table 1

4. METHODOLOGY
In his study, Heijblom gathered a large amount of data,
but the training of an effective classifier proved difficult.
Since this lack of effectiveness is presumably caused by a
lack of features, we first defined new features. To assist
with this, we limited the pool of models to just Petri Nets.
This allows us to use tools and features that are exclusive
to Petri Nets.

4.1 Scope
The main goal of this research was to investigate whether
using additional features of models could improve the pre-
diction of an appropriate strategy. A strategy is defined
as the way a state space method is applied to a model
in order to calculate its state space. Any property of a
model can be defined as a feature. In this section, it is ex-
plained what strategies were examined and what features
were considered in this research.

4.1.1 Selected strategies
In order to make testing feasible, the number of strategies
that were considered had to be limited. In related work
it can be seen that the traversal method and the satu-
ration method can significantly influence the state space
exploration of a model [15]. This is the reason that these
elements were chosen to be variable and all other elements
of a strategy were kept fixed.

Four different traversal methods were considered in this
research. These were: bfs, bfs-prev, chain and chain-prev.
bfs and chain are the standard BFS and chain algorithms
as discussed in section 3.2, while bfs-prev and chain-prev
are the algorithms proposed by Ciardo [13], which only
consider the states found at the previous level.
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Feature Definition
State Vector Length Width of the dependency

matrix.
Groups The number of transition

groups. This corresponds
to the number of rows in
the dependency matrix.

Bandwidth Maximum bandwidth of
all rows in the dependency
matrix after variable re-
ordering.

Profile Sum of the bandwidth of
all rows in the dependency
matrix after variable re-
ordering.

Span Sum of the span of all
rows in the dependency
matrix after variable re-
ordering.

Average Wavefront Sum of the wavefront of
all rows in the dependency
matrix after variable re-
ordering divided by the
number of rows.

RMS Wavefront Root mean squared over
the wavefront of all rows
in the dependency matrix
after variable reordering.

Event Span (ES) Sum of the span of all
rows in the dependency
matrix before variable re-
ordering.

Normalised Event Span
(NES)

Normalised version of
Event Span which allows
to compare dependency
matrices of different sizes.

Weighted Event Span
(WES)

Weighted variant of Event
Span.

Normalised Weighted
Event Span (NWES)

Normalised version of
Weighted Event Span
which allows to compare
dependency matrices of
different sizes

Table 1. Features Heijblom selected, based on
metrics of the dependency matrix [15]

Variable Selected values
Traversal strategy bfs, bfs-prev, chain, chain-

prev
Saturation method sat, sat-like, sat-loop, sat-

fix, none

Table 2. Selected variables for the strategies.

Element Selected value
Regroup strategy tg,bs,hf
save-sat-levels true
vset lddmc
lace-workers 1
sylvan-sizes 26,26,26,26

Table 3. Selected values of fixed aspects for all
strategies

Four different saturation methods were included in this
research. These were: sat, sat-like, sat-loop and sat-fix.
In addition to selecting a saturation method, a saturation
level must also be selected. From Heijblom’s research [15],
it can be concluded that a saturation level of 5 gives a
strategy the highest chance of successfully exploring the
state space of a model. Therefore, the saturation level
was chosen to be fixed at 5. The traversal methods were
also considered without saturation, which has the value
none. In this case, the saturation level is ignored.

In total, 20 different strategies were considered. The vari-
ables and their selected values are given in Table 2.

Besides these variable elements of the strategies, there
were also some fixed elements. These fixed elements are
listed in Table 3. They were kept to be in-line with Hei-
jblom’s research as much as possible [15]. The reorder
strategy was chosen because it has the best performance
overall [17]. save-sat-levels is a flag which enables some
time optimisation for saturation. This flag has no effect
when applied if none is selected as the saturation method.
vset specifies the package used for BDD construction. The
other elements enforce that a fixed amount of resources is
used when exploring the state space.

All other parameters of LTSMin that are not listed in ei-
ther Table 2 or Table 3 keep their default values of LTSMin
for version 3.0.2 for all strategies.

4.1.2 Selected features
All information contained within a model can be consid-
ered as a feature. The features to be considered had to be
limited as well. Since the type of models was limited to
models of the PNML filetype only, the features that could
be considered was limited to those features that LTSMin
is able to derive from any model, as well as any features
specific to the PNML filetype.

