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Ensuring resource isolation at the hardware level is a crucial step towards more security inside the
Internet of Things. Even though there is still no generally accepted technique to generate appropriate
tests, it became clear that tests should be generated at the system level. In this paper, we illustrate
the modeling aspects in test generation for resource isolation, namely modeling the behavior and
expressing the intended test scenario. We present both aspects using the industrial standard PSS and
an academic approach based on conformance testing.

1 Introduction

SoC (System-on-Chip) architectures are being designed and deployed as microcontrollers of embedded
systems. An SoC is usually highly configurable in order to perform several specific tasks in numerous
devices, including smartphones or objects in the IoT (Internet of Things). SoC security is gaining im-
portance as SoCs become ubiquitous, notably because they are being specially manufactured for heavy
usage of machine learning and artificial intelligence in the IoT. Considering the distributed nature of the
IoT, software solutions to security are insufficient, because an attacker can easily gain access to some
hardware and tamper with it. Hardware attacks consist in forcing an SoC to perform operations in order
to access functionalities or information that should normally not be available. A critical security require-
ment is resource isolation, which forbids applications (or programs) running on a same SoC to access
data not intended for them.

Ensuring this requirement at hardware level is hence becoming mandatory to strengthen security,
but is complex and still leaves two challenging problems. First, there is yet no commonly accepted
solution: [16]] claims to have found a side channel attack that might be applicable to any microcontroller
and enable an attacker to access data from secure memory. Second, there is yet no commonly accepted
approach for validating a proposal for a hardware resource isolation solution: most research focuses on
attacking hardware implementations instead of formally validating proposed protocols.

When it comes to IoT devices, microcontroller manufacturers use the ARM Platform Security Ar-
chitecturd!] which comes with a security specification and the possibility of certification by ARM (PSA-
Certiﬁe(ﬂ). The ARM Security Models [2] is the open-source ARM architecture for IoT with secu-
rity concerns. Here, we focus on the resource isolation aspects of the ARM Security Models that are
implemented with the notions of security (TrustZone [3]) and privilege (TrustZone alone not being
enough [12]]). ARM provides the possibility to carry security and privilege over the hardware through
signals of its AMBA communication protocols [1]] between a source and a target component. Filtering
properly this information can then be left to the target or a dedicated component on the way in charge of
monitoring the communication.
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Before certifying an SoC by ARM, industrial manufacturers are concerned about representing and
testing resource isolation for themselves (the case study [S]] showed that ARM-Certified Level 2 may
leak confidential information such as AES encryption keys). Resource isolation should ensure that data
contained in an IP (Intellectual Property, as are components usually called in the hardware community)
protected with given security and privilege levels can only be accessed by an IP with corresponding or
higher levels. This kind of requirement can be checked using classical tools and techniques for industrial
verification, such as hardware simulators using directed tests and/or execution-time assertions. Although
properly written assertions are perfect to monitor exactly the behavior of a design under test during a
simulation, it is still necessary to generate appropriate test scenarios to be executed: on its own, assertion-
based verification cannot generate such scenarios.

The terrifying complexity of modern SoCs pushes to represent and reason about SoC behavior at
higher abstraction levels, to ease the fast generation of many tests. For this purpose, PSS (the Portable-
test Stimulus Standard) [15]] was published by the Accellera Consortium) that comprises manufacturers
such as AMD, ARM, Intel, Nvidia, NXP, and STMicroelectronics, but also major CAD tool vendors,
such as Cadence, Siemens EDA, and Synopsis. PSS aims at providing an easy way to generate (many)
tests, without the prior need to explicitly model too much of the SoC’s behavior. PSS defines a (program-
ming) language to abstract the behavior of an SoC as a set of “actions”, which communicate and interact
through “flow objects”. PSS also defines a methodology to generate tests from a VI (“Verification Intent”,
a test scenario given as a partial ordering of the actions) by filling any gaps of the VI with appropriate
actions, meeting the ordering constraints expressed for the SoC. Industrial manufacturers are inclined to
use PSS, because it uses a familiar syntax (close to C++) and is well integrated in their current design
flow and tools.

Although PSS has the appearance of a model-based testing approach, the emphasis is clearly more on
the test generation, trying to minimize the time spent on the modeling. Furthermore, because there is no
formal semantics of PSS, nor a complete definition of the underlying behavior corresponding to the set
of constraints describing an SoC in PSS, the tasks of verification engineers remain difficult. The major
challenge faced by these PSS users is getting a grasp on the behavior used as basis for test generation.
Frequently, an erroneous constraint is only detected when an unexpected test is generated, limiting the
confidence in the quality and coverage of the generated tests.

In this paper, we compare the modeling-related aspects of two approaches for test-case generation,
namely the PSS approach with an approach based on conformance test generation with test purposes [10]
as supported by the CADP toolbox [7] and its modeling language LNT [8]]. Both approaches involve two
separate modeling tasks: coming up with an abstract model of the SoC’s behavior and expressing the
structure of the desired test scenarios. However, the focus of both approaches is different: conformance
testing starts with a model, whereas PSS favors modeling the test scenarios. This reflects the needs of
verification engineers in the hardware design industry: at the end of the day, they have to produce tests
for the SoC, and modeling is is acceptable only if it serves this purpose. We also study the impact of the
difference in focus on the generated test suites.

We illustrate both approaches on the problem of generating tests for resource isolation, using a model
of an SoC where the details of the various bus communication protocols are abstracted (each transaction
is represented by a single rendezvous), because their differences and details are irrelevant to the test case
generation. For both approaches, we separately discuss the modeling challenges concerning the behavior
of the SoC and the structure of the test scenarios.

Formal verification is slowly being integrated in SoC design and verification workflows as shown in

3https://accellera.org
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Figure 1: Symbolic automata representation of source (left) and target (right) behaviors

survey [9]] but not for testing resource isolation. The closest work to our approach is [4] which proposes
a high-level model of Intel 64 and ARMv8-A architectures to compare them but it neither formally
specifies the behavior nor is the model used as basis for test generation.

The rest of this paper is organized as follows. Section [2| presents and compares several models of
the resource-isolation related SoC behavior in LNT and PSS. Section [3] presents the modeling of test
scenarios as test purposes in LNT and verification intents in PSS, together with the resulting test suites
(sets of generated tests). Sectiond]concludes. The complete LNT and PSS code is given in the appendices
and provided in the MARS model repository.

2 Modeling the SoC Behavior for Resource Isolation

We illustrate resource isolation on an SoC with two kinds of IPs (components): sources (e.g., a CPU) and
targets (e.g., a memory or dedicated hardware component storing sensible data). All IPs communicate
through a bus-like shared interconnect, which can handle a single transaction at a timeH Both source and
target have a security level (secure and non-secure) and a privilege level (privileged and non-privileged).
Each target stores a data (datal or data2). Each source can execute transactions to read or write the
data of a target, or change the security and/or privilege levels of the data stored by the target. Each
transaction consists of an access request emitted by the source, followed by a response (grant or reject)
from the target. Each request by the source to the target includes the security and privilege levels of
the source, as is the case for any AMBA [1]] conform hardware protocol. The target should grant a read
or write access if and only if both the security and privilege level of the source are at least those of the
target. Concretely, a read or write request is rejected in the two (non-exclusive) situations where the
target is secure (respectively, privileged) and the source is not. Changing the security and/or privilege
level of the target is only granted to a secure and privileged source. We also allow the source to change
its configuration (data to be written and security and privilege levels), thus including the case where a
source (CPU) executes applications with different security and privilege levels.

Figure [Ilshows the behaviors of a source (on the left) and a target (on the right) as two communicating
symbolic automata, focusing on the executed actions and hiding all concrete data as well as security
and privilege levels Both automata synchronize their transitions with identical labels; we omitted the
transition corresponding to a change of the source configuration, because it is the only unsynchronized

4There are more complex communication protocols enabling a source to initiate further transactions with other targets, but
this requires more than one interconnect.

5Taking them into account would yield unreadable figures: for instance, the source automaton would have as many different
central (idle) states as there are different combinations of security and privilege levels (i.e., sixteen). See also the size of the
LTS of the LNT model given in Sect.
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transition.

All requests are initiated by the source (marked with an exclamation-mark “!”’) and received by the
target (marked with a question-mark “?”). The situation is the opposite for granting or rejecting a request
(initiated by the target and received by the source). Initially, both automata are in their central state, the
source is secure and privileged, and the target is non-secure and non-privileged.

The source can attempt a Read, a Write, or change the Protection level of the target; the target responds
by Granting or Rejecting the request depending of whether or not it was legal. For each transaction, the
source states its security and privilege levels and moves to the state corresponding to its request, where
it awaits a response (grant or reject) from the target, before it can issue the next request.

