République Tunisienne Ecole Doctorale

Ministére de ’Enseignement Sciences et Technologies
Supérieur, de la Recherche Q
Scientifique lgé Thése de DOCTORAT
—_— [l
. . Ingénierie des Systémes
Université de Sfax Informatiques

Ecole Nationale d’Ingénieurs de Sfax

THESE

Présentée a

L’Ecole Nationale d’Ingénieurs de Sfax

En vue de I'obtention du

DOCTORAT

Dans la discipline Informatique
Ingénierie des Systémes Informatiques

Par

Hana Mkaouar

Ingénieur en informatique

A Formal Approach for Real-time Systems
Engineering

Soutenu le 09 02 2019, devant le jury composé de :

M. Ahmed Hadj Kacem (Professeur a la FSEG) Président

M. Mohamed Abid (Professeur a 'ENIS) Rapporteur

M. Mohamed Kaéniche (Directeur de recherche) Rapporteur

M. Mohamed Ben Aouicha (MCF a la FSS) Examinateur

M. Mohamed Jmaiel (Professeur a 'ENIS) Directeur de Thése
M. Bechir Zalila (Maitre-assistant a 'ENIS) Invité

M. Jérome Hugues (Professeur a ISAE-SUPAERO) Invité

A Formal Approach for Real-time Systems
Engineering

Hana MKAOUAR

Acknowledgments

It is with great pleasure that I reserve this page as a sign of deep gratitude to all
those who have kindly provided the necessary support for the smooth running of
this thesis.

I present my thanks to Prof. Ahmed Hadj Kacem, for the honor he had accorded
me for agreeing to be the committee chair of my thesis. 1 also thank Prof.
Mohamed Ben Aouicha for the valuable service to examine my thesis and to be
a member of the committee. My distinguished thanks go also to Prof. Mohamed
Abid and Prof. Mohamed Kadaniche for taking their time to review my dissertation
and for their relevant comments.

I would like to express my deep gratitude to my supervisor Prof. Mohamed
Jmaiel for his outstanding commitment to this thesis. I am also grateful for
the support he gave me. His professionalism, friendliness and pedagogical and
scientific qualities have been invaluable.

[am also indebted to my co-supervisors Dr. Bechir Zalila and Prof. Jérome
Hugues for supervising my thesis work, for their human qualities, for their pa-
tience, and especially for the time they have spent for me. They have always
been the source of inspiration and motivation to me. Their knowledge, insight,
scientific rigor and advices improved immensely the quality of the scientific and
technical contributions of this work, but also its presentation. They have helped
me gain invaluable skills as a researcher. May they find in this work the fruit of
their effort and the expression of my deep gratitude.

I am thankful to all of my friends and colleagues at the ReDCAD Laboratory
(Sfax-Tunisia). Not only were our technical discussions very interesting, but it
was wonderful working with them.

Last but not least I would like to express a very special gratitude to my parents
Wahid and Hajer, my whole family (Salma, Mohamed, Ahmed, Faouzi, Mohamed
Sadak and Omar) and all my friends for their support, patience, love and for
making this journey as pleasant as it can be.

1 Introduction

1.1 Context et motivation

1.2 Problem statement

1.3 Objectives

1.4 Contributions

1.4.1

Contents

Formal pattern for a real-time task model

1.4.2 Application in an MDE approach

1.4.3 Tool-chain, analysis results and scalability

1.5 Thesis organization

2 Concepts and state of the art

2.1 Introduction

2.2 Concepts

2.2.1

2.2.2

2.2.3

2.24

2.2.5

Software engineering

2.2.1.1
2.2.1.2
Model
2.2.2.1
2.2.2.2

Model-driven engineering

Architectural description languages

transformation

Model transformation concepts

Model transformation classifications

Safety-critical systems . . .

2.2.3.1
2.2.3.2

Certifications and criticality levels

Ravenscar profile .

Real-time systems

2.2.4.1
2.2.4.2
Forma
2.2.5.1
2.2.5.2

Real-time task model

Real-time scheduling theory and analysis

l methods
Formal specification

Formal verification

co o O O Ot Ot N = =

11
12
12
12
13
15
16
17
18
18
19
19
20
21
23
25
25
26

il

Contents

2.3 Modeling of real-time systems 28
2.3.1 MARTE 28
232 AADL 30
2.3.3 Discussion 32

2.3.3.1 AADL modeling tools 33

2.4 Formal specification of real-time systems 34
2.4.1 Automata 35
242 Petrinets oo 35
24.3 Processalgebra 0oL 36
2.4.4 Discussion 37

2.5 AADL related approaches 39
2.5.1 Classification according to the source model 40
2.5.2 Classification according to the target formalism 40
2.5.3 Discussion o 44

2.6 Conclusion 45

3 Formal pattern 47

3.1 Introduction 48

3.2 LNT language 48
3.2.1 Syntax 48
3.2.2 Some definitions Lo 49

3.221 Module 49
3.2.2.2 Types and channels 49
3.223 Function. 50
3.2.24 Process e o1
3.2.2.5 Gates and parameters 51
3.2.2.6 Statement L. 52
3.2.3 LNT specification 53

3.3 A Ravenscar compliant task model 54

3.4 Formal mapping oo 56
3.4.1 Task definition L. 56
3.4.2 Scheduler definition L. 59

—jv—

Contents

3.4.2.1 Time allocation 62

3.4.2.2 Task state updating 63

3.4.2.3 Task activation 63

3.4.2.4 Sporadic task checking 63

3.4.3 Communication mapping 64
3.4.4 Composition and synchronization 65
3.4.5 Discussion 67

3.5 Conclusion 68
4 AADL model transformation 69
4.1 Introduction 70
4.2 AADLinanutshell 0L 70
4.2.1 Corelanguage 70
4.2.1.1 Components. 71

4.2.1.2 Connections 73

4.2.1.3 Propertieso 73

4.2.1.4 AADL system modeling 73

4.2.2 Behavior annex L. 74
423 AADLsubset 75

4.3 Model transformation 0L 76
4.3.1 Scheduling mapping 78
4.3.1.1 Thread mapping 78

4.3.1.2 Processor mapping 80

4.3.2 Communication mapping 81
4.3.2.1 Port mapping 81

4.3.2.2 Port connection mapping 83

4.3.3 Hierarchical mapping 85
4.3.3.1 System mapping 86

4.3.3.2 Otherrules 86

4.3.4 Discussion 88

4.4 Transformation of a larger AADL subset 88
4.5 Behavioral mapping 90

Contents

4.5.1 Datamappingo 90
4.5.2 Port and port connection new mapping 91
4.5.3 Behavior specification mapping 93
4.5.3.1 Variables and states 93

4.5.3.2 Transitions 94

4533 Actions 97

4.6 Conclusion 98
5 Implementations and validation 99
5.1 Introduction 100
5.2 Ocarina architecture L. 100
5.3 Ocarina extensionso 102
5.3.1 Behavior annex parsing 102
5.3.2 LNT code generation 103
5.3.2.1 Model transformation 104

5.3.3 SVL script generation L. 105
5.3.3.1 SVLlanguage 105

5.3.3.2 SVL script for AADL model 105

54 Tool-chain 106
5.5 Casestudies 108
5.5.1 AADL modeling 108
5.5.1.1 Flight control system 108

5.5.1.2 Line follower robot 109

5.5.1.3 Pacemaker 111

5.5.2 LNT code generation 115
5.5.3 Formal verification 117
5.5.3.1 Compilation: state space generation 118

5.5.3.2 Verification: model-checking 120

5.5.4 Analysisresultso 123
5.5.5 Manual verification 124

5.6 Scalability 126
5.6.1 Testsuite 126
5.6.2 Results and interpretations 126

5.7 Conclusion 129

—vi—

Contents

6 Conclusion and perspectives 131
6.1 Conclusions 131
6.1.1 Reminder of the contributions and results 131

6.2 Perspectives 133
Bibliography 135

vii

1.1
1.2

2.1
2.2
2.3
24
2.5

3.1
3.2
3.3
3.4
3.5

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

5.1
5.2
5.3
5.4

List of Figures

Integration of formal methods in the design phase 3

Integration of formal methods in an AADL model-based develop-

ment ProCesso e oo e e 7
Main concepts of model transformation 17
Main parameters of a real-time task (Gantt diagram) 22
Basic idea of model-checking [93] 27
Architecture of the MARTE Profile [7] 30
Main AADL graphical components 31
Example of LNT specification: graphical representation 53
Task state automaton L. 95
SCHEDULER algorithm: ready task 62
SCHEDULER algorithm: task-loops 62
Producer-Consumer: LNT graphical MAIN 67
Summary of AADL elements [61] 71
Example of AADL system model: graphical representation 74
Overview of the AADL2LNT transformation 7
AADL thread transformationrule 78
AADL thread scheduling and ezecution states automaton [10] . . . 80
AADL processor transformation rule 80
AADL port connection transformation rule 83
AADL device transformation rule 87
SCHEDULER algorithm: EDF scheduling 90
Ocarina compiler architecture 101
Ocarina-CADP tool-chain 107
Flight control system 109
FCS AADL model 109