In the Model Checking Contest [5], the models that are
used have all had some of their properties checked and re-
vealed beforehand. This is done using the CAESAR.BDD
module from the CADP software package [2]. CAESAR.BDD
is a software module which is used for the structural anal-
ysis of Petri Nets. It can determine the values of many
features in an automated fashion. These features are listed
in Table 4. 4

In his research, Heijblom identified 11 features which can
be extracted from the dependency matrix within LTSMin.
These features are listed in Table 1. In his feature rel-
evance analysis, he discovered that there exist multiple
minimal subsets of features. A subset x is minimal if there
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Feature Definition
No. of places The number of places

within a model
No. of transitions The number of transitions

within a model
No. of arcs The number of arcs within

a model
No. of unit The number of units

within a model
Ordinary Boolean value whether all

arcs within a model have
a multiplicity of 1

Simple free choice Boolean value whether all
transitions sharing a com-
mon input place have no
other input place

Extended free choice Boolean value whether all
transitions sharing a com-
mon input place have the
same input place

State machine Boolean value whether ev-
ery transition has exactly
one input place and ex-
actly one output place

Marked graph Boolean value whether ev-
ery place has exactly one
input transition and ex-
actly one output transi-
tion

Connected Boolean value whether
there is an undirected
path between every two
nodes (places or transi-
tions)

Strongly connected Boolean value whether
there is a directed path
between every two nodes
(places or transitions)

Source place Boolean value whether
one or more places have
no input transitions

Sink place Boolean value whether
one or more places have
no output transitions

Source transition Boolean value whether
one or more transitions
have no input places

Sink transitions Boolean value whether
one or more transitions
have no output places

Loop-free Boolean value whether no
transition has an input
place that is also an out-
put place

Conservative Boolean value whether for
each transition, the num-
ber of input arcs equals
the number of output arcs

Subconservative Boolean value whether for
each transition, the num-
ber of input arcs equals
or exceeds the number of
output arcs

Nested units Boolean value whether
places are structured into
hierarchically nested se-
quential units

Safe Boolean value whether in
every reachable marking,
there is no more than one
token on a place

Deadlock Boolean value whether
there exists a reachable
marking from which no
transition can be fired

Reversible Boolean value whether
from every reachable
marking, there is a tran-
sition path going back to
the initial marking

Quasi-live Boolean value whether for
every transition t, there
exists a reachable marking
in which t can fire

live Boolean value whether for
every transition t, from
every reachable marking,
one can reach a marking
in which t can fire

No. of reachable markings The number of mark-
ings reachable within the
model

No. of transition firings The number of transition
firings that can be trig-
gered

Max. No. of tokens per
place

The maximum number of
tokens that can be at a
single place

Min No. of tokens per
marking

The minimun number of
tokens that can exist
within a marking

Max. No. of tokens per
marking

The maximum number
of tokens that can exist
within a marking

Concurrent units The ratio of pairs of con-
current units, the pairs of
units Ui and Uj for which
there exists at least one
marking containing one
place of Ui and one place
of Uj.

Dead transitions The ratio of transitions
which are not enabled in
any reachable marking

Exclusive places The ratio of pairs of places
Pi and Pj where there ex-
ists no reachable marking
containing both Pi and Pj

Table 4. Features extracted by the CAESAR.BDD
module [5].
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does not exist a subset of x for which a classifier trained
with that subset performs equal or better than a classi-
fier trained with x. Therefore, a minimal subset contains
precisely the features necessary for the maximum perfor-
mance of a classifier, while a non-minimal subset contains
at least one redundant feature.

The minimal subset Profile, Span was chosen from Hei-
jblom’s 11 features, since the values of these two features
are determined with any standard run of LTSMin.

4.2 Techniques
This section discusses the models and techniques that were
used during this research. First, the set of models that
was used is discussed, then an overview of the tools and
programs is given. Lastly, a list of the machines used for
determining the performance of the selected strategies is
provided.

4.2.1 Model Collection
The strategies selected above were tested on a large collec-
tion of Petri Net models. The PNML models of the MCC
were used [5]. Since LTSMin cannot handle colored Petri
Nets, only the uncolored ones were used. This collection
consists of 491 different models, which are instances of 66
parameterised Petri Nets. Furthermore, 42 models of the
Petri Net Repository were considered [8]. In total, 532
models were considered.

4.2.2 Tools and programs
The following tools and programs were used during this
research: Awk, Bash, Grep, LTSMin v3.0.2, Memtime,
Python, R and Scikit-Learn.

4.2.3 Machines
The high performance computing cluster of the University
of Twente was used to measure the performance of the
selected strategies. Unfortunately, the 44 machines that
Heijblom used, were not available on the SLURM cluster
at the time of this research. Instead, 10 machines running
Ubuntu 16.04.5 with 24GB of ram and two Intel XEON
E5520 CPUs were used.