The target starts by awaiting a transaction request from the source. After reception it enters a state
represented by a lozenge symbol indicating that it must analyze the request to determine whether the
request will be granted or rejected. This decision constitutes the resource isolation. A request is rejected
for security reasons if and only if a non-secure source attempts to access a secure target. Likewise,
a request is rejected for privilege reasons if and only if a non-privileged source attempts to access a
privileged target. Altogether, a request is accepted if and only if it is not rejected for either reason. Only
a secure and privileged request can change the security and privilege levels of the target. Note that the
target accepts a new request only in its central state, thus the target accepts a new request only after
having generated a grant or reject of the pending request (if any).

ey

2.1 SoC Behavior Modeling in LNT

Such an SoC can be expressed easily using LNT [8]], a modern language combining a sound foundation
in concurrency theory with user-friendly syntax akin to mainstream programming languages. Two LNT
processes define the behavior of a source or target, each encoding the corresponding symbolic automaton
as an infinite loop, each iteration of which selects among the various possible actions. The overall model
of the SoC is obtained as a parallel composition of an instance of as many sources and targets as there
are in the SoC. Each communication on the interconnect is modeled as a multiway rendezvous between
all instances (reflecting the fact that all IPs can observe everything exchanged on the interconnect). The
complete LNT model (about 200 lines) is given in Appendix

The LNT model defines four enumerated data types: the security ( security ) and privilege ( privilege )
levelsﬁ, the available data values (data), and the identities of the various IPs (ip). For the latter, the model
also defines a function source(id) returning true if and only if id identifies a source IP. The function
valid_access (s, t, p, q) returns true if and only if a source with security level t and privilege level q
should be granted the request to read or write the data stored in a target with security level s and privilege
level p.

Figure [2| shows the LNT process TARGET modeling a target. TARGET has a variable parameter id
identifying the IP; the require-clause of line 4 enforces that this IP is indeed a target. Among the ten
local variables, three record the currently stored data (d), security (s), and privilege (p). The other local
variables serve to collect values exchanged during the rendezvous, so as to impose constraints (e.g., that
the IP emitting a request is a source or whether the request should be granted or rejected based on the
security and privilege level of source and target) or handle data (e.g., change the stored data on line 18
or the security and privilege levels on line 25). Each request is represented by a rendezvous on the
corresponding gate (Read, Write, or Protection), during which the source transmits its current security
and privilege levels, which the target stores in its local variables t and q (this is indicated by the question

SWithout loss of generality, we restrict the model to two privilege levels (rather than the four considered by ARM).
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process TARGET [Read, Grant_Read, Reject_Read, Write, Grant_Write,
Reject_Write, Protection, Grant_Protection,
Reject_Protection: Bus] (id: ip) is
require not (source (id));
var d,e: data, s,t,u: security, p,q,r: privilege, o, other: ip in

d := datal; —- defaultvalue
s := non_secure; p := non_privileged; —— lowest protection level
loop

select

Read (70, id, ?t, ?q) where source (0);

if valid_access (s, t, p, q) then
Grant_Read (o, id, d)

else
Reject_-Read (o, id)

end if

[1 Write (?0, id, ?t, ?q, ?e) where source (0);
if valid_access (s, t, p, q) then

d = e;
Grant_Write (o, id)
else
Reject_Write (o, id)
end if
[l Protection (?0, id, ?t, ?q, ?u, ?r) where source (0);
if (t = secure) and (q = privileged) then
s !=u; p :=r;
Grant_Protection (o, id, s, p)
else
Reject_Protection (o, id)
end if

—— communication between other IPs on the shared interconnect
[l Read (?other, ?0, ?any security , ?any privilege)

where (o != id) and source (other)
[1 Grant_Read (?other, 70, ?any data)

where (o != id) and source (other)
[l Reject_-Read (?other, ?0)

where (o != id) and source (other)
[l Write (?other, ?0, ?any security , ?any privilege , ?any data)

where (o != id) and source (other)
[l Grant_Write (?other, ?0)

where (o != id) and source (other)
[1 Reject_Write (?other, ?0)

where (o != id) and source (other)

[l Protection (?other, ?0, ?any security , ?any privilege ,
?any security , ?any privilege)

where (o != id) and source (other)

[l Grant_Protection (?other, ?o0, ?any security , ?any privilege)
where (o != id) and source (other)

[l Reject_Protection (?other, ?70)
where (o != id) and source (other)

end select

end loop
end var

end process Figure 2: LNT process of a target

133
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marks ? in lines 10, 16, 23, etc.). Depending on the validity of the request, the latter is either granted or
rejected (by a rendezvous on the corresponding gate). For a Write and Protection, the grant is preceded by
an update of the local variables of the target with the values received from the source during the request
(see lines 18 and 25).

The LTS corresponding to a parallel composition of eight sources (which can only initiate the three
transactions Read, Write and Protection) and a single target can be generated in less than a minute, and
has 182 states, 558 transitions, and 99 labels (after minimization modulo strong bisimulation).

In a second version of the LNT model, a source not engaged in a transaction can also change its
configuration (the data written by the source and the security and privilege level of the source). This
corresponds to considering sources as multitasking-enabled CPUs capable of executing several applica-
tions with different configurations, and to take care of the configuration changes induced by switching
between applications. The LTS corresponding to this extended model is too large to be generated—the
number of states is expected to be 8% times the size of the previous model. However, when removing
the identification of the source IP from all transition labels and hiding all transitions corresponding to a
configuration change, both LTSs are equivalent for branching bisimulation (the LTS minimized modulo
branching bisimulation has 52 states, 268 transitions, and 39 labels).

The identity of the source IP seems thus not important. Indeed, when removing the identification of
the source IP from all transition labels and hiding all transitions corresponding to a configuration change,
a model with a single multitasking-enabled source also is equivalent for branching bisimulation to the
model with eight sources that do not have multitasking enabled. Hence, with the possibility to change
the source configuration, it is sufficient to model a single source.

The situation is more intricate concerning the number of targets. Actually, two targets are indepen-
dent and thus equivalent to a single target with two memory cells with separate security and privilege
levels. However, resource isolation is concerned with the access to a single target, so that it is not neces-
sary to study SoCs with more than one target.

It is worth mentioning that the LTS can be analyzed with a full range of verification tools, e.g., those
provided by the CADP toolbox. Besides the equivalence checking tools already used to compare the
SoCs with different numbers of sources, it is possible to explore the LTS step by step and to verify
temporal logic properties. This is helpful to gain confidence in the correctness of the modeled behavior.

2.2 SoC Behavior Modeling in PSS

A major modeling difference between LNT and PSS is that LNT is targeted at modeling the SoC, whereas
PSS avoids modeling the overall behavior of the SoC, focusing on simply expressing constraints between
the actions of the SoC. However, the latter is less convenient when it comes to precisely understand the
modeled behavior, because it requires to assemble all these constraints together.

The understanding of the behavioral model induced by the constraints can be improved by adopting
a modeling discipline, such as encoding the two symbolic automata of Fig. [1] (as seen in the previous
section, it is sufficient to consider an SoC with a single source and a single target). For each automaton,
each transition can be encoded as a PSS action, which inputs from and outputs to a (same) state flow ob-
ject storing the data values of the automaton, using constraints to enable actions only for particular states
of the automaton and controlling the state resulting from the execution of an action. Synchronization
between the automata is then expressed using stream flow objects, mimicking the multiway rendezvous
on the gates in the LNT model.

This intuitive approach yields the PSS model presented in Appendix [Bl featuring two state flow ob-
jects, nine stream flow objects, and a total of 21 actions (ten actions for the transitions of the source, nine
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actions for the transitions of the target, plus two actions to control the initial state of the two state flow
objects—this is required by the PSS semantics). This significant increase in complexity is accompanied
by the need to specify for all actions not only the fields of the state flow object that are modified, but also
those that remain unchanged. All in all, the corresponding PSS model ends up with more than 500 lines.

It is possible to translate this PSS model to LNT (using a translator currently under development),
leading to almost two thousand lines of LNT. This generic translation encodes each action and flow object
as a separate LNT process, leading to a total of 32 processes. The LTS corresponding to each of these
processes can be generated and minimized modulo divergence-preserving branching bisimulation, before
composing all 32 LTSs into the overall LTS of the PSS rnodel This generation of the corresponding
LTS took about a day (on the yeti cluster in the Grenoble site of the Grid’5000 platform), exploiting the
64 cores using a distributed state space generation tool. However, the corresponding state space (before
hiding all transitions related to the interactions between actions and flow objects) is prohibitively large:
1,700,860,640 states, 13,934,786,272 transitions, and 6,706 labels, stored in a file with a size of 88 GB.
Note that more refined compositional generation strategies (e.g., smart generation [6]) did not succeed,
as some intermediate state spaces for a subset of the processes are larger than the overall state space.

Taking into account that a rendezvous between several actions yields a unique visible transition,
we investigated a simpler modeling approach encoding a monolithic automaton, incorporating the con-
straints of both source and target. This approach requires only ten actions (three requests, three grants,
three rejects, and the configuration change), all inputting from and outputting to a single state flow ob-
ject. The corresponding PSS code is given in Appendix [Cl The drawback of this approach is the increase
in constraints for each action, because it is necessary to specify all fields of the state flow that remain
unchanged by the action (each field related to the target is not affected by an action related to the source
and vice-versa). Another inconvenient of this approach is that it would be very impractical to extend this
model to an SoC with more IPs, due the complexity of getting a complete and correct set of constraints.