—x—

List of Figures

5.5 Robot AADL model 110
5.6 A pacemaker implantation (taken from [47]) 112
5.7 Pacemaker AADL model 113
5.8 Generated LTS corresponding to Listing 5.11 120
5.9 Analysis results corresponding to Listing 5.10 125

2.1
2.2

4.1
4.2
4.3
4.4
4.5

5.1
5.2
5.3
5.4
5.5

List of Tables

Classification according to the source model 40
Classification according to the target formalism 41
LNT channels for the behavioral mapping 92
AADL port transformation rule 92
AADL port connections transformation rule 92
Behavior annex transitions transformation rule 96
Behavior annex actions transformation rule 97
Casestudies 108
Case studies transformation and verification metrics 116
State spaces results of family (i) 128
State spaces results of family (i) 128
State spaces results of family (iii) 128

—xXi—

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12

List of Listings

LNT module definition 49
LNT type definition 50
LNT channel definition 50
LNT function definition 50
LNT data statements, 50
LNT process definition 51
LNT behavior statements 51
LNT formal gates and parameters 52
LNT communication definition 53
TASK LNT skeleton 58
SCHEDULER LNT skeleton 60
CONNECTOR LNT skeleton 65
LNT types and channels for TASK-SCHEDULER synchronization . 66
Producer-Consumer: LNT MAIN. 66
Example of AADL system model 74
Example of AADL thread component 76
LNT THREAD for AADL independent thread 79
LNT type and channel for AADL data component 81
LNT THREAD for AADL thread with port connections 82
LNT CONNECTOR for AADL data port connection 84
LNT Event CONNECTOR I 85
LNT Event CONNECTORII 85
LNT DEVICE for AADL device component (example) 87
LNT THREAD for AADL thread with Behavior annex (example) 91
Behavior_Specification 93
LNT Type STATES type for Behavior annex states 94
Behavior_annex grammar rule [9] 102
SVL script skeleton for AADL models 106
Robot: Control Behavior_ Specification. 111
Pacemaker: Pacemaker system implementation. 112
Pacemaker: VVIMode Behavior_Specification 114
Pacemaker: Dual Or_Timer VRP Behavior Specification 114
Robot: extract of THREAD CONTROL process 116
Pacemaker: extract of THREAD VVIMode process 117
Pacemaker: extract of THREAD DUAL_OR_TIMER VRP process . . 117
Pacemaker: mini SVL script oL 118
Robot: smart generation with the SVL language 119
SVL schedulability property 122

—xiii—

List of Listings

5.13
5.14
5.15
5.16
5.17
5.18
5.19

—Xiv—

SVL preemption property 122
SVL connection property 122
SVL data loss property 122
SVL FIFO property 123
SVL transition property 123
Pacemaker: SVL normal rhythm property 125
FCS: SVL order reachability property 125

List of Algorithms

1 SCHEDULER algorithm: Operational part. 61

XV

Introduction

1.1 Context et motivation

oftware engineering in safety-critical domains, like transport and health, is
¥ a quite delicate field in computer science. In such a context, designers often
cope with distributed, real-time and embedded systems with several constraints,
requiring an exhaustive verification as early as possible in the development pro-
cess. Particularly, real-time systems are an important research topic in software
engineering. They manifest an exponential growing in size, complexity and criti-
cality, since they are used in sensitive large scale systems such as public transport
systems or nuclear power stations. For example, a flight control system requires
up to several hundred functions for the aircraft safe flight, communication with
airport stations and additional services for the passenger comfort.

Recently, several approaches concerning the software specification, design, imple-
mentation and verification/validation have been proposed for the development of
safety-critical real-time systems. The MDE (Model-Driven Engineering) method-
ology is a development trend based mainly on modeling language, model transfor-
mation, production of documentation and code generation. The MDE approaches
aim to abstract system representations (models) and allow a coherent evaluation
of the system from the specification until the final application. The basic idea
of MDE is to describe the system through different models to cover its different
aspects (architecture, behavior, performance, deployment, etc.), which lays the
emphasis on models rather than programs. In this context, system programs
are often generated from models. For example, the architectural models, which
are designed using ADLs (Architectural Description Language), allow to describe
systems in sufficient detail (software, hardware and configuration) so that system
programs can be generated from them.

Chapter 1. Introduction

Taking such an important role in the development process, models have to be
analyzed and verified carefully to allow the early detection of design flaws that
can lead to serious errors in the final application: it is well known that a majority
of errors is often introduced at early stages, while they are discovered late in
the development process [62]. Especially for real-time systems considering both
concurrency and real-time requirements, it is necessary to validate temporal and
scheduling choices from the design phase. During the past decades, important
research approaches have been devoted for system modeling and analysis, which
have given rise to sophisticated modeling languages (may also be referred to as
design languages) with rich ecosystems (tools, extensions, analysis, etc.), such
as the UML standard [8] (with its profiles) and AADL standard [10] (an ADL
for real-time systems modeling). These modern languages provide the ability to
analyze models by supporting non-functional properties (e.g. timing constraints)
or to analyze specific notations (e.g. data flows).

In the context of system verification and validation, formal methods have become
one of the advocated techniques in safety-critical software engineering [166]. They
are mathematically-based techniques designed to aid in the specification and ver-
ification of software and hardware systems. The integration of formal methods in
MDE approaches seems rewarding, especially that their use has become recom-
mended in system certification (e.g. RTCA/DO-333 [6] , formal methods supple-
ment to RTCA/DO-178C [5] and RTCA/DO-278A certifications in the avionics
domain). For this end, a common approach is to translate design models (such
as UML diagrams or AADL models) into formal specifications to be verified by
formal analysis tools [63].

The work performed in the present thesis fits into the context of the formal
verification of real-time systems in safety-critical domains. In the following, we
detail different problems around the integration of the formal methods in an MDE
approach and then we give an overview of our objectives and contributions.

1.2 Problem statement

Different key issues are of concern in this work. Generally, they are related to a
common challenge, which is the integration of formal methods within an MDE
approach for the verification of real-time systems.

The use of formal methods requires a formal expertise: the system should be
specified with specific languages (formalisms) such as Petri nets, automata and
process algebras, based on formal semantics described using mathematical ap-
proaches, to be explored by dedicated analysis tools. Indeed, the lack of formal
semantics of design languages makes them inappropriate for formal verification
(formal techniques can not be directly applied on design models). For this reason,

1.2. Problem statement

the verification in MDE approaches is often based on a transformation process.
Thus, the adoption of formal methods requires the definition and the implemen-
tation of an interface between modeling and verification tools. A model trans-
formation and formal verification steps are integrated, as shown in Figure 1.1, in
order to transform the design model into a formal specification and then allow its
formal verification. This seems a practical solution to join modeling and formal
verification tools, however, it raises a set of fundamental problems, detailed in
the rest of this section.

. Model Formal —
Modelin ——)) — ificati
design formal

N model specification analysis
: results
1

]

1

FIGURE 1.1: Integration of formal methods in the design phase

Complexity of real-time system design

A first common issue concerns the complexity of the development of real-time sys-
tems. Aside from the functional requirements, real-time systems are distinguished
by additional non-functional information compared to traditional systems. They
should respect a set of timing constraints, defined as deadlines that have to be
met. The violation of these constraints is considered as a system failure even
if the functional behavior is correct. In addition, real-time systems are often
designed according to multi-tasking architectures where system functions are im-
plemented with several tasks. These tasks may share computation resources and
critical hardware/software resources such as processor, memory, variables, etc.
They are then in concurrency for the execution, communication and resource
access, so they must be scheduled and synchronized to ensure their timing con-
straints. During the design phase, all these real-time features should be fixed and
validated, which requires a timing and concurrency based-design in modeling, as
well as in formal specification. Therefore, a first problem in this thesis is the
following: How to model real-time systems so as to enable their verification?