4.3 Method
This section describes the method which was used during
this research in an attempt to answer the research ques-
tions. The performance data of each selected strategy was
determined for each selected model.

4.3.1 Data gathering
For every model, the exploration time of every strategy
had to be determined. To do this, we made use of Hei-
jblom’s scripts, which automatically generates jobs which
can then be scheduled on the high performance cluster. To
ensure that the performance measurements are accurate,
every model was explored 10 times with every strategy,
and the exploration time was averaged over these 10 runs.
This means that in total, 532 (models) * 20 (strategies) *
10 (repetitions) = 106400 runs had to be completed.

Because the amount of runs that needed to be completed
was so great, a time limit of 30 minutes per run was set.
This was intended to ensure that data gathering would not
take too long. Since the regressors will attempt to predict
the time it takes to complete an exploration for a given
model, all runs that ran out of time had to be discarded.
This is because it is impossible to guess how long it would
take to complete a run without actually completing it.
Additionally, any runs that failed due to an error, or that
produced incorrect results were also discarded. This data

Figure 4. Histogram counting completion times
for the bfs like strategy

refinement was done using a combination of Heijblom’s
R scripts [15] and scripts newly created for this research.
These new scripts as well as the collected data can be
found in the author’s git repository [10]. In the end, only
127 models had runs that successfully completed in under
30 minutes for all strategies.

In addition to the low amount of datapoints that were
actually usable, the completion time for these datapoints
is also extremely skewed towards the low end. This can
clearly be seen in Figure 4

In the most optimal situation, there would be an equal
spread of datapoints across the whole possible time inter-
val. Because the data is so skewed, the regressors will
not be able to accurately predict the completion times of
models that fall into the tail end of the histogram.

After refining the data, it was split up into seperate files,
such that each file contains the performance data of each
model for a specific strategy.

CAESAR.BDD was run on every model to collect the fea-
tures it provides. To do this, the models first had to be
converted from the PNML format into the NUPN format,
which is used by the CADP software package. This is done
using the PNML2NUPN tool, which can be downloaded
from [9].

Once this process was finished, the performance data of
every model for each strategy was combined with the fea-
tureset collected by CAESAR.BDD. This resulted in 20
datasets, where every set contains the name of a model,
the features collected for that model and the average ex-
ploration time for a particular strategy.

4.3.2 Feature Relevance Analysis and Regressor se-
lection

First, a list of relevant features was created by plotting the
features of each model against their average completion
time for each strategy. These plots were examined for
the presence of a potential correlation. Those features
that showed no correlation with the completion time were
discarded. The potentially relevant features that were left
over are: Arcs, Conservative, Dead transitions, Deadlock,
Places, Transitions, Profile, Span, Max tokens place and
Min tokens marking. Plots of these features against the
completion times of the bfs like strategy are presented in
appendix A.

In order to determine what regressor is most suitable for
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each strategy, all regressors in Scikit-Learn were tested.
A python script was created which generates all possible
subsets of the relevant features listed above. Then, for
every strategy, every regressor in Scikit-Learn was trained
using every possible subset of the relevant features. The
training was done using a random selection of 66% of the
data, and the regressors were tested using the remaining
33%. Since the training and testing data is selected ran-
domly, this process was repeated 10 times. In order to
compare the performance of every regressor and feature
list combination, a metric in Scikit-Learn called score was
used, and its values were averaged over the 10 trials.

The score is defined as score = (1−u
v

) where u =
∑

((ytrue−
ypred)2) and v =

∑
((ytrue − ytrue)2). Here, ytrue is the

true value of the completion time, and ypred is the value
predicted by the algorithm. ytrue represents the mean
value of ytrue. The maximum of score is 1, which indicates
a regressor that predicts its values perfectly. A value of 0
indicates a regressor which always predicts the expected
value, disregarding any input features. Note that the score
of a regressor can be negative if it is worse than a regressor
which always predicts the expected value.

By comparing these scores, the best performing combi-
nation of regressor and feature list was found for every
strategy. The best subset of features for each strategy are
listed in Table 5, and the best regressors and their average
score for each strategy using the best subset of features are
listed in Table 6.

4.4 Used regressors
This section will briefly describe the regressors that were
used.

4.4.1 Ridge
Ridge is a linear regression algorithm which imposes a
penalty on the size of its coefficients [3].

4.4.2 Elastic Net
The elastic net is a linear regression model, it is useful
when there are multiple features that are correlated with
one-another. It maintains the regularization properties of
the Ridge algorithm, while also being able to learn a sparse
model where few of the weights are non-zero, like Lasso [3].