This monolithic PSS model can also be translated into (almost one thousand lines of) LNT, from
which the corresponding LTS (2736 states, 4591 transitions, and 4592 labels) can be directl gener-
ated in less than a minute. After hiding all transitions related to interactions with the state flow object,
changing all transition labels to use the same gates and sets of offers as the LNT models of the previous
section, and determinization (reduction for weak trace equivalence), the LTS is branching equivalent to
those of the LNT models presented in the previous section.

Figure [3] gives the description of action target grant_read. It inputs from and outputs to a state
flow object, which keeps track of the configuration of the SoC. Execution of the action is subject to the
constraints specified in its body. The first constraint (line 5) enforces that the action can be executed
only if another action has already output to the state flow object (each PSS state flow object has an
implicit field initial, which is initialized to true, changed to false upon the first output to the flow object,
and never changed again). The next two constraints express that the source automaton moves from
read (line 7 constraining the value of field sstate of the input flow object in_state ) back to idle (line 8
constraining field sstate of the output flow object out_state). The next two constraints (lines 10-13)
express the validity of the transaction (inspecting only fields of the input flow object). The remaining
eight constraints express that all other fields of the output flow object should keep the values of the fields
of the input flow object.

This 24-line PSS description of the action (with its constraints) is more verbose than the correspond-

"The translation of stream flow objects makes use of the n-among-m synchronization currently only supported by the
EXP.OPEN [[11] tool.

8Due to the absence of stream flow objects, the generated LNT model does not require a n-among-m synchronization and
can thus be handled directly by the LNT compiler.
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action t_grant_read {
input system_state in_state;
output system_state out_state;

constraint in_state.initial = false;
// Move from Read to Idle

constraint in_state.sstate =— read;
constraint out_state.sstate — idle;

// Check protection

constraint (in_state.source_sec = secure) ||
(in_state.target_sec = non_secure);
constraint (in_state.source_priv = privileged) ||

(in_state.target_priv
// Maintain source fields
constraint out_state.source_sec
constraint out_state.source_priv
constraint out_state.source_data
// Maintain target fields
constraint out_state.target_sec
constraint out_state.target_priv
constraint out_state.target_data
constraint out_state.new_sec
constraint out_state.new_priv

non_privileged);

in_state.source_sec;
in_state.source_priv;
in_state .source_data;

in_state.target_sec;
in_state.target_priv;
in_state.target_data;
in_state.new_sec;
in_state.new_priv;

Figure 3: Action for granting a read request in the monolithic PSS model

ing three lines of LNT (lines 13—15 in Fig.[2). This has several reasons. First, in PSS the states of the
target have to be listed explicitly, whereas they are deduced from the control flow in LNT. Second, LNT
has no implicit field initial. Last, but not least, in LNT it is not necessary to specify the variables that
maintain their value.

3 Test Generation from Test Scenarios

The principal objective of the models of the SoC behavior presented in Section 2lis to enable the genera-
tion of tests to validate the SoC. Characterizing a set of desired tests is a modeling task of its own, based
on the idea of expressing a partial ordering of some actions that have to appear in the generated tests,
and of relying on tools exploiting the behavioral model to fill in any further actions necessary to obtain
a complete test case. This approach emphasizes the expression of a fest scenario defining the high-level
structure of the tests, leaving the details to automatic tools. The notion of test scenario is called TP (test
purpose) in conformance testing theory [[10l] and VI (verification intent) in PSS.

There are different techniques to construct tests from a test scenario. The TESTOR tool [[13]] proceeds
by a forward exploration of a (particular) synchronous product between the TP and the behavioral model,
extracting on-the-fly a test or a subgraph called CTG (complete test graph) containing all possible tests
for the TP. The PSS methodology [[15, Appendix F] uses a backward traversal of the VI, determining for
each action its immediately necessary previous actions, based on the constraints in the verification intent
and the behavioral model. In the following, we compare the effect of these different approaches on four
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process PURPOSE._1 | action intent_1 {
Reject_Read , t_reject_read Reject_Read;
Reject_Write , t_reject_write Reject_Write;
Reject_Protection , t_reject_protection Reject_Protection;
TESTOR.ACCEPT: none] is activity {
select select{
Reject_Read Reject_Read;
[l Reject_Write Reject_Write;
[] Reject_Protection Reject_Protection ;
end select; }
loop TESTORACCEPT end loop }
end process }

Figure 4: Test scenario 1 (“reject for any reason™) as TP in LNT (left) and VI in PSS (right)

test scenarios for resource isolation.

3.1 Test Scenario 1: Reject for any Reason

A natural first test scenario for resource isolation is to search for tests featuring the detection of an illegal
transaction, i.e., containing any of the three actions Reject_Read, Reject_Write, and Reject_Protection.
Figure 4] shows how to express this scenario as a TP in LNT and a VI in PSS.

In LNT the TP is encapsulated in a process PURPOSE_1, the gate parameters (lines 2-5) of which
are the three actions expected in the scenario plus the special gate TESTOR_ACCEPT indicating the goal
of the TP. The behavior of this TP is the sequential composition of a non-deterministic choice (select
instruction in lines 6-10, choices being separated by “[]”’) among the three actions, followed by a loop
indicating the end of the TP.

In PSS the VI is a compound action, referencing the three actions via action handles (lines 2—4).
The ordering of actions is specified by the activity block (lines 5-11), containing a non-deterministic
selection among the three actions (lines 610, choices being separated by ““;”).

For this TP, TESTOR generates a CTG (183 states, 567 transitions, and 101 labels) that contains all
paths to reach any of the three actions, including paths with granted requests before the rejected one. A
CTG can be considered a description of a tester, interacting with the SoC to drive it towards the goal
of the TP, by selecting appropriate control actions (or inputs) depending on the outputs observed so far.
In general, a CTG contains states, where the tester has to choose among different control actions to be
executed. The CTG generated for this TP contains 384 choices, all of which can be covered by a suite of
357 test cases that can be generated automatically using the approach proposed in [14]].

For this VI, the PSS backward traversal starts by (non-deterministically) choosing one of the three
reject actions, and then determines which other actions must immediately precede, by checking which
action could have written values to the state flow object so as to satisfy the input constraints of the selected
action. The constraints on the sstate field imply the preceding action must be a request. For Reject_Read
and Reject_Write, the constraints on the security and privilege levels imply that in the request, one of
these values must be strictly lower than the one of the target. For the Reject_Protection, the constraints
imply that the preceding Request_Protection stems from a source that is not both secure and privileged.
For the monolithic behavioral model, this backward traversal continues until the action init_system_state
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process PURPOSE_2 | action intent_2 {
Reject_Read , t_grant_read Grant_Read;
Reject_Write , t_grant_write Grant_Write;
Reject_Protection , t_grant_protection Grant_Protection;
Grant_Read , t_reject_read Reject_Read;
Grant_Write , t_reject_write Reject_Write;
Grant_Protection , t_reject_protection Reject_Protection;
TESTOR.ACCEPT: none] is activity {
par schedule{
Grant_Read Grant_Read;
|| Grant_Write Grant_Write;
|| Grant_Protection Grant_Protection;
|| Reject_Read Reject_Read;
|| Reject_-Write Reject_Write;
|| Reject_Protection Reject_Protection;
end par; }
loop TESTORACCEPT end loop }
end process }

Figure 5: Test scenario 2 (“all possible responses” interleaved) as TP in LNT (left) and VI in PSS (right)

is foundE] In practice, the PSS methodology aims at generating a single test at each invocation. When
implemented using a breadth-first backward traversal (as is the case for some industrial PSS tools), this
systematically yields any of the shortest possible tests.

3.2 Test Scenario 2: Test all Possible Responses (Interleaving Semantics)

This test scenario aims at observing all responses to the three transactions, in any order using the inter-
leaving of the responses as shown in Figure[5l In LNT, the parallel composition operator par expresses
the interleaving of the different branches separated by “||”. In PSS, the schedule operator expresses the
interleaving of the branches separated by “;”

For this TP, TESTOR computes a CTG with 2649 states and 12,057 transitions; its 8832 choices can
be covered with 8328 tests. The size of the CTG is due to the fact that once one of the responses has
been observed, it is still possible to observe it before all responses have been observed. Hence, the CTG
corresponds to an “unfolding” of the model six times, repeating the complete behavior of the SoC until
all responses have been observed.

Searching for short(est) tests, the PSS methodology reduces the number of changes in the secu-
rity and privilege levels of the source and the target. Therefore, in most tests the security and privi-
lege levels for Grant_Read and Grant_Write (respectively Reject_Read and Reject_Write) are the same, and
Grant_Protection and Reject_Protection are inserted where suitable. Notice that the syntactic order of the
responses in the VI (and TP) actually corresponds to the shortest sequence. Indeed, because the model
starts with a secure and privileged source and a non-secure and non-privileged target, all grants are pos-
sible. Increasing the security and/or privilege of the target and appropriately lowering the security and
privilege of the source are then sufficient to observe the three rejections.