Model transformation issues

The model transformation is a challenging research topic, particularly in front
of the complex structure of models designed by modern languages. The design
models are increasingly condensed with information about different modern as-
pects (time, resources, networks, etc.). The model transformation can be simply
defined as the translation of a source model, designed for one purpose, to a target

Chapter 1. Introduction

model better suited for other purposes. It is based on a transformation description
that defines the relation between the source and target models. A transformation
description may be expressed using transformation languages such as ATL [92],
or it can be a direct model manipulation. During the transformation, some in-
formation are considered, while some others are ignored, and some constructs
from the source model must undergo significant simplification or refinement be-
fore being translated into new constructs in the target model. Defining a model
transformation is then a complex exercise with several steps, requiring skills (a
clear understanding of the syntax and semantics) about both the source and tar-
get languages. Therefore, a basic problem in this thesis is the following: How to
hide the model transformation complexity?

Another challenge in the model transformation is the semantics preservation,
which means that the transformation does not jeopardize the semantics of the
models under consideration. In the case of formal verification ends, the model
transformation is defined between design models (written in design languages)
and formal specifications (written in formal languages). The formal languages
are based on a well-defined formal semantics, in contrary, the semantics of de-
sign languages, such as UML or AADL, is often given in natural language (i.e.
standard and manual documents). Due to this semantic gap between design and
formal models, the semantics preservation of this kind of model transformation
can not be proved, which represents a challenging issue considered yet as an un-
solved problem [16]. Thus, an important problem in this thesis is the following:
How to decrease the semantic gap between design and formal models?

Formal verification challenges

The application of formal methods in the verification of safety-critical systems
has produced promising results in the industrial context [23, 127]. Yet, they still
have a reputation to be hard to use and to require an expertise both in advanced
mathematics and also in the internal operation of dedicated tools. Providing
the formal specification is an important step, but further steps are required to
accomplish the verification. Initially, the formal techniques are applied on the
state space of the system, built from the formal specification according to the
semantics of the considered language. The properties, representing the system
requirements to be verified, should be also specified as graphs or temporal logic
properties using dedicated formalisms. Thereafter, the verification can be per-
formed by means of analysis tools. In that respect, a crucial problem is addressed
in this thesis: How to guide/assist designers in the use of formal techniques?

Analysis results usefulness

The formal verification phase ends by the generation of analysis results. Being
produced by analysis tools, these results may be hard to understand and to inter-

1.3. Objectives

pret in terms of the design model. In addition, the verification process may fail,
because of the well-known state space explosion problem. This problem occurs
when the system state space (mostly of large specifications) becomes too large
to be analyzed, which represents a major obstacle to the application of formal
methods, especially in the industrial context. This raises two key questions: How
to interpret the analysis results? and How to avoid the state space explosion
problem?

1.3 Objectives

The main objective of this thesis is to assist real-time systems designers during the
design phase. Precisely, we aim to provide a systematic and rigorous development
process by the integration of formal methods in an MDE approach. The proposed
solution is based on a model transformation operation allowing the generation of
a formal specification, in order to enable the verification with an existing analysis
tool. To achieve this ultimate objective, the following points have to be taken
into account:

e Providing an adaptable solution, easily integrated within an MDE ap-
proach;

e Providing a solution to decrease the semantic gap between design and for-
mal models;

e Ensuring a complete automatic and transparent solution for both the model
transformation and formal verification;

e Generating a comprehensible analysis results that are easily interpreted by
non-formal expert designers;

e Providing a rapid, traceable, scalable solution.

1.4 Contributions

To tackle the problems mentioned above and achieve our objectives, we propose
our solution in the context of the formal verification of real-time systems, that
consist of the main lines summarized in the following.

Chapter 1. Introduction

1.4.1 Formal pattern for a real-time task model

We propose a formal pattern for real-time systems. To tackle the semantics
presentation problem, discussed in section 1.2, we use a standard task model
as pivot representation between design and formal models: the design model is
abstracted as a set of tasks with their temporal parameters, which simplifies and
reduces semantic ambiguity in transformation. Instead of considering the whole
model to define the transformation, the real-time constructs such as tasks and
connections are extracted and translated into equivalent formal patterns.

The considered task model is based on a conventional tasking model inspired
from Liu and Layland [110] model. In addition, rigorous semantics and strong
requirements are applied following the Ravenscar profile [43] for safety-critical
systems. We consider periodic and sporadic tasks, which are asynchronously
connected and concurrently executed by a preemptive fixed-priority scheduler.

The proposed pattern is described and justified in chapter 3. It is designed to be
modular, generic and comprehensible and so it can be easily extended and used in
MDE approaches. This pattern is specified with the LNT (LOTOS New Technol-
ogy) [48] language, which is a process algebra based on two standards LOTOS [1]
and E-LOTOS [3]. This choice is encouraged by the expressiveness and richness
of LNT (discussed in section 2.4 of chapter 2). It provides sufficiently expressive
operators for data and behavior with a user-friendly notations to simplify writing
and extension. LNT is supported by the CADP (Construction and Analysis of
Distributed Processes) [69] toolbox, which is a well experimented analysis tool,
used in many industrial applications (e.g. Airbus [66]).

1.4.2 Application in an MDE approach

In this second contribution, we propose an automatic solution for the integration
of formal methods within an MDE approach. For real-time systems design, we
opt for architectural models, where the overall structure of the system may be
specified in one model composed of the principal components, their relationships
and their configurations. We choose the AADL (Architecture Analysis and De-
sign Language) [10] modeling language (for reasons discussed in section 2.3 of
chapter 2). AADL is an industrial SAE ! standard for real-time embedded sys-
tems modeling in safety-critical domains such as avionics, automotive electronics
and robotics. The AADL core language provides a rich syntax and semantics,
sufficient enough to describe concepts required for real-time systems design as
discussed in section 1.2. In addition, the AADL semantics can be extended via
user-defined properties and annexes (separate sub-languages). For instance, the

1SAE: Society of Automotive Engineers

1.4. Contributions

standard Behavior annex [9] extends AADL models with behavioral specifica-

tions.

As shown in Figure 1.2, we deal with an AADL model-based development pro-
cess, where the design phase is completed with the following verification related
activities:

e AADL2LNT model transformation (chapter 4): based on the proposed LNT

Specification

pattern, we define the AADL2LNT model transformation to translate an
AADL model into an LNT specification. The transformation is described
by a set of correspondence rules between AADL and LNT. Firstly, an archi-
tectural mapping is ensured through three levels: scheduling, communica-
tion and hierarchical mapping. Then, the transformation is extended by a
behavioral mapping level, to support the AADL Behavior annex. To tackle
problems discussed in section 1.2, all the AADL2LNT transformation steps
are automated to generate an LNT specification ready for the verification
with the CADP toolbox.

Automatic formal verification (chapter 5): to address problems discussed in
section 1.2, we propose an automatic formal verification phase allowing to
simplify and encourage the practice of formal methods in software engineer-
ing. In addition to the LNT specification, a second input is provided for
the CADP toolbox. As shown in Figure 1.2, a script file written in the SVL
(Script Verification Language) [67] language is also generated to orchestrate
the verification phase. It contains mainly a set of generic properties to be
verified by model-checking. These properties allow the detection of serious
problems at the design phase, such as the deadlock detection, schedulability
test and the detection of connection failures (FIFO overflow, loss of data,
broken links).

Design & Verification
H

o e “

o
} Model Formal
| J— — [i, | — il
AADL

specification .
analysis

SVL results

Implementation

A model
1
1
I
1
1

properties 1

FIGURE 1.2: Integration of formal methods in an AADL model-based
development process

Chapter 1. Introduction

1.4.3 Tool-chain, analysis results and scalability

The AADL2LNT transformation is implemented as an extension of Ocarina [72],
an existing tool suite for AADL modeling and code generation. This extension
allows to form a tool-chain based on Ocarina for architectural modeling and
CADP for formal verification. We illustrate the capabilities of the Ocarina-CADP
tool-chain with various case studies from the AADLIib library ® (chapter 5).