4.4.3 Nearest neighbor regressor
The neighbors-based regression algorithm can be used in
situations where the features are continuous rather than
discrete values. It uses uniform weights where each point
in the local neighbourhood contributes uniformly to the
regression of a datapoint [6].

4.4.4 Decision trees
Decision trees are a machine learning method which use a
collection of if-then-else rules to classify or regress. These
rules are called splits, and divide the input data into boxes.
Once this process has completed, the input data has been
sorted into a leaf, which represents the outcome of the
algorithm.

4.4.5 Random forest regressor
The random forest regressor is an enseble which is built
up of a large amount of decision tree regressors. It is built
from a sample drawn with replacement from the training
set. Additionally, when splitting a node during the con-
struction of a tree, the split that is chosen is not the best
split, but rather it is the split that is the best among a
random subset of the features. This randomness slightly

Strategy Best subset of features
bfs fix Arcs, Conservative, Dead-

lock, Profile, Span, Min
tokens marking

bfs like Max tokens place, Min to-
kens marking

bfs loop Dead transitions, Span,
Max tokens place

bfs none Arcs, Deadlock, Places,
Max tokens place, Min to-
kens marking

bfs sat Deadlock, Profile, Span,
Min tokens marking

bfs-prev fix Conservative, Deadlock,
Profile, Span, Max tokens
place, Min tokens marking

bfs-prev like Conservative, Dead tran-
sitions, Places, Min to-
kens marking

bfs-prev loop Conservative, Deadlock,
Transitions, Min tokens
marking

bfs-prev none Transitions, Min tokens
marking

bfs-prev sat Dead transitions, Dead-
lock, Profile, Span, Min
tokens marking

chain fix Arcs, Conservative, Dead-
lock, Profile, Span, Min
tokens marking

chain like Conservative, Transitions,
Profile, Max tokens place,
Min tokens marking

chain loop Conservative, Deadlock,
Min tokens marking

chain none Max tokens place
chain sat Deadlock, Profile, Span,

Min tokens marking
chain-prev fix Arcs, Conservative, Dead-

lock, Profile, Span, Min
tokens marking

chain-prev like Dead transitions, Places,
Profile, Min tokens mark-
ing

chain-prev loop Conservative, Deadlock,
Min tokens marking

chain-prev none Conservative, Dead tran-
sitions, Max tokens place

chain-prev sat Deadlock, Span

Table 5. Strategies and their relevant features
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Strategy Best regressor Score
bfs fix Elastic net 0.50
bfs like Extra trees re-

gressor
0.24

bfs loop Extra trees re-
gressor

0.09

bfs none Ridge 0.89
bfs sat Nearest neigbor

regressor
0.46

bfs-prev fix Extra trees re-
gressor

0.48

bfs-prev like Extra trees re-
gressor

0.52

bfs-prev loop Extra trees re-
gressor

0.41

bfs-prev none Extra trees re-
gressor

0.95

bfs-prev sat Elastic net 0.49
chain fix Extra trees re-

gressor
0.48

chain like Extra trees re-
gressor

0.36

chain loop Extra trees re-
gressor

0.41

chain none Nearest neigh-
bor regressor

0.03

chain sat Elastic net 0.44
chain-prev fix Extra trees re-

gressor
0.46

chain-prev like Extra trees re-
gressor

0.21

chain-prev loop Extra trees re-
gressor

0.22

chain-prev none Random forest
regressor

0.09

chain-prev sat Elastic net 0.52

Table 6. Strategies, their best regressor and their
score

Strategy Average completion time
in seconds

bfs fix 20.21
bfs like 23.94
bfs loop 27.30
bfs none 84.64
bfs sat 7.92
bfs-prev fix 20.14
bfs-prev like 22.30
bfs-prev loop 30.38
bfs-prev none 79.74
bfs-prev sat 7.83
chain fix 20.12
chain like 18.62
chain loop 22.16
chain none 48.46
chain sat 7.93
chain-prev fix 20.10
chain-prev like 21.25
chain-prev loop 28.65
chain-prev none 41.64
chain-prev sat 7.98

Table 7. Strategies and the average time they take
to explore the models.

increases the bias of the forest, but it also decreases the
variance.

4.4.6 Extra trees regressor
In the Extra trees regressor, the randomness in which the
split is chosen is increased. Like in random forests, a ran-
dom subset of candidate features is chosen, but instead
of using the most discriminative thresholds, the thresh-
olds are drawn at random for each feature, and the best
of these randomly generated thresholds is chosen as the
splitting rule. This allows for an even bigger reduction of
variance when compared to the Random forest, but also
results in a slightly higher bias.