9For the generic PSS behavioral model, both init_source_state and init_target_state have to be found.
10The PSS operator parallel expresses a parallel execution of different behaviors using several threads.
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process PURPOSE.3 | action intent_3 {
Reject_Read , t_grant_read Grant_Read;
Reject_Write , t_grant_write Grant_Write;
Reject_Protection , t_grant_protection Grant_Protection;
Grant_Read , t_reject_read Reject_Read;
Grant_Write , t_reject_write Reject_Write;
Grant_Protection , t_reject_protection Reject_Protection;
TESTOR.ACCEPT: none] is activity {
Grant_Read; Grant_Read;
Grant_Write; Grant_Write;
Grant_Protection; Grant_Protection;
Reject_Read; Reject_Read;
Reject_Write; Reject_Write;
Reject_Protection; Reject_Protection;
loop TESTORACCEPT end loop }
end process }

Figure 6: Test scenario 3 (“all possible responses” in sequence) as TP in LNT (left) and VI in PSS (right)

3.3 Test Scenario 3: Test all Possible Responses (Sequential Semantics)

Most test generation strategies do not support the interleaving of actions, but require more directed
specifications enforcing a particular sequence of actions. Test scenario 3 requests once again all possible
responses but in a particular order, expressed in LNT and PSS using “;”, as illustrated on Figure [6]

Requesting such a directed scenario has consequences on the generated test suite for both LNT and
PSS. The CTG generated by TESTOR will contain for two sequential actions of the TP every possible
path of the model allowed in between. The CTG has 967 states and 3271 transitions; its 2208 choices
can be covered with 2072 tests. This CTG is smaller than the one for test scenario 2, because only a
single ordering of responses is requested.

The tests generated by PSS are once again the shortest ones and included in those generated for test
scenario 2. This shows that more directed test scenarios limit the set of generated tests.

3.4 Test Scenario 4: Access Data with Different Protection

Using the notions of security and privilege, ARM-PSA diversifies the different levels of protection possi-
ble for an IP in an SoC. However, there is the strong assumption of a trusted administrator as all requests
of a secure and privileged source are necessarily granted. Test scenario 4 expresses that whatever the
security and privilege of the target, a source with the same security and privilege can write to the target,
and any source with higher security and/or privilege (e.g., the administrator) will be able to read the
written data. This scenario requires to express that there should be no change in the security or privilege
between the write and read requests.

Test Scenario 4 focuses on how to express the refusal of some behavior. This is illustrated in Figure[7]
by describing a corresponding TP in LNT, using the special gate TESTOR_REFUSE (line 8) to indicate
that the preceding rendezvous on gate Grant_Protection should be excluded from the generated CTG.
The null branch (line 10) of the select construct (lines 6-11) allows any other action. The where clause
on line 12 guarantees (in combination with the condition on line 11 of Figure [2)) that the final read is
requested with higher security and/or privilege than the write on line 5.
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process PURPOSE_4 [Read, Grant_Read, Write, Grant_Protection: Bus,
TESTOR_ACCEPT, TESTOR_REFUSE: none] is
var s,t: security, p,q: privilege, d: data in
Grant_Protection (?any ip, ip0, ?s, 7p)
Write (?any ip, ip0, s, p, ?d); ——samesandp asinthe previous line
select
—— refuse any further rendezvous on gate Grant_Protection
Grant_Protection (?any ip, ip0, ?s, ?p); loop TESTOR.REFUSE end loop
[1 —- accept all other rendezvous

null
end select;
Read (?any ip, ip0, ?t, ?q) where (s !=t) or (p !=q);
Grant_Read (?any ip, ip0, d); —— accessdata with different security and privilege levels
loop TESTORACCEPT end loop
end var

end process

Figure 7: Test scenario 4 (“access data with different security/privilege”) as TP in LNT

To the best of our knowledge, PSS has no such means to explicitly request absence of actions from
the generated tests. Instead, the scenario has to be made more directed by explicitly including more
actions in the VI so as to add constraints on these actions. In particular, the VI allows to bind an input
flow object of an action a, to the output flow object of another action a;, constraining action-inference
and forcing a; to immediately precede a,. The resulting, lengthy VI is given in Appendix [Cl

4 Conclusion

In this paper, we illustrated the modeling tasks for testing hardware resource isolation using both the
approach promoted by the industrial standard PSS and an academic approach based on LNT and con-
formance testing. Both approaches require a model of behavior and an abstract test scenario, which is
refined into concrete tests based on the behavioral model.

Despite these similarities, both approaches differ in the way of generating tests, using a forward
(LNT) or backward (PSS) search. This difference not only yields different tests, but also impacts the
modeling, due to the trade-off between putting constraints in the behavior model or the test scenario. On
the one hand, LNT facilitates a complete, verifiable model of the behavior, from which extensive test
suites can be generated with few, short test scenarios. On the other hand, PSS favors focusing on the
test scenario (or verification intent), and requires longer test scenarios to obtain longer tests. While this
avoids the risk of state space explosion, it comes at the price of losing the coverage guarantees available
for conformance testing, in particular in the presence of cyclic behavior. Furthermore, the behavior is
often under-constrained in PSS, especially when adding a new action to the behavior.

The models presented in this paper were used in an industrial context. An extended version of test
scenario 3 requested in LNT a specific order of attempting each transaction for all combinations of
source and target security and privilege levels. Concretely, for each attempted transaction, the source
requests to write, to read, and then to change the target’s security and privilege. From the generated
CTG, we derived a single long test (including all transaction attempts). This test was included in the
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nightly non-regression tests for a (confidential) SoC under development, sequentially executing the test
for each of the over hundred target IPs of the SoC. This revealed a few cases of bad wiring, unaligned
documentation, and misunderstandings between architect, design, and verification engineers.

Because the behavioral model of PSS is hard to grasp, modeling errors are frequently detected only

by the generation of unexpected tests. We are currently working on the automated translation of PSS
constructs into LNT to support the early analysis of the behavioral model, e.g., by model checking. This
also includes guidelines for devising PSS models with an efficient translation to LNT.
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A LNT Model

module model_8_1 with —, != is

type security is secure, non_secure end type

type privilege is privileged, non_privileged end type

type data is datal, data2 end type

type ip is ip0, ipl, ip2, ip3, ip4

, iph,

channel Bus is
(source, target: ip),
(source, target: ip, data),
(source, target: ip,
(source, target: ip,
(source, target: ip,
end channel

n n n o

security , p:
security , p:
security , p:

function valid_access (s,t: security,
—— returns true iff a source with protection level (t,q) is
——allowed to access a target with protection level (s,p)

return not (((s = secure) and (t
((p = privileged) and (q
end function
function source (id: ip) : bool is

—— returns true iff id is a source IP
case id in
ip0 — return false
| any —> return true
end case
end function

process SOURCE [Read, Grant_Read,

Reject_Write , Protection ,

Reject_Protection:
(id: ip, in var s:

require source (id);
var o, other: ip in

Reject_Read , Write, Grant_Write ,
Grant_Protection ,
Change_Source_Config: any]
privilege ,

Bus,

ip6b, ip7, ip8 end type

privilege),
privilege , d: data),
privilege , t: security ,

p.q:

security ,
in var d: data, multitasking: Bool) is

in var p:

privilege): Bool is

non_secure))
non_privileged)))

or

q:

143

privilege)
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loop
select
Read (id, ?o0, s, p) where not (source (0));
select

Grant_Read (id, o, ?any data)
[l Reject_-Read (id, o)
end select
[1 Write (id, ?0, s, p, d) where not (source (o0));
select
Grant_Write (id, o)
[1 Reject-Write (id, o)
end select
[l Protection (id, ?0, s, p,
where not (source (0));
select
Grant_Protection (id, o, ?any security , ?any privilege)
[] Reject_Protection (id, o)
end select
[] only if multitasking then
Change_Source_Config (id, id, ?s, ?p, 7d)
end if
—— communication between other IPs on the shared interconnectkbu
[l Read (?o, ?other, ?any security , ?any privilege)

?any security , ?any privilege)

where (o != id) and not (source (other))
[1 Grant_Read (?0, ?other, ?any data)

where (o != id) and not (source (other))
[l Reject-Read (?0, ?other)

where (o != id) and not (source (other))
[l Write (?0, ?other, ?any security , ?any privilege , ?any data)

where (o != id) and not (source (other))
[1 Grant_Write (?0, ?other)

where (o != id) and not (source (other))
[1 Reject-Write (?0, ?other)

where (o != id) and not (source (other))

[l Protection (?0, ?other, ?any security , ?any privilege ,
?any security , ?any privilege)

where (o != id) and not (source (other))

[l Grant_Protection (?0, ?other, ?any security , ?any privilege)
where (o != id) and not (source (other))

[l Reject_Protection (?0, ?other)
where (o != id) and not (source (other))

end select

end loop
end var

end process

process TARGET [Read, Grant_Read, Reject_Read, Write, Grant_Write,
Reject_Write, Protection, Grant_Protection,
Reject _Protection: Bus] (id: ip) is
require not (source (id));
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var d,e: data, s,t,u: security, p,q,r: privilege, o, other: ip in

d := datal; —- default value
s := non_secure; p := non_privileged; —— lowestprotection level
loop

select

Read (?0, id, ?7t, ?q) where source (0);

if valid_access (s, t, p, q) then
Grant_Read (o, id, d)

else
Reject_Read (o, id)

end if

[1 Write (?0, id, ?t, ?q, ?e) where source (0);
if valid_access (s, t, p, q) then

d = e;
Grant_Write (o, id)
else
Reject_Write (o, id)
end if
[l Protection (?0, id, ?t, ?q, ?u, ?r) where source (0);
if (t = secure) and (q = privileged) then
s (=u; p = r;
Grant_Protection (o, id, s, p)
else
Reject _Protection (o, id)
end if