For the analysis results (problems discussed in section 1.2), which are generated
by the CADP model-checkers, we provide a user-friendly (simple) output form
that is easily interpreted with non-formal expert designers. This is based on a
traceable transformation of the LNT specification and SVL properties, in order to
preserve information from the AADL model in the analysis results (commented
to explain each property, decorated with AADL identifiers, etc.).

As part of our experiment, a scalability study is carried out to address the state
space explosion problem discussed in section 1.2. The proposed solution is ex-
haustively tested using a test suite composed of 100 AADL models, to evaluate
its time and memory performances (section 5.6 of chapter 5).

1.5 Thesis organization

This section gives a brief summary of the contents of the chapters of this thesis
as follows:

e Chapter 2 is devoted to the research foundations and the state of the art.
Firstly, it presents key concepts related to software engineering of real-time
systems about the development process, MDE methodology, modeling lan-
guage and model transformation. It also highlights the common timing
constraints and scheduling policies of real-time systems. In addition, it
gives an overview of formal methods for the specification and verification
of safety-critical systems. Secondly, this chapter includes detailed discus-
sions about the languages and tools for modeling and formal specification
considered in this thesis. Finally, we end this chapter with a study of a set
of related approaches about the formal verification of AADL models.

e Chapter 3 represents the first contribution in this thesis, it develops the
proposed LNT pattern for a real-time task model. It begins with an intro-
duction of the LNT language. Then, the supported task model is described.
Finally, different parts of the LNT pattern are defined and discussed.

2The AADL2LNT extension is deployed in the official Ocarina GitHub repository to be avail-
able for the academic and industrial users: https://github.com/OpenAADL/ocarina

3AADLIb is a library of reusable AADLv2 models under the OpenAADL project (https:
//github.com/OpenAADL/AADLib)

1.5. Thesis organization

e Chapter 4 represents the AADL model transformation. The AADL lan-
guage is firstly introduced. Then, the AADL2LNT transformation is de-
scribed through its transformations rules. Finally, we present the behavioral
extension that adds the mapping of the AADL Behavior annex.

e Chapter 5 gives an overview of our implementations and experiments. Firstly,
this chapter explains how the model transformation and formal verification
phase are automated through the provided tool-chain. Secondly, three case
studies are developed to illustrate different contributions from the mod-
eling phase until the analysis results interpretation. Finally, a scalability
study is carried out to show the effectiveness of our solution in the formal
verification of realistic large scale systems.

e Chapter 6 concludes the thesis and outlines some directions for future work.

Concepts and state of the art

Contents
2.1 Imtroduction00 ... 12
2.2 Concepts. . v v v v v e e e e e e e 12
2.2.1 Software engineering 12
2.2.2 Model transformation 16
2.2.3 Safety-critical systems L. 18
2.24 Real-time systems 20
2.2.5 Formal methods 25
2.3 Modeling of real-time systems 28
231 MARTE 28
232 AADL 30
2.3.3 Discussion oo 32
2.4 Formal specification of real-time systems 34
2.4.1 Automata 35
242 Petrinets 35
2.4.3 Processalgebrao 36
244 Discussion o 37
2.5 AADL related approaches 39
2.5.1 Classification according to the source model 40
2.5.2 Classification according to the target formalism 40
2.5.3 Discussion oo 44
26 Conclusion 0 0000000 45

Chapter 2. Concepts and state of the art

2.1 Introduction

The main intent of this chapter is to present this thesis domain of interest. Firstly,
we present the general concepts that are necessary to comprehend the tackled
issues and proposed contributions. Then, a set of modeling languages and related
approaches are studied to justify our choices and compare our work with existing
solutions.

This chapter is organized as follows: section 2.2 highlights fundamental notions
about respectively software engineering, model transformation, safety-critical sys-
tems, real-time systems and formal methods; section 2.3 and 2.4 expose and dis-
cuss different existing solutions for real-time modeling and specification; finally,
section 2.5 surveys a set of related work about AADL model transformation ap-
proaches.

2.2 Concepts

The work of this thesis presents a software engineering solution based on the inter-
section of different domains, mainly, the safety-critical domain, real-time systems,
architectural languages and formal methods. In this section, these notions are
presented according to reference papers and surveys.

2.2.1 Software engineering

The software engineering (or software development) is the discipline that con-
cerns all aspects of software production. It is based on a development process
(or development life-cycle) defining the approach that is taken as software is
engineered [141]. Otherwise, the development life-cycle can be defined as an as-
sisted treatment process that decomposes the development of a product into a set
of steps (phases) structured according to a certain philosophical approach [35].
There exist different software processes, but all must include a set of fundamental
activities [160] as follows:

e Software specification (requirements engineering) is the phase of under-
standing/defining services of the system and identifying the constraints on
its operation and development. This phase aims to produce an agreed re-
quirements document, which contains a set of requirements represented at
two levels: end-users high-level statement of the requirements; and system
developers detailed system specification.

12

2.2. Concepts

e Software design is the phase of describing the structure of the software
to be implemented, that may include data models and structures, system
components and the interfaces between these components, algorithms, pro-
tocols, etc. In addition, it may include other activities depending on the
type of system. For example, real-time systems require timing design and
database systems require a database design phase. This phase involves the
production of several design documents (may be diagrams) of the system
at different levels of abstraction.

e Software implementation is the phase of converting a system design into
an executable system. To facilitate the programming task, there are many
software development tools that provide the generation of a skeleton pro-
gram from a design (code generation) to be completed by programmers,
especially in the case of large and complex systems. This phase is nor-
mally achieved with testing and debugging activities to detect, localize and
correct program defects.

e Software validation phase aims at verifying that a system conforms to its
specification (verification) and that it is compliant with the expectations
of the system end-users (validation). This phase is ensured by: the design
analyses, where different produced documents are checked at each stage of
the development process from the user requirements definition to the pro-
gram development; and the program testing, where the system is executed
using simulated tests.

These basic development activities are differently organized and completed with
other steps in different conventional development processes, such as linear sequen-
tial mode, waterfall mode, prototyping mode, V-cycle mode, incremental mode,
spiral mode, etc. Theoretically speaking, different phases are successively han-
dled: the development process moves to the next phase by using the deliverables
of the previous phase as inputs. In practice, the development process is rarely
linear, especially with large systems where changes are inevitable (end-user new
requirements, new technologies, etc.). The development process may then involve
several refinements over preceding and succeeding phases. For example, in the
waterfall mode [138], the development phases are organized in sequence, whereas
in the incremental mode [105], they are interleaved.

2.2.1.1 Model-driven engineering

The concept of MDE (Model Driven Engineering) has emerged as a generaliza-
tion of the MDA (Model Driven Architecture) which is a software engineering

13

Chapter 2. Concepts and state of the art

approach for the development of software systems proposed by the OMG ! or-
ganization in 2001. Today, MDE and MDA are often seen as the same thing, to
designate a software development trend where models are the principal outputs:
system models are created (at different levels of abstraction) and transformed
throughout the development life-cycle phases into the concrete final implemen-
tation [63, 95]. In this context, important research work has been devoted for
the system modeling, concerning the definition of modeling languages, model
transformation techniques, code generation and the creation of tools for model
processing.

Model

The "what is a model ?” question was well discussed in the literature, yet there is
no unified definition of the model. Definitions such as Fverything is a model [32]
or A model is a set of statements about some system under study [152] are among
the famous watchwords used in MDE to generally define a model. In the context
of this thesis, we consider a model as an abstract view (a simplified representation)
of a system built for specific purposes [33].

Modeling language

A model is written in a well-defined modeling language which is a language with
well-defined form (syntax) and meaning (semantics), suitable for automated in-
terpretation by a computer [95].

Defining the structure of a modeling language consists of the design of its abstract
syntax (the basic structure of the language), its concrete syntax (the graphical
and/or textual representations for end-users in order to manipulate models) and
its static and dynamic semantics (the meaning of different elements of the model).