4.5 Evaluation
As can be seen in Table 6, the maximum scores for the
regressors of every strategy varies wildly. Some regressors,
such as the one for bfs-prev none perform really well, but
there are also regressors which score very poorly, such as
the regressor of bfs loop. There are two plausible reasons
that these regressors perform so poorly. The first is that
the feature list may simply not be adequate to predict the
exploration time of a model. The second reason, which is
more likely, is that there is simply not enough varied data.

The best combination of regressor and feature list for ev-
ery strategy was combined into a single classifier. This
classifier works by predicting the exploration time of a
model for every strategy. The strategy for which its re-
gressor predicts the lowest exploration time of a model,
is selected as the strategy that should be used to explore
that model. In order to evaluate this composite classifier,
its predictions have to be validated.

To find out which strategy performs the best if it was the
only strategy that could be used, the exploration times of
all models were averaged for every strategy. The results of
this process are shown in Table 7 The strategy for which
the average exploration time is the lowest, is bfsprev sat.
Therefore, this strategy was chosen to be the fixed strategy
against which the composite classifier is compared.

To test the compound classifier, it predicts the strategy for
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which the exploration time is lowest, given a model. The
exploration time of a strategy when given a model is com-
pared against the exploration time of the fixed strategy for
that same model. If the strategy predicted by the classi-
fier has a lower or equal exploration time to bfs-prev none,
it is considered to be a correct prediction. Otherwise, the
prediction is counted as incorrect.

5. RESULTS
The classifier attempted to predict a correct strategy for
every model in its testing data. Since the training and
testing data is selected at random, the evaluation is re-
peated 100 times so that any variance is minimised. Since
the testing data is 33% of the total amount of data, 0.33
* 127 ≈ 42 models were used to test the classifier every
round.

The average amount of correct predictions is 7.01, versus
the average amount of incorrect predictions of 34.99. This
means that the Classifier predicts a suitable strategy 17%
of the time. In addition to this, the difference in times be-
tween the best fixed strategy and the predicted strategy
is calculated and averaged over all trials. This indicates
how close the strategies predicted by the classifier per-
form when compared to the best fixed strategy. The test
reported a loss in time of 12.95 seconds on average.

The scripts that were created, the programs that were
used and the data that was collected can be found in the
author’s git repository [10].

6. CONCLUSION
The data collected from running experiments was used to
extract data entries for 532 models, but the data from
only 127 models was usable. 20 regressors, one for every
selected strategy, were trained using Scikit-Learn. Every
regressor was scored using Scikit-Learn’s score function, on
data entries they were not trained with. These regressors
were combined into a single classifier. This classifier was
shown to recommend a strategy which is as good as or
better than the best fixed strategy only %17 of the time.

This lack of performance clearly stems from the bad per-
formance of every individual regressor. The classifier can
only be as good as its worst regressor. Still, if the perfor-
mance of the individual regressors can be improved, this
technique of classification could work quite well.

7. FUTURE WORK
The classifier performs really poorly in its current condi-
tion. This mainly stems from the lack of accuracy of its
component regressors. Future work would mainly consist
of improving the performance of these regressors. Since
some of the regressors, like the one for the bfsprev none
strategy with a score of 0.95, perform quite well, the poor
performance may stem from a lack of data rather than a
lack of features. Therefore, the first step to improving this
classifier would be to collect more data.

If the data collection were to be performed again, but with
the 30 minute time limit removed, a lot more data would
have been available. In addition, this data would be way
more varied, since the longer exploration times of big mod-
els would also be included. This would still probably leave
a big gap in between the models with a low exploration
time, and those that ran out of time, as the tail in Figure
4 decreased in size very rapidly. If the exploration times
of big models is included, their exploration times would
most likely fall outside of the scope of the histogram. So in
addition to running the tests again without a time limit,

models need to be collected which have an exploration
time located in this small tail. This would help round out
the data, and minimise any gaps.
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10. APPENDIX A
This appendix contains plots of all relevant features against
the completion time for every data point of the bfs like
strategy.

Figure 5. Value of Arcs of models against their
average completion time

Figure 6. Value of Conservative of models against
their average completion time
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Figure 7. value of Dead transitions of models
against their average completion time

Figure 8. Value of Deadlock of models against
their average completion time

Figure 9. Value of Max tokens place of models
against their average completion time

Figure 10. Value of Places of models against their
average completion time

Figure 11. Value of Profile of models against their
average completion time

Figure 12. Value of Span of models against their
average completion time
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Figure 13. Value of Transitions of models against
their average completion time
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