—— communication between other IPs on the shared interconnect
[1 Read (?other, ?0, ?any security , ?any privilege)

where (o != id) and source (other)
[1 Grant_Read (?other, ?0, ?any data)

where (o != id) and source (other)
[l Reject_.Read (?other, ?0)

where (o != id) and source (other)
[l Write (?other, ?0, ?any security , ?any privilege, ?any data)

where (o != id) and source (other)
[1 Grant_Write (?other, ?0)

where (o != id) and source (other)
[1 Reject-Write (?other, ?0)

where (o != id) and source (other)

[l Protection (?other, ?0, ?any security , ?any privilege ,
?7any security , ?any privilege)

where (o != id) and source (other)

[l Grant_Protection (?other, ?0, ?any security , ?any privilege)
where (o != id) and source (other)

[1 Reject_Protection (?other, ?70)
where (o != id) and source (other)

end select

end loop
end var

end process
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process SOC [Read, Grant_Read, Reject_-Read, Write, Grant_Write, Reject_Write ,
Protection , Grant_Protection, Reject_Protection: Bus,
Change_Source_Config: any] (multitasking: Bool) is

par Read, Grant_Read, Reject_Read, Write, Grant_Write, Reject_Write
Protection , Grant_Protection, Reject_Protection

in
SOURCE [...] (ipl, secure, privileged , datal, multitasking)
|| SOURCE [...] (ip2, secure, privileged, data2, multitasking)
|| SOURCE [...] (ip3, secure, non_privileged , datal, multitasking)
|| SOURCE [...] (ip4, secure, non_privileged , data2, multitasking)
|| SOURCE [...] (ip5, non_secure, privileged , datal, multitasking)
|| SOURCE [...] (ip6, non_secure, privileged , data2, multitasking)
|| SOURCE [...] (ip7, non_secure, non_privileged , datal, multitasking)
|| SOURCE [...] (ip8, non_secure, non_privileged , data2, multitasking)
|| TARGET [...] (ip0)
end par

end process

process SOC.2 [Read, Grant_Read, Reject_Read, Write, Grant_Write, Reject_Write,
Protection , Grant_Protection, Reject_Protection: Bus,
Change_Source_Config: any] is
par Read, Grant_Read, Reject_Read, Write, Grant_Write, Reject_Write
Protection , Grant_Protection, Reject_Protection
in
SOURCE [...] (ipl, secure, privileged , datal, true)
|| TARGET [...] (ip0)
end par
end process

process MAIN [Read, Grant_Read, Reject_Read, Write, Grant_Write, Reject_Write,
Protection , Grant_Protection, Reject_Protection: Bus,
Change_Source_Config: any] is
SOC [...] (false)
end process

process PURPOSE_1 [Reject_Read, Reject_Write, Reject_Protection,
TESTORACCEPT: none] is
—— any reject
select
Reject_Read
[1 Reject_Write
[] Reject_Protection
end select;
loop TESTOR_ACCEPT end loop
end process
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process PURPOSE_2 [Grant_Read, Grant_Write, Grant_Protection, Reject_Read,
Reject_Write , Reject_Protection, TESTORACCEPT: none] is

—— any transaction (all possible outcomes) in any order
par
Grant_Read
|| Grant_Write
|| Grant_Protection
|| Reject_Read
|| Reject_Write
|| Reject_Protection

loop TESTORACCEPT end loop
end process

process PURPOSE_3 [Grant_Read, Grant_Write, Grant_Protection, Reject_Read,
Reject_Write , Reject_Protection, TESTORACCEPT: none] is

—— any transaction (all possible outcomes) in a seqential order
Grant_Read;
Grant_Write;
Grant_Protection;
Reject_Read;
Reject _Write;
Reject_Protection;
loop TESTORACCEPT end loop
end process

process PURPOSE_4 [Read, Grant_Read, Write, Grant_Protection: Bus,

TESTOR_ACCEPT, TESTOR_REFUSE:

none]| is
—— granted read with different security/privilege than the preceding write
var s,t: security, p,q: privilege, d: data in
Grant_Protection (?any ip, ip0, ?s, ?p);
Write (?any ip, ip0, s, p, ?d);
—— forbid any change of the security/privilege of the target
select
null
[l Grant_Protection (?any ip, ip0, ?s, 7p);
loop TESTOR_REFUSE end loop
end select;
Read (?any ip, ip0, ?t, ?q) where (s !'=t) or (p !=q);

Grant_Read (?any ip, ip0, d);
loop TESTORACCEPT end loop
end var
end process
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end module

B PSS Model

component pss_top {

//
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// Types
//

enum data_e {
datal, data2
}

enum security_e {

secure, non_secure

}

enum privilege_e {

privileged , non_privileged

}

//

// Stream Flow Objects for Communication

// (three streams per operation, for request, grant, and reject)

//

// streams for read

stream request_read_stream {

rand security_e

sec; // security of the source requesting to read

rand privilege_e priv; // privilege of the source requesting to read

}

pool request_read_stream request_read_stream_pool;
bind request_read_stream_pool x;

stream grant_read_stream {

rand data_e data;

}

// read data

pool grant_read_stream grant_read_stream_pool;
bind grant_read_stream_pool x;

stream reject_read_stream {}
pool reject_read_stream reject_read_stream_pool;
bind reject_read_stream_pool x;

// streams for write

stream request_write_stream {

rand security_e

sec; // security of the source requesting to write

rand privilege_e priv; // privilege of the source requesting to write
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rand data_e data; // data to be written
pool request_write_stream request_write_stream_pool;
bind request_write_stream_pool x;

stream grant_write_stream {}
pool grant_write_stream grant_write_stream_pool;
bind grant_write_stream_pool x;

stream reject_write_stream {}
pool reject_write_stream reject_write_stream_pool;
bind reject_write_stream_pool x;

// streams for setting the protection

stream request_protection_stream {
rand security_e sec; // security of the requesting source
rand privilege_e priv; // privilege of the requesting source
rand security_e next_sec; // new security
rand privilege_e next_priv; // newprivilege
}
pool request_protection_stream request_protection_stream_pool;
bind request_protection_stream_pool x;

stream grant_protection_stream {}
pool grant_protection_stream grant_protection_stream_pool;
bind grant_protection_stream_pool x*;

stream reject_protection_stream {}
pool reject_protection_stream reject_protection_stream_pool;
bind reject_protection_stream_pool x;

//
// Finite State Machine for the Source
//

enum source_state_e {
idle , read, write, change

state source_state {
rand source_state_e sstate;
rand data_e data;
rand security_e sec;
rand privilege_e priv;
}
pool source_state source_state_pool;
bind source_state_pool x;

// initialize source
action init_source {
input source_state in_state;
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output source_state out_state;

constraint in_state.initial = true;
// fix initial values (to cut nondeterminism)
constraint out_state.sstate — idle;
constraint out_state.sec = secure;
constraint out_state. priv — privileged;
constraint out_state.data =— datal;
}
// source read request
action s_request_read {
input source_state in_state;
output source_state out_state;
output request_read_stream out_stream;
constraint in_state.initial = false;
// idle -; read
constraint in_state.sstate =— idle;
constraint out_state.sstate — read;
// maintain fields
constraint out_state.sec — in_state.sec;
constraint out_state.priv = in_state.priv;
constraint out_state.data = in_state.data;
// write to stream
constraint out_stream.sec == in_state.sec;
constraint out_stream.priv = in_state.priv;
}
action s_grant_read {
input source_state in_state;
input grant_read_stream in_stream;

output source_state out_state;

constraint in_state.initial = false;
// read -; idle

constraint in_state.sstate =— read;
constraint out_state.sstate =— idle;

// maintain fields

constraint out_state.sec — in_state.sec;
constraint out_state. priv = in_state.priv;
constraint out_state.data — in_state.data;

// no constraint on the (thus, random) data read from the input stream

}

action s_reject_read {
input source_state
input reject_read_stream
output source_state

in_state;
in_stream;
out_state;

constraint in_state.initial false;

// read -; idle
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read;
idle;

constraint in_state.sstate
constraint out_state.sstate
// maintain fields

constraint out_state.sec
constraint out_state. priv
constraint out_state.data

in_state .sec;
in_state.priv;
in_state.data;

// source write request

action s_request_write {
input source_state in_state;
output source_state out_state;
output request_write_stream out_stream;

constraint in_state.initial = false;
// idle -; write

constraint in_state.sstate =— idle;
constraint out_state.sstate — write;

// maintain fields

constraint out_state.sec
constraint out_state. priv
constraint out_state.data
// write to stream

constraint out_stream .data
constraint out_stream.sec
constraint out_stream.priv

in_state .sec;
in_state.priv;
in_state.data;

in_state .data;
in_state .sec;
in_state.priv;

}

action s_grant_write {
input source_state in_state;
input grant_write_stream in_stream;
output source_state out_state;

constraint in_state.initial = false;
// write -; idle

constraint in_state.sstate =— write;
constraint out_state.sstate =— idle;