A formal grammar (such as BNF (Backus-Naur Form) [122]) may be used to
describe the syntax of the language. The static semantics defines structural
properties of models, that can be determined without considering either inputs
or execution (e.g. identifiers, statements and expressions). The dynamic seman-
tics is concerned with the execution and behavior of the specified models [17].
These semantic rules may be defined informally by natural language or formally
by describing syntactical elements in terms of a formal approach. In this case,
the language is commonly known as a formal language (or formal specification
language). The formal semantics may be defined using two main approaches:

e Translational semantics is based on the mapping of the language constructs
using another language with an already defined formal semantics. The

LOMG: Object Management Group

14

2.2. Concepts

target language may be a mathematical formalism (denotations), known as
the denotational semantics;

e Operational semantics specifies explicitly the execution of the language
(rather than by translation). There are two operational semantics cate-
gories: SOS (Structural Operational Semantics) [140] to describe the com-
putation steps of the execution of the language; and the natural semantics
to describe how the overall results of the execution are produced.

Classification of modeling languages

In the literature, languages are commonly classified as domain-specific or general-
purpose languages. So a modeling language may be a GPML (General-Purpose
Modeling Language) or a DSML (Domain-Specific Modeling Language).

The GPML is a modeling language, providing generic concepts to model systems
in any domain. The UML (Unified Modeling Language) language, proposed by
the OMG organization since 1997 to support the object-oriented programming,
is a typical example of GPML with a very broad scope that covers a diverse set
of application domains. UML [8] is a standard language with graphical notations
representing different views of a system using a set of 13 different diagram types
(mainly structure, behavior and interaction diagrams).

Contrary to GPMLs based on universal concepts, the DSMLs are specialized lan-
guages which capture the concepts of a specific domain. There is a wide range of
domain-specific language used in common domains, such as the HTML (Hyper-
text Markup Language) for developing web pages, VHDL for hardware descrip-
tions and SQL (Structured Query Language) for relational database queries, that
has evolved into the PL/SQL general-purpose procedural language. The UML
language includes a profile mechanism (to extend the language to a particular
domain) that can be used to develop domain-specific modeling languages [153].
A set of UML profiles has been proposed which may be considered as DSMLs
such as MARTE (Modeling and Analysis of Real-Time Embedded systems) for
modeling real-time embedded systems.

2.2.1.2 Architectural description languages

The notion of software architecture has been proposed, since the early 1990s
by Perry and Wolf [137], as a software system representation composed of a set
of components with their interactions and their constraints [135]. A software
architecture is designed using an architectural language (may also be referred
to as ADL (Architectural Description Language)), which is generally defined
as any form of expression for use in architecture descriptions, according to the
ISO/IEC/IEEE standard [4]. In the context of this thesis, we consider an ADL

15

Chapter 2. Concepts and state of the art

as a modeling language that provides concepts to describe the architecture of
a software system. Medvidovic and Taylor [123] differentiate, in detail, ADLs
from other modeling languages such as programming languages, object-oriented
modeling notations and formal specification languages. In general, existing lan-
guages, that are commonly referred to as ADLs, are distinguished by the explicit
specification of three main architectural elements as follows:

e Components: units of computation or data stores;

e Connectors: interactions among components and rules that govern those
interactions;

e Architectural configuration: connection graphs of components and connec-
tors that describe architectural structure.

During the past decades, the topic of the software architecture modeling and
analysis has been shown great interest, and an important number of ADLs has
been defined by the academic and industrial communities. Recent surveys, such
as [116] and [135], discuss tens of existing ADLs in term of language definition,
language features and provided tools: Malavolta et al [102] maintain an up-to-
date list of existing ADLs, available in [117], containing currently more than one
hundred ADLs.

An ADL can either be a GPML that is used to specify any type of systems like
Wright [13], and Rapide [112], or it may be a DSML for architectural descrip-
tions of a particular domain such as AADL [10] for real-time embedded systems,
Koala [165] for consumer electronics and Mobis [118] for mobile systems [135].

2.2.2 Model transformation

One of the most fundamental theme in the MDE context is the model transfor-
mation. It is defined as the automatic generation of a target model from a source
model, according to a transformation definition [95]. This allows various ma-
nipulations of models for different purposes: model abstraction (transformation
toward a higher level specification), model refinement (transformation toward a
lower level specification), optimization (transformation to improve operational
qualities of the model such as scalability), model analysis, code generation (syn-
thesis of the model), reverse engineering (e.g. transformation from the code to
the model), model composition (e.g. transformation for merging) and transla-
tional semantics [124] [111]. In the following, we highlight the main concepts and
classifications behind the topic of the model transformation.

16

2.2. Concepts

2.2.2.1 Model transformation concepts

A model transformation is composed of a set of artifacts, as shown in Figure 2.1:

e a source model, which is written in a source language, is transformed into a
target model, written in a target language according to the transformation

definition;

e the transformation definition is a set of transformation rules that together
describe how a model in the source language can be transformed into a
model in the target language [95]:

— a transformation rule is a description of how one or more constructs
from the source language can be transformed into one or more con-
structs in the target language.

e the transformation engine/tool automates the operation of the transforma-
tion by executing the transformation definition (applying the set of the

transformation rules) on concrete models (source and target models).

In general, a transformation may be applicable to multiple source models and/or
multiple target models. In addition, the source and target languages may be the
same in some situations. A transformation can be described using a transfor-
mation language such as ATL (Atlas Transformation Language) [92] and QVT
(Query View Transform) [101], in which the transformation is defined between
meta-models (structure of models) of the source and target models. Or it can
be a direct model manipulation, where the transformation is directly accessed by
means of an API (implemented using programming languages) [124].

Source
A—
Language refers to
is written in

Source Model |) | larget Model
. engine
input output

Transformation
Definition

executes

T —

refers to

Target
Language

is written in

FIGURE 2.1: Main concepts of model transformation

7177

Chapter 2. Concepts and state of the art

2.2.2.2 Model transformation classifications

In the literature, the model transformations are classified according to many
different criteria. In the following, we include some common classifications [124]:

e Endogenous vs. exogenous transformations: this classification is based on
the language in which the source and target models are expressed. The
transformation whose source and target languages written in the same lan-
guage are referred to as endogenous (e.g. optimization, merging), whereas
the transformation with different source and target languages are referred
to as exogenous (e.g. code generation).

e Syntactical vs. semantical transformations: this classification distinguishes
between model transformations that just transform the syntax of the source
model (e.g. import or export a model in a specific format), and more so-
phisticated transformations that also consider the semantics (e.g. optimiza-
tion).

e Model-to-text vs. model-to-model transformations: this criterion concerns
the target format, a transformation which allows generating texts from
source models is referred to as a model-to-text transformation, whereas, it
is a model-to-model transformation.

e Unidirectional vs. bidirectional transformations: the directionality of a
transformation can be a criterion to classify unidirectional (only from source
to target) transformations and bidirectional (from source to target and from
target to source) transformations.

In the context of this thesis, the proposed transformation deal with only one
source model and produce one target model for verification ends. It may be
categorized as unidirectional, semantical and exogenous model-to-model trans-
formation.

2.2.3 Safety-critical systems

In the literature, several definitions and classifications are used to qualify safety-
critical systems. These systems are intuitively distinguished by the consequences
associated with the system failure. As mentioned in [96], If the failure of a system
could lead to consequences that are unacceptable, then the system is safety-critical.
That is, a system can be considered to be critical if the failure may cause serious
financial, environmental or human losses. This concerns several systems in vital
domains like health, transport, aerospace and chemical/nuclear.

18

2.2. Concepts

The software engineering of safety-critical systems is particularly difficult. A
safety-critical system must respect particular constraints throughout its develop-
ment process to offer guarantees on its critical aspects. It must be documented,
followed from conception to implementation and deployment, tested and vali-
dated as well as certified by specialized organizations.

2.2.3.1 Certifications and criticality levels

In general, the certification is referred to as to the confirmation of certain charac-
teristics of the product, process or person. In the case of safety-critical domain,
the certification of the produced system is indispensable to be used. For this end,
engineering organizations have established standards and guidelines for develop-
ers to follow them in designing safety-critical systems in several industries. In this
context, the avionics industry has succeeded in defining standards for producing
avionics systems. For example, the software part of the system must be certified
in accordance with a reference document known as RTCA/DO-178B [2] 2, which
is a guideline describing the conditions for assurance in designing software in
airborne systems. This certification is adopted by the U.S. FAA 3 and the Euro-
pean EUROCAE organizations, as mandatory for design and implementation of
airborne systems [100].

A safety-critical system may be assigned a level of criticality. The criticality levels
of a system depend on the impact of its failure. For instance, the certification
RTCA/DO-178B [2] defines five levels of safety ranging from the Catastrophic
level A (failure may cause a crash of the aircraft), Hazardous level B, Major
level C, Minor level D, to the No Effect level E (failure without impact on the
operation of the aircraft).

2.2.3.2 Ravenscar profile

Among the approaches for the development of safety-critical systems is the limita-
tion of software constructs that may compromise the fulfillment of certain safety
requirements. In this context, patterns such as the Ravenscar profile [43] are
dedicated to drive the software design and implementation for reliable system
constructions.

The Ravenscar profile [43, 44] is defined to meet safety-critical real-time require-
ments such as determinism, schedulability analysis and suitability for certifica-
tion. Initially, the profile was presented as a set of restrictions of the Ada tasking
features, which allows the static analysis for high integrity systems certification.
Thereafter, the use of the Ravenscar profile was generalized to be adopted in

2RTCA: Radio Technical Commission for Aeronautics
3FAA: Federal Aviation Administration

19

Chapter 2. Concepts and state of the art

early development phases: it may be applied at the design phase to define mod-
els respecting the profile requirements (Ravenscar compliant models).

In the context of this thesis, the Ravenscar profile is used to add strong constraints
for a real-time task model. More about the profile restrictions and how it is used
in the proposed LNT pattern are detailed in chapter 3.

2.2.4 Real-time systems

The notion of real-time systems has appeared since the 1960s and has rapidly
spread to be used in our daily life within diverse domains such as transport,
telecommunication, multimedia, etc. These systems are continuously in interac-
tion with their environments, and they are often embedded in hardware devices
to provide services autonomously or by cooperating with other entities.

A real-time system is a system whose correctness depends not only on the logical
results of the computation, but also on the response time at which the results
are produced [162, 97]. Such systems should produce correct calculation results
(logical correctness) within a specified and finite period (timing correctness).
That is, in addition to the functional behavior, a timing model is defined through
a set of temporal parameters, and the timing correctness is mainly modeled as
deadlines that have to be respected.

Real-time system categories

Real-time systems may be categorized by different criteria. In the following, we
distinguish two categories of the real-time systems according to their criticality
levels, which are defined by the severity of consequences that may occur when a
deadline is missed [162].

o Soft real-time systems [45] can accept timing failures that do not cause
system failure or catastrophic damages such as video and audio conference
systems.

e Hard real-time systems [110] have to respect all their deadlines. Otherwise,
the failure consequences are unacceptable and may lead to catastrophic
damages. These systems may be considered safety-critical systems when
they are used to control critical environments such as automotive, aircraft
or nuclear power plants.

Real-time architecture

A real-time system is often embedded within an electronic device that allows the
interaction with its environment. It is a computer-based system consisting of
hardware and software parts.

20

2.2. Concepts

The hardware platform is a composition of components such as processors, mem-
ories and input/output devices. There are several different types of hardware
architectures that have an important impact on real-time scheduling and analy-
sis. The number of the available processors is a main factor in real-time systems
design, in such a context, studies are commonly classified under two fundamental
categories:

e Multiprocessor architecture: the hardware is composed of a set of processors
(or cores) sharing memories.

e Uniprocessor: the hardware is based on a unique processor. All tasks share
a single CPU (Central Processing Unit) for the execution.

The software part consists mainly of the RTOS (Real-Time Operating System)
and application layers. Briefly, the RTOS is the bridge between the application
and the hardware parts, it is based on a kernel that manages resources access and
provides a scheduler for the scheduling of tasks. In addition, the RTOS ensures
various services for sharing resources, synchronizations and communications be-
tween tasks. The application in a real-time system is often designed as a set of
tasks to be executed with the scheduler.

2.2.4.1 Real-time task model

At the design phase, a real-time system can be considered as a set of cooperative
and concurrent tasks. The system is then viewed as a task model, specified using
a set of temporal parameters, hiding the architectural complexity. The task (may
also be referred to as process or thread) represents a logical unit of computation
in a processor [18]. It is the basic entity of the real-time system, that contains a
set of sequential instructions to be executed by a processor. Every execution of
a task is called a job.

We denote by S = {11, ..., 7.}, the set of n tasks where 7; is a task identified with
a set of conventional temporal parameters, namely: T; for the period between two
successive releases; C; for the capacity or WCET (Worst Case Execution Time)
per period; D; for the relative deadline: the maximum time, in which the job has
to be executed since its release time; P; for the task priority (for priority-based
scheduling); O; for the offset: the release time of the first job.

In addition, the j job, denoted by 7;;, has a set of dynamic parameters as
represented in Figure 2.2: r; ; for the release time; s; ; for the start time; e; ; for
the completion time; preemption (a job can be interrupted several times by the
processor to execute a job of another task); and d; ; for the absolute deadline.

These parameters allow the definition of the task temporal characteristics. Ac-
cording to how it is released, a task may be periodic or non-periodic [110]:

21

Chapter 2. Concepts and state of the art

j™ release j+1t release
period T;
deadline D;
capacity C;
+
N W e
Uiy Sij preemption €ij dijr ij+1 Sij+1

FIGURE 2.2: Main parameters of a real-time task (Gantt diagram)

e A periodic task is regularly released (dispatched or activated) by the pro-
cessor at fixed time intervals defined by the period T; parameter. Thus, its
release time is equal to r; ; = O;+(j —1) *T; and it should meet its absolute
deadline e; ; < d; j = r;; + D;.

e A non-periodic task is arbitrary dispatched by the processor. If the delay
between two successive activations is constrained by a minimum delay, then
the task is said to be sporadic. If a task is released at any time, then it
is said to be aperiodic, yet when starting the execution, it must complete
within a predefined period.

According to its relationship with other tasks, a task may be independent or
dependent [18]:

e Independent tasks are independently executed: a task is never blocked by
another one.

e Dependent tasks are in interaction with each other, which creates depen-
dency relations between tasks. The tasks can have precedence constraints,
when a task should wait for another task results. They may also share
some resources (variables, devices, etc.), which do not allow simultaneous
accesses, but require their mutual exclusion [46].

According to their deadlines, a set of tasks S may be categorized by implicit,
constrained or arbitrary deadlines:

e Implicit-deadlines where the deadlines are exactly equal to the periods

e Constrained-deadlines where the deadlines are less than or equal to the
periods Vi, D; < T;.

e Arbitrary-deadlines where the deadlines and periods are unrelated.

2.2. Concepts

According to their offsets, a set of tasks S may be synchronous or asynchronous:

e Synchronous where all the tasks are simultaneously released Vi, O; = constant.

e Asynchronous where some of the tasks have different offsets 3(4, j), O; # O;.

2.2.4.2 Real-time scheduling theory and analysis

Our goal is not to provide an exhaustive study about the scheduling theory and
analysis in the real-time domain, but to define some concepts that are required
for the comprehension of the scheduling mapping developed in chapter 3. In
the following, we give an overview of the concepts of scheduling algorithms and
schedulability tests .

Basically, a scheduling problem is the definition of a schedule for the execution
of the jobs of a set of tasks, so that they are all completed before their dead-
lines. A scheduling problem may be defined using three sets: the set of n tasks
S ={m,...., 7}, a set of k processors P = {Py, ..., P,} and a set of m types of
resources R = {Ry, ..., R,,}. The scheduling means assigning processors from P
and resources from R to tasks from S in order to complete all tasks under the
specified constraints [46]. A scheduling algorithm [18] is then considered (ac-
cording to some criteria) to describe how tasks are selected for the access to the
processor(s) and other shared resources.

A scheduling algorithm (implemented within a scheduler) can be categorized as
follows:

e Time vs. event driven scheduling:
— Time-driven: the scheduling points are determined by the interrupts
received from a clock (periodic task scheduling).

— Event-driven: the scheduler decisions, of which job to execute, are
made by certain events (non-periodic task scheduling).

— Hybrid: the scheduler uses both clock interrupts, as well as event
occurrences to make its decisions.

e Preemptive vs. non-preemptive scheduling [46]:

— Preemptive: the execution of a task may be interrupted at any time
to assign the processor to another task.