// maintain fields

constraint out_state.sec — in_state.sec;
constraint out_state. priv = in_state.priv;
constraint out_state.data — in_state .data;

}

action s_reject_write {

input source_state in_state;
input reject_write_stream in_stream;
output source_state out_state;
constraint in_state.initial = false;
// write -; idle

constraint in_state.sstate write;

constraint out_state.sstate
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// maintain fields

constraint out_state.sec
constraint out_state. priv
constraint out_state.data

// source protection change request
action s_request_protection {
input source_state
output source_state
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in_state .sec;
in_state.priv;
in_state .data;

in_state;
out_state;

output request_protection_stream out_stream;

constraint in_state.initial
// idle -; change

constraint in_state.sstate
constraint out_state.sstate
// maintain fields

constraint out_state.sec
constraint out_state. priv
constraint out_state.data
// write to stream

false;

idle;
change;

in_state .sec;
in_state.priv;
in_state .data;

// no constraint on the new security and new privilege of the target

// but source still states its security and privilege

constraint out_stream.sec
constraint out_stream.priv

}

action s_grant_protection {
input source_state

— in_state.sec;
= in_state.priv;

in_state;

input grant_protection_stream in_stream;

output source_state

constraint in_state.initial
// change -; idle

constraint in_state.sstate
constraint out_state.sstate
// maintain fields

constraint out_state.sec
constraint out_state. priv
constraint out_state.data

}

action s_reject_protection {
input source_state

out_state;

false;

change;
idle;

in_state .sec;
in_state.priv;
in_state .data;

in_state;

input reject_protection_stream in_stream;

output source_state

constraint in_state.initial
// change -; idle
constraint in_state.sstate
constraint out_state.sstate
// maintain fields

out_state;

false;

change;
idle;
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// change application running on the source: modify security, privilege, and data

constraint
constraint
constraint

out_state.sec
out_state.priv
out_state.data

in_state .sec;
in_state.priv;
in_state .data;

action change_source_config {
input source_state in_state;
output source_state out_state;

constraint
// stay in idle
constraint
constraint

in_state.initial = false;
in_state.sstate =— idle;
out_state.sstate =— idle;

// no constraint: randomly change source security, privilege, and data
// (change application running on the source)

//
// Finite State Machine for the Target
//

enum target_state_e {
idle , read, write, change

state target_state { // Target FSM
rand target_state_e sstate; // FSMSTATE
// Target internal data
rand data_e data;
rand security_e sec;
rand privilege_e priv;
// Remember last transaction
rand security_e tx_sec; // transaction sec
rand privilege_e tx_priv; // transaction priv
rand data_e tx_data; // transaction data (write request)
rand security_e next_sec; // transaction change sec request
rand privilege_e next_priv; // transaction change priv request

// current data
// current sec protection
// current priv protection

}

pool target_state target_state_pool;
bind target_state_pool x;

action init_target {
input target_state in_state;
output target_state out_state;

constraint in_state.initial = true;

// Cut nondeterminism by assigning inital values

constraint out_state.sstate = idle;
constraint out_state.data — datal;
constraint out_state.sec = non_secure;
constraint out_state. priv = non_privileged;
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out_state.
out_state.
out_state.
out_state.
out_state.

constraint
constraint
constraint
constraint
constraint

// target READ request

action t_request_read {
in_state;
in_stream;

}

input
input

target_state

request_read_stream
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tx_sec
tx_priv
tx_data
next_sec
next_priv

output target_state out_state;

constraint in_state. i
// Idle -; Read
constraint
constraint out_state.
// save stream data
constraint out_state.
constraint out_state.
// Maintain fields
constraint out_state.
constraint out_state.
constraint out_state.
constraint out_state.
constraint out_state.
constraint out_state.

action t_grant_read {

input target_state

in_state.sstate

nitial

sstate

tx_sec
tx_priv

data

sec

priv
tx_data
next_sec
next_priv

in_state;

output target_state out_state;
output grant_read_stream out_stream;

constraint in_state.initial = false;

// Read -; Idle

constraint in_state.sstate =— read;

constraint out_state.sstate =— idle;

// Maintain fields

constraint out_state.data — in_state

constraint out_state.sec — in_state.

constraint out_state. priv = in_state.

constraint out_state.tx_sec — in_state.

constraint out_state.tx_priv =— in_state.

constraint out_state.tx_data — in_state

constraint out_state.next_sec =— in_state.

constraint out_state.next_priv — in_state.

// Check protection

constraint (in_state.tx_sec = secure) ||
(in_state.sec = non_secure);

constraint (in_state.tx_priv = privileged)

non._secure;
non_privileged;

datal;

non_secure;
non_privileged;

false;

idle;
read;

in_state.
in_state.
in_state.
in_state.

in_state

in_stream .sec;
in_stream . priv;

data;
sec;
priv;
tx_data;

.next_sec;
in_state.

next_priv;

.data;

sec;
priv;
tx_sec;
tx_priv;

.tx_data;

next_sec;
next_priv;



Ph. Ledent, R. Mateescu & W. Serwe

}

action t_reject_read {
target_state

}

(in_state.

priv

// Write on stream (give the data)

constraint out_stream .data

input

in_state;

output target_state out_state;

output

constraint

// Read -; Idle

constraint

constraint out_state.sstate

// Maintain fields

constraint
constraint
constraint
constraint
constraint
constraint
constraint
constraint

// Check protection

constraint
constraint

non_privileged);

in_state.data;

reject_read_stream out_stream;

in_state.initial = false;
in_state.sstate = read;
= idle;
out_state.data = in_state.data;
out_state.sec =— in_state.sec;
out_state.priv = in_state.priv;
out_state.tx_sec =— in_state.tx_sec;
out_state.tx_priv = in_state.tx_priv;
out_state.tx_data = in_state.tx_data;
out_state.next_.sec == in_state.next_sec;
out_state.next_priv = in_state.next_priv;
(in_state.sec = secure) || (in_state.priv
// sec check
((in_state.tx_sec == non_secure) &&
(in_state.sec = secure))
// priv check
((in_state.tx_priv = non_privileged) &&
(in_state.priv = privileged))

)

// Write on stream (fail verdict)

// target WRITE request
action t_request_write {

input
input

target_state
request_write_stream

in_state;

output target_state out_state;

constraint

// Idle -; Write

constraint

in_state.initial

in_state.sstate
constraint out_state.sstate

// save stream data
constraint out_state.tx_sec
constraint out_state.tx_priv
constraint out_state.tx_data
// Maintain fields

in_stream;

false;

idle;
write;

in_stream .sec;
in_stream . priv;
in_stream .data;

privileged);
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}

constraint
constraint
constraint
constraint
constraint

out_state.
out_state.

out_state

out_state.

out_state

action t_grant_write {

}

input

target_state
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data
sec
. priv
next_sec
.next_priv

in_state;

output target_state out_state;
output grant_write_stream out_stream;

constraint
// write -; idle
constraint

constraint out_state.sstate

in_state.

in_state.

// Check protection

constraint
constraint

// update data
constraint

(in_state.
(in_state.
(in_state.
(in_state.

out_state

// maintain fields

constraint
constraint
constraint
constraint
constraint
constraint
constraint

out_state
out_state

out_state.

out_state

out_state.

out_state
out_state

in_state

in_state.
in_state.

data;
sec;

Lpriv;
in_state.
in_state.

next_sec;
next_priv;

SeC,

Lpriv;

tx_sec;
tx_priv;
tx_data;
next_sec;

initial = false;
sstate = write;
= idle;

tx_sec = secure) ||

sec = non_secure);
tx_priv = privileged)
priv. = non_privileged);
.data = in_state.tx_data;
.sec = in_state.
. priv = in_state
tx_sec = in_state.
. tx_priv = in_state.
tx_data = in_state.
.next_sec == in_state.
.next_priv = in_state

action t_reject_write {

input

target_state

in_state;

output target_state out_state;

output

constraint

// Write -; Idle

constraint

in_state.

in_state.sstate
constraint out_state.

// Maintain fields

constraint
constraint
constraint
constraint
constraint
constraint
constraint
constraint

out_state.

out_state
out_state

out_state
out_state

out_state

// Check protection

initial

sstate

data

.sec
. priv
out_state.

tx_sec

. tx_priv
.tx_data
out_state.

next_sec

.next_priv

reject_write_stream out_stream;

false;

write;
idle;

in_state

in_state

in_state.
in_state.

.next_priv;

data;
sec;

Lpriv;
in_state.
in_state.
in_state.
in_state.
.next_priv;

tx_sec;
tx_priv;
tx_data;
next_sec;
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}

constraint (in_state.sec

constraint (

— secure) || (in_state.priv
// sec check
((in_state.tx_sec == non_secure) &&
(in_state.sec = secure))
||
// priv check
((in_state.tx_priv = non_privileged) &&
(in_state.priv = privileged))

)

// Write on stream (fail verdict)

// target Protection change request
action t_request_protection {

}

input target_state in_state;

input request_protection_stream in_stream;
output target_state out_state;

constraint in_state.initial = false;

// idle -; change

constraint in_state.sstate =— idle;
constraint out_state.sstate — change;

// save stream data

constraint out_state.tx_sec — in_stream
constraint out_state.tx_priv = in_stream
constraint out_state.next_sec = in_stream.
constraint out_state.next_priv — in_stream.
// maintain fields

constraint out_state.data — in_state.
constraint out_state.sec — in_state
constraint out_state. priv = in_state.
constraint out_state.tx_data — in_state.

action t_grant_protection {

input

target_state

in_state;

output target_state out_state;
output grant_protection_stream out_stream;

constraint

in_state.