— Non-preemptive: a task is executed by the processor until the comple-
tion of each job.

e Off-line vs. on-line scheduling [18]:

23

Chapter 2. Concepts and state of the art

— Off-line: all scheduling decisions are pre-calculated before execution of
the system.

— On-line: all scheduling decisions are dynamically calculated during the
run-time of the system.

e Fixed-priority vs. dynamic-priority scheduling: the priority-based schedul-

ing is based on the task priorities, in a way that tasks are dispatched in the
priority order. At any time, the task with the highest priority is selected
by the scheduler to be executed. In this case, two scheduling policies may
be used as follows:

— Fixed-priority: all the priorities of tasks are static and assigned off-line.
In this category, we find popular uniprocessor preemptive scheduling
algorithms, such as the RM (Rate Monotonic) [110] and DM (Deadline
Monotonic) [109] algorithms.

— Dynamic-priority: all the priorities of tasks are changed during the
execution [18]. The EDF (Earliest Deadline First) [85] and the LLF
(Least Laxity First) [131] are among the popular scheduling algorithms
in this category.

The schedulability analysis decides for a given set of tasks with a scheduling
algorithm, whether all the timing constraints will be respected. The problem
is addressed in the form of a schedulability test: a set of tasks is said to be
schedulable according to a given scheduling algorithm if none of its tasks, during
the execution, will ever miss their deadlines [18].

A schedulability test is defined on the basis of a formula which provides a neces-
sary, sufficient or exact condition for a scheduling algorithm to satisfy the timing
constraints of a set of tasks:

o A test is defined to be sufficient in the sense that a set of tasks is schedu-

24

lable if it satisfies the test: if the set of tasks fails the sufficient test, it is
undecidable whether it can be schedulable or not.

A test is defined to be necessary if all schedulable set of tasks satisfy the
test: if a set of tasks satisfies the necessary test, it may be schedulable but
not necessarily. and if it fails the test, then it is definitely decided to be
non-schedulable.

A test that is both sufficient and necessary is said to be an exact condition:
it is in some sense optimal. A set of tasks is schedulable if and only if it
does satisfy the exact test.

2.2. Concepts

Many schedulability tests have been proposed in the literature (surveyed for
example in [154, 58, 163]). As an example, Liu and Layland in [110] pro-
pose an exact schedulability test for the RM scheduling: for a synchronous
set of tasks S of n independent and periodic tasks under implicit-deadlines,
itU = % % < n(21/” — 1), which converges to In2(~ 0.69) when n — oo,

i=1""

then S is RM-schedulable.

2.2.5 Formal methods

The formal methods are mathematically-based techniques used in computer sci-
ence to describe properties of software and hardware systems. They provide spe-
cific framework to rigorously specify, develop and verify systems with consistent,
complete and unambiguous solutions [167].

In the software development, the formal methods are particularly advocated in
the case of safety-critical systems, and they are explicitly allowed/required in
many certifications/standards such as aircraft systems (RTCA DO-178B) [2],
military systems [161] and common criteria certification for system security [11].

The formal methods are applied on an abstract mathematical model of the sys-
tem (called system state space). To apply a vast number of formal techniques,
the system is captured by some form of transition system, where its behavior is
specified as a set of states with a set of transitions (between different states),
that may be labeled (by actions/conditions/guards to control the transition from
a state to another one). There are several examples of transition systems: finite-
state machine, labeled transition system, Petri nets, etc. In addition, the systems
may be specified using high-level descriptions (known as specification languages),
which are translated into a corresponding transition system, built according to
the specification language semantics, to enable analyzing with verification tools.

2.2.5.1 Formal specification

The specification of a system is known as the step of describing the required
behavior of the system. A formal specification is expressed by a formal specifica-
tion language, in order to describe a system, analyze its behavior and allow the
verification of a set of properties. As mentioned above, a modeling language is
said to be formal if it is based on a well-defined semantics using mathematical
foundations.

Relying on several criteria (structure, semantics, expressiveness, etc.) various
classifications of the specification languages have been proposed in many work
like [104], [14] and [25], which allows the definition of a set of common categories:
state-based languages (e.g. Z [136] and B [37]), transition-based /automata-based

25

Chapter 2. Concepts and state of the art

languages (e.g. automata), logic-based languages (e.g. LTL and CTL), process
algebras (e.g. CSP, CCS [128]), Petri nets [139] and their extensions, language
for real-time systems (e.g. timed-automata [15]), etc. Later in section 2.4, we
present and discuss the most popular formalisms used in the formal specification.

State explosion problem

The system state space generation/exploration may face a serious issue known as
the state space explosion problem. This problem occurs when the system state
space becomes too large (grows exponentially) to be explored by formal tools
(exceed resource capabilities of CPU and memory).

In the literature, several solutions have been proposed to address this problem,
such as the compositional verification [68], on-the-fly verification [56] and the
distribution of the verification between a set of machines or processors to increase
the capabilities of verification tools.

2.2.5.2 Formal verification

In the context of formal methods, there are three main approaches commonly
used to check a certain kind of properties in a system:

e Static analysis [55] consists of analyzing a program (source code) without
actually executing it. It is a set of techniques (e.g. data flow analysis and
abstract interpretation) allowing to deduce algorithmically a set of proper-
ties used for several purposes such as code optimization, code paralleliza-
tion, debugging and code understanding.

e Theorem proving [53] consists in formulating the system and the verified
property as a formal proof (a mathematical model) that will be solved using
a tool called proof assistant/theorem prover (e.g. Coq [24], HOL [73] and
PVS [155]). This type of verification often requires human interaction to
guide the mapping and the resolution.

e Model-checking [51, 143] is the most popular verification technique, which
allows to check if a system satisfies some properties. Two general approaches
are used: the equivalence-checking compares the equivalence of two mod-
els by applying equivalence or preorder relations; and the model-checking
verifies whether a system satisfies a property, often given in temporal logic.

Model-checking

Model-checking was firstly proposed in the early of 1980s [51, 143]. As shown in
Figure 2.3, a typical model checking process includes four main steps: construct-

26

2.2. Concepts

ing a model for the system under verification; defining the properties that the
system should satisfy; performing the model-checking; and generating results.

The model-checker verifies whether the system satisfies some requirements/con-
straints specified as properties (verified properties): if the system definitely holds
the properties, the system passes the test, if the system fails the test, a coun-
terexample may be produced, if the time budget or memory is used up during
verification, a state explosion problem occurs [93].

Formalizing Modeling

| |

Properties
specification

Model-
checking

Satisfied State space explosion

Violated

FIGURE 2.3: Basic idea of model-checking [93]

Property specification. The properties to be verified are often expressed us-
ing temporal logics [142], which are particular modal logics introduced by Arthur
Prior in the late of 1950s. The temporal logic allows to specify a succession of
events along the time using time operators such as eventually, until or always.
The most important temporal logics used to specify requirements are: LTL (Lin-
ear Temporal Logic), CTL (Computation Tree Logic), PSL (Property Specifica-
tion Language) extending LTL, and modal mu-calculus including subsets of LTL
and CTL.

The specification of the properties is based on two main categories, introduced
by Lamport [103]: a safety property expresses that something (bad) will not
happen during a system execution; and a liveness property asserts that eventually
something (good) must happen during the execution. These basic forms allow the
expression of different system requirements that may be classified as follows [99]:

e Structural properties are related to the structure of the system such as the
connection and consistency between the interfaces of components, invariants
to be maintained in the system and fault-tree analysis.

e Qualitative (behavioral) properties deal with the behavior of the system
such as the schedulability, liveness, causality and deadlock detection.

27

Chapter 2. Concepts and state of the art

e Quantitative properties are used to evaluate performances of the system or
to evaluate its behavior considering characteristics such as the probability
of actions and response time.

In the context of this thesis, we choose the model-checking technique for the
verification of some structural and behavioral properties in real-time systems
(see chapter 5).