// Change protection -; Idle

constraint
constraint

in_state.
out_state

// Update protection

constraint
constraint

out_state.
out_state.

// Maintain fields

constraint
constraint
constraint
constraint

out_state.
out_state.

out_state

out_state.

initial

sstate
.sstate

sec
priv

data

tx_sec
L tx_priv
tx_data

false;

change;
idle;

in_state.
in_state.
in_state
in_state.

.sec;
.priv;
next_sec;

data;

.S€eC,

priv;
tx_data;

in_state.tx_sec;
in_state.tx_priv;

data;
tx_sec;

L tx_priv;

tx_data;

next_priv;

privileged);
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constraint out_state.next.sec == in_state.next_sec;
constraint out_state.next_priv = in_state.next_priv;
// Check protection
constraint (in_state.tx_sec = secure);
constraint (in_state.tx_priv = privileged);
}

action t_reject_protection {

input

target_state

in_state;

output target_state out_state;

output reject_protection_stream out_stream;
constraint in_state.initial = false;

// Change protection -; Idle

constraint in_state.sstate == change;

constraint out_state.sstate =— idle;

// Maintain fields

constraint out_state.data — in_state.data;
constraint out_state.sec — in_state.sec;
constraint out_state. priv = in_state.priv;
constraint out_state.tx_sec — in_state.tx_sec;
constraint out_state.tx_priv = in_state.tx_priv;
constraint out_state.tx_data — in_state.tx_data;
constraint out_state.next_sec = in_state.next_sec;
constraint out_state.next_priv = in_state.next_priv;

// Check protection
constraint (

C Monolithic PSS Model

This PSS model also includes the four verification intents mentioned in Section [3l

component pss_top {
//
// Types
//

enum data_e {
datal, data?2
}

enum security_e {
secure, non._secure

enum privilege_e {
privileged , non_privileged
}

//
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// Finite State Machine for the System
//

enum system_state_e {
idle , read, write, change

state system_state {
// State of the FSM encoding the SoC
rand system _state_e sstate; // FSM STATE

// Information about the source IP

rand security_e source_sec; // currentsource security

rand privilege_e source_priv; // currentsource privilege

rand data_e source_data; // current source used by source for WRITE

// Information about the target IP

rand security_e target_sec; // currenttarget security
rand privilege_e target_priv; // currenttarget privilege
rand data_e target_data; // current data stored in target

// New security and privilege (only meaningful for transaction PROTECTION)
rand security_e new_sec; // new target security
rand privilege_e new_priv; // new target privilege

pool system_state system_state_pool;

bind system_state_pool x;

//
// Finite State Machine Actions
//

// Force an initial state

action init_system {
input system_state in_state;
output system_state out_state;

// Execute only in the initial state

constraint in_state.initial — true;

// Cut nondeterminism by assigning inital values

constraint out_state.sstate — idle;

// Source (highst security and privilege levels)

constraint out_state.source_sec =— secure;
constraint out_state.source_priv = privileged;
constraint out_state.source_data — datal;

// Target (lowest security and privilege levels)
constraint out_state.target_sec
constraint out_state.target_priv
constraint out_state.target_data
// New target protection

constraint out_state.new_sec
constraint out_state.new_priv

non_secure;
non_privileged;
datal;

non_secure;
non_privileged;
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//
// When in IDLE state, let the source change it’s data and protection.
// This represents the change of the application currently running on the source.
action change_source_config {

input system_state in_state;

output system_state out_state;

// Do not execute in the initial state

constraint in_state.initial = false;

// Stay in idle

constraint in_state.sstate = idle;

constraint out_state.sstate =— idle;

// Maintain target fields

constraint out_state.target_sec = in_state.target_sec;
constraint out_state.target_priv = in_state.target_priv;
constraint out_state.target_data =— in_state.target_data;
constraint out_state.new_sec = in_state.new_sec;
constraint out_state.new_priv = in_state.new_priv;

// Randomly change source security, privilege, and data
// (change application running on the source)

//
// READ

action s_request_read {
in_state;

}

input

system_state

output system_state out_state;

// Do not execute in the initial state

constraint

in_state.initial

// Move from Idle to Read

constraint

in_state.sstate
constraint out_state.sstate

// Maintain source fields

constraint
constraint
constraint

out_state.
out_state.
out_state.

// Maintain target fields

constraint
constraint
constraint
constraint
constraint

out_state.
out_state.
out_state.
out_state.

out_state

action t_grant_read {

input

system_state

output system_state out_state;

— false;

— idle;

= read;
source_sec = in_state.
source_priv = in_state.
source_data = in_state.
target_sec == in_state.
target_priv = in_state.
target_.data =— in_state.
new_sec = in_state.
.new_priv = in_state
in_state;

source_sec;

source_priv;
source_data;

target_sec;

target_priv;
target_data;

new_secC,;

.new_priv;
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constraint out_state.target_sec == in_state.target_sec;
constraint out_state.target_priv = in_state.target_priv;
constraint out_state.target_data =— in_state.target_data;
constraint out_state.new_sec = in_state.new_sec;
constraint out_state.new_priv = in_state.new_priv;
}
action t_reject_read {
input system_state in_state;
output system_state out_state;
constraint in_state.initial = false;
// Move from Read to Idle
constraint in_state.sstate == read;
constraint out_state.sstate = idle;
// Check protection
constraint (in_state.target_sec =— secure) ||
(in_state.target_priv = privileged);
constraint ( // security check
((in_state.source_sec = non_secure) &&
(in_state.target_sec = secure))
| | 7/ privilege check
((in_state.source_priv = non_privileged) &&

constraint
// Move from Read to Idle
constraint

// Check protection

constraint (in_state.

(in_state.
.source_priv
(in_state.

constraint (in_state

// Maintain source fields

constraint out_state.
constraint out_state.
constraint out_state.

in_state.initial

in_state.sstate
constraint out_state.

// Maintain target fields

(in_state.target_priv =

// Maintain source fields

constraint out_state.
constraint out_state.
constraint out_state.

// Maintain target fields

constraint
constraint
constraint
constraint
constraint

out_state

sstate

source_sec
target_sec

target_priv

source_sec
source_priv
source_data

source_sec
source_priv
source_data

.target_sec
out_state.
out_state.
out_state.
out_state.

target_priv
target_data
new_sec
new_priv

-
V]
(7]
o

secure) ||

non_secure);
privileged) |
non_privileged);

in_state.
in_state.
in_state.

source_sec;

privileged)));

in_state.source_sec;
in_state.source_priv;
in_state.source_data;
in_state.target_sec;
in_state.target_priv;

in_state.target_data;
in_state.new_sec;
in_state.new_priv;

source_priv;
source_data;
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//
// WRITE

action s_request_write {
input system_state in_state;
output system_state out_state;

constraint in_state.initial = false;
// Idle -; Write

constraint in_state.sstate =— idle;
constraint out_state.sstate — write;

// Maintain source fields

constraint out_state.source_sec == in_state.source_sec;
constraint out_state.source_priv = in_state.source_priv;
constraint out_state.source_data = in_state.source_data;
// Maintain target fields

constraint out_state.target_sec = in_state.target_sec;
constraint out_state.target_priv = in_state.target_priv;
constraint out_state.target_data = in_state.target_data;
constraint out_state.new_sec = in_state.new_sec;
constraint out_state.new_priv = in_state.new_priv;

}

action t_grant_write {
input system_state in_state;
output system_state out_state;

constraint in_state.initial = false;

// Move from Write to Idle

constraint in_state.sstate =— write;
constraint out_state.sstate — idle;

// Check protection

constraint (in_state.source_sec secure) ||

(in_state.target_sec = non_secure);
constraint (in_state.source_priv = privileged) ||
(in_state.target_priv = non_privileged);
// update data
constraint out_state.target_data
// Maintain source fields
constraint out_state.source_sec
constraint out_state.source_priv
constraint out_state.source_data
// Maintain target fields
constraint out_state.target_sec
constraint out_state.target_priv
constraint out_state.new_sec
constraint out_state.new_priv

in_state .source_data;

in_state.source_sec;
in_state.source_priv;
in_state.source_data;

in_state.target_sec;
in_state.target_priv;
in_state.new_sec;
in_state.new_priv;

}

action t_reject_write {
input system_state in_state;
output system_state out_state;
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constraint in_state.
// Write -; Idle
constraint in_state.
constraint out_state
// Check protection
constraint (in_state
(in_state

initial = false;
sstate =— write;
.sstate = idle;
.target_sec = secure)

.target_priv

constraint ( // security check

((in_state.source_sec

privileged);

non_secure) &&

(in_state.target_sec secure))
| | 7/ privilege check

((in_state.source_priv = non_privileged) &&
(in_state.target_priv =

// Maintain source fields

//

constraint out_state.source_sec = in_state.
constraint out_state.source_priv — in_state.
constraint out_state.source_data = in_state.
// Maintain target fields
constraint out_state.target_sec == in_state.
constraint out_state.target_priv = in_state.
constraint out_state.target_data — in_state.
constraint out_state.new_sec = in_state.
constraint out_state.new_priv = in_state.
// Change PROTECTION of target
action s_request_protection {
input system_state in_state;
output system_state out_state;
constraint in_state.initial = false;
// Move from Idle to Change
constraint in_state.sstate = idle;
constraint out_state.sstate — change;
// Maintain source fields
constraint out_state.source_sec = in_state.
constraint out_state.source_priv = in_state.
constraint out_state.source_data = in_state
// Maintain target fields
constraint out_state.target_sec = in_state.
constraint out_state.target_priv = in_state.

constraint out_state

// Randomly select new target security and privilege

}

.target_data

action t_grant_protection {

input system_state

in_state;

output system_state out_state;

in_state.

privileged)));

source_sec;

source_priv;
source_data;

target_sec;

target_priv;
target_data;

new_sec;
new_priv;

source_sec;

source_priv;
.source_data;

target_sec;

target_priv;
target_data;
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constraint in_state.initial = false;
// Move from Change to Idle

constraint in_state.sstate == change;
constraint out_state.sstate = idle;

// Check protection
constraint (in_state.source_sec = secure);
constraint (in_state.source_priv privileged);
// Update target protection

constraint out_state.target_sec
constraint out_state.target_priv
// Reset new target protection

constraint out_state.new_sec
constraint out_state.new_priv

// Maintain source fields

constraint out_state.source_sec
constraint out_state.source_priv
constraint out_state.source_data
// Maintain target fields

constraint out_state.target_data

in_state.new_sec;
in_state.new_priv;

non_secure;
non_privileged;

in_state.source_sec;
in_state.source_priv;
in_state .source_data;

in_state.target_data;

}

action t_reject_protection {
input system_state in_state;
output system_state out_state;

constraint in_state.initial = false;
// Move from Change to Idle

constraint in_state.sstate = change;
constraint out_state.sstate — idle;

// Check protection

constraint (// security check
(in_state.source_sec
// privilege check
(in_state.source_priv = non_privileged));

// Reset new target protection

constraint out_state.new_sec

constraint out_state.new_priv

// Maintain source fields

constraint out_state.source_sec

constraint out_state.source_priv

constraint out_state.source_data

// Maintain target fields

constraint out_state.target_sec

constraint out_state.target_priv

constraint out_state.target_data

non_secure) ||

non_secure;
non_privileged;

in_state.source_sec;
in_state.source_priv;
in_state.source_data;

in_state.target_sec;
in_state.target_priv;
in_state.target_data;

//
// Verification intents
//

// Any reject
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action intent_1 {
t_reject_read Reject_Read;
t_reject_write Reject _Write;
t_reject_protection Reject_Protection;
activity {
select{
Reject_Read;
Reject _Write;
Reject_Protection;
}
}
}

// All responses (interleaving semantics)
action intent_2 {

t_grant_read Grant_Read;
t_grant_write Grant_Write;
t_grant_protection Grant_Protection;
t_reject_read Reject_Read;
t_reject_write Reject _Write;
t_reject_protection Reject_Protection;
activity {

schedule{

Grant_Read;
Grant_Write;
Grant_Protection;
Reject_Read;
Reject_Write;
Reject_Protection;

}
}
}

// All responses (sequential semantics)
action intent_3 {

t_grant_read Grant_Read;
t_grant_write Grant_Write;
t_grant_protection Grant_Protection;
t_reject_read Reject_Read;
t_reject_write Reject _Write;
t_reject_protection Reject_Protection;
activity {

Grant_Read;
Grant_Write;
Grant_Protection;
Reject_Read;
Reject _Write;
Reject_Protection;

}
}

// Access data with different security and/or privilege
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// This test scenario executes the following steps:
// 1) Elevate target security/privilege
// 2) Write data to target with same security/privilege as the target

// 3) Change source security/privilege, keeping target security/privilege unchanged

// 4) read the target

// We did not find how to express unwanted behavior (e.g., how to forbid to change target security/privilege).

// Thus we request that there is a change of the source configuration immediately after the write transaction

// was granted and rely on the shortest path to avoid any further change of the target security/privilege before

// the read transaction.

action intent_4 {
change_source_config Change_Source;

t_grant_read Grant_Read;
t_grant_protection Grant_Protection;
t_grant_write Grant_Write;
activity {

}

Grant_Protection; // getsandp

Grant_Write; // do an accepted write with the same s and p
Change_Source;

// Rely on shortest path to not do any other Grant_Protection
Grant_Read; // doan accepted read with another s or another p

constraint {

}

// Grant_Write with the same security and privilege as Grant_Protection

Grant_Write.in_state.source_sec =
Grant_Protection.out_state.source_sec;

Grant_Write.in_state.source_priv —
Grant_Protection.out_state.source_priv;

// Read granted to a source different security or privilege as the Write

((Grant_Read.in_state.sec != Grant_Write.out_state.sec)

(Grant_Read.in_state.priv != Grant_Write.out_state.priv));

// Read with same target security and privilege as Grant_Protection
// (no guarantee of absence of change in between)
Grant_Read.in_state.target_sec —
Grant_Protection.out_state.target_sec;
Grant_Read.in_state.target_priv =
Grant_Protection.out_state.target_priv;

// Read the data that was written
// (no guarantee of absence of change in between)

Grant_Read.in_state.target_data =— Grant_Write.out_state.target_data;

// Allow nothing between Grant_Write and Change_Source
// This prevents all other actions because there is only one flow object
bind Grant_Write.out_state Change_Source.in_state;
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D SVL Script for all Verification Steps

The following SVL scrip generates and compares the LTSs mentioned in Sections 2.1] and It
requires the translation to LNT of the monolithic PSS model (available in the MARS model repository).

—— generation of the LTS for a SoC with 8 source IPs

"model_8_1.bcg" =
reduction of "model_8_1.Int";

—— generation of the LTS for a SoC with a single source IP

"model_2_1.bcg" =
reduction of
——remove all actions from absent sources (only IP1 is present)
total cut all but "["!]*-!IP1-.%" in
"model_8_1.Int":"SOC.2";

—— generation of the LTS for the PSS model

"Rl_monolithic.bcg" =
strong reduction of
weak trace reduction of
branching reduction of
—— 4. suppression of supperfluous offers (to be completed)
total rename
"\ (CHANGE_SOURCE_CONFIG\ ) - .x -\ ('[! ]x- V[ ] [ 7] \) - [ 7 ] %- P[0 ] - !
[* - L[ 1] = 1027,
"\(GRANT_READ\) - .x-\(!'["1]*\)-![ ' ]*-1["1]+" — "\1-\2",
"\ (GRANTWRITE\) .x" — "\1",
"\ (GRANT_PROTECTION\ ) - .-\ (' [ "1 ]*- [ "]+ \) - [ " ] x- L[ - [ ] —= "
\1-\2",
"\(REJECT_[A=Z]*\).x" — "\1",
"REQUEST_\(READ\)-'["!]*-\(![""1]*-1["1]*\)-.«" = "\1-\2",
"REQUEST_\(WRITE\) - ' [ "1 ]*-\N(P[ "V ]*- L[ ] *- 07 ]%\) - %" —= "\1-\2",
"REQUEST_\ (PROTECTION\) - ' [ “1]*-\N(!P[ "]~ P 7 ) %\) -+ -\ [ ]%- L[ ] \)

"= "\1-\2-\3"
in
—— 3. suppression of the prefix SOURCE/TARGET
rename
"SOURCE_\ ([A—Z_]%\)" — "\1",
"TARGET_\ ([A—Z_]%\)" — "\1"
in

—— 2. removal of the first offer (indicating the action)
total rename
"N \) TPSS_TOPXC[ “ 1]\ (.x\)" — "\1\2"
in
—— 1. removal of the gate prefix "PSS_TOP_X_"
rename
"PSS_TOP_X_\(.x\)" — "\1"

1SVL (Script Verification Language) is the language for describing verification scenarios for the CADP toolbox.
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in
—— hiding initialisation and interaction with the state flow object
divbranching reduction of

hide

" xOUTPUT" ,

" xINPUT"

" xINIT.SYSTEM"
in

"../PSS/Rl_monolithic.Int”
end hide;

—— comparion of the three LTSs

property MODEL_EQUIVALENCE
"after-hiding-ip-identities ,-alls-models-are-equivalent”
is
branching comparison
hide CHANGE_SOURCE_CONFIG in
total rename "\(["-]x\)-'["M k-] N\ (%) = "\1-\2" in
"model_8_1.bcg"

hide CHANGE_SOURCE_CONFIG in
total rename "\(["-]*\)-'"["!]*-1["!1]x\(.%\)" = "\1-\2" in
"model_2_1.bcg";

expected TRUE;

branching comparison
hide CHANGE_SOURCE_CONFIG in
total rename "\(["-]x\)-'["M]x- 0[]\ (%)) = "\1-\2" in
"model_8_1.bcg"

hide CHANGE_SOURCE_CONFIG in
"Rl_monolithic.bcg";
expected TRUE;
end property
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