2.3 Modeling of real-time systems

Several modeling languages have been proposed to assist designers in the software
engineering of real-time systems. This field is based on a first generation of lan-
guages (in the 1990s) like Wright [13], MetaH [34], Darwin [115] and Rapide [112],
that are extended later for more mature languages [135]. Currently, the UML
and AADL languages are highly mature languages, which have been extended
with powerful modeling tools. Malavolta et al. [116] rank both the UML and
AADL languages as the top used languages in industry for the software modeling:
UML provides an extension mechanism (UML profile) that allows adding exten-
sions to the semantics of the predefined UML concepts for different domains and
platforms. A number of UML profiles have been standardized by the OMG orga-
nization, including the SYSML (SYStem Modeling Language) profile for system
engineering and the MARTE (Modeling and Analysis of Real-Time Embedded
systems) language; and AADL (Architecture Analysis and Design Language) is
an architectural modeling language standardized by the SAE * organization for
the modeling of real-time embedded systems.

Being interested by the real-time domain, we study two fundamental standards
for the modeling of real-time systems, MARTE UML profile and AADL which
are presented and discussed in the rest of this section.

2.3.1 MARTE

MARTE [7] is a UML2 profile proposed by the OMG organization since 2007, to
support the model-driven development of real-time embedded systems. The pro-
file is defined for two main goals: modeling of the features of real-time embedded
systems; and annotating the UML models so as to support analysis of system
properties, which provides a foundation to apply transformations from the UML
models into a wide variety of analysis models (e.g. formal models).

4SAE: Society of Automotive Engineers

28

2.3. Modeling of real-time systems

Formalism. MARTE supports multiple levels of abstraction using 14 sub-
profiles based on a variety of packages, which are mainly grouped in four parts,
as shown in Figure 2.4 °:

e Foundations package defines the basic concepts for real-time embedded sys-
tems modeling: core elements, non-functional properties modeling, time
modeling, generic resource modeling and allocation modeling.

e Design package refines the core concepts to support specific design features
like hardware and software platform details.

e Analysis package adds elements to support analysis, especially the schedu-
lability and performance analysis.

e A package of annexes gathers all the MARTE annexes such as the VSL
(Value Specification Language) annex that provides concrete syntax for
specifying expressions in MARTE.

Based on their needs, designers can select a particular subset of the 14 MARTE
sub-profiles to be used in different contexts like the usual specification, design and
implementation stages, as well as for analyzing ends (performance and schedula-
bility requirements).

For the architectural design, the profile provides a package GCM (Generic Com-
ponent Model) to describe a system using the usual concepts of the component-
based paradigm. Thus, it is possible to specify the system as a set of components
with their interactions. A MARTE component is an autonomous entity of the sys-
tem that can contain both data and behavior. A component may have properties
and ports to explicitly specify its interaction with its external environment. The
MARTE port definition has been heavily inspired from the existing architectural
languages like AADL.

Tools. Many UML tools support the profile MARTE such as Papyrus which is
a free graphical editing tool for UML2, Modelio which is an open source UML
tool developed by Modeliosoft and MagicDraw which is a commercial product.

5 CoreElements: Core Elements, NFP: Non-functional Properties Modeling, Time: Time
Modeling, GRM: Generic Resource Modeling, Alloc: Allocation Modeling, GCM: Generic
Component Model, HLAM: High-Level Application Modeling, DRM: Detailed Resource Model-
ing, GQAM: Generic Quantitative Analysis Modeling, SAM: Schedulability Analysis Modeling,
PAM: Performance Analysis Modeling, VSL: Value Specification Language, RSM: Repetitive
Structure Modeling.

29

Chapter 2. Concepts and state of the art

MARTE foundations
1 1 1 1 1
« profile » « profile » « profile » « profile » « profile »
CoreElements NFP Time GRM Alloc
A R
MARTE design model] MARTE analysis model
1 1 1
« profile » « profile » « profile »
GCM HLAM GQAM
I] 1 1]
« profile » « profile » « profile » « profile »
SRM HRM SAM PAM
MARTE annexes
1 I I |
« profile » « profile » « modelLibrary »
VSL RSM MARTE_Library

FIGURE 2.4: Architecture of the MARTE Profile [7]

Real-time notations. MARTE allows the description of the temporal concepts
of real-time systems using mainly the NFP and Time sub-profiles. The HLAM
sub-profile gathers concepts for both quantitative (period, time) and qualitative
(behavior, communication, concurrency) real-time characteristics. The SAM sub-
profile provides annotations dedicated for the schedulability analysis.

Extension mechanisms. As a UML profile, MARTE may be extended using
the UML basic extension mechanisms: the meta-model (profile class) with its
basic element the meta-class; and the stereotypes to extend a meta-class to enable
the use of a platform or domain specific terminology. For illustration, MARTE
extends the UML2 SimpleTime package with a set of stereotypes refining the time
events, time observations and duration observations with references to clocks.

2.3.2 AADL

AADL [10] (Architecture Analysis and Design Language) is an architectural de-
scription language developed since 2004 for modeling of real-time embedded sys-
tems. AADL is based on the component-based paradigm with a rich syntax and
semantics for the description of application architectures.

2.3. Modeling of real-time systems

Formalism. The AADL core language allows the definition of the system archi-
tecture as a set of software and hardware components and their connections. The
modeling of an AADL component consists in describing a type (it declares the
component interface elements called features) and zero or more implementations
(they present the component internal structure). The AADL components are
grouped in three categories: software components (subprogram, subprogram
group, data, thread, thread group and process); hardware components
((virtual) processor, device, (virtual) bus and memory); and system
composition component (system). These components have both textual and
graphical notations as shown in Figure 2.5.

AADL allows the modeling of interactions (connections) between components
which are drawn between the features (port, parameter, subcomponent access),
specified in their interfaces and declared in their implementations. There are
three types of connections: port connections (type port), parameter connections
(type parameter of subprograms), access connections for shared components (type
data access, bus access, subprogram access, virtual bus access).

The AADL ports allow to exchange data and/or events between components.
They can be declared as data, event or event data ports and in (input), out
(output) or in out (input and output) ports.

ST 7
/ thread / subprogram process data
J l’
— 3 -
processor M device
system

FIGURE 2.5: Main AADL graphical components

Tools. There exist many tools for AADL models processing at different levels
(modeling, analysis, scheduling). We mention some free tools such as OSATE2
(plugin Eclipse), Cheddar, Ocarina, TOPCASED and commercialized tools such
as Stood and AADL inspector.

Real-time notations. AADL provides a set of predefined properties to spec-
ify temporal parameters, concurrency, scheduling, etc. The properties are at-
tributed within the components according to their types. For example, Period,
Compute_Execution_Time and Deadline properties allow the specification
of the temporal parameters for the thread component.

31

Chapter 2. Concepts and state of the art

Extension mechanisms. The AADL language can be extended via the def-
inition of new properties (property-set) or annexes. Big and specific additions
are specified with separate annexes (separate sub-languages). Some annexes are
standardized by the SAE like the Error-Model annex to specify fault behavior
and propagation, the ARINC653 annex for avionics modeling and the Behavior
annex [9] to add behavioral descriptions in the system architecture.

2.3.3 Discussion

Although MARTE and AADL are standard modeling languages, each one has its
own capabilities:

e As a UML profile, MARTE benefits from the advantages offered by the
UML ecosystem (meta-models, profiles, tools, etc.). However, as in UML,
there is the possibility of the use of a large number of diagrams, which makes
difficult to maintain a consistent and semantically-correct specification [59].
In addition, MARTE is a large standard, catering the typical needs of mod-
eling and analysis of real-time embedded systems, yet it represents some
practical problems that may restrict its utilization in the industrial context,
as discussed in [88]: only a small part of MARTE is needed for a particular
purpose; there is no defined methodology for MARTE that guides designers
on how to use it; lack of mature modeling tools that are scalable for large
industrial systems.

e Being an industry standard is a main advantage of the AADL language,
which encourages its utilization in the industrial context (ranked in [116]
among the top-used languages in the industry). AADL allows the modeling
of a software architecture of a real-time system, comprising of different
layers of the system (hardware aspects, network, systems, middleware and
applications). Thanks to its analyzability and extensibility, AADL has
been studied in several projects ¢ for different purposes, namely, analysis
(structure, real-time, security, safety and performance), code generation
(Ada and C), extensions (property-sets and annexes) and formal verification
(simulation, model-checking). However, AADL does not explicitly model
some MARTE concepts such as the clock and timer [59].

Based on these observations, we opt for the use of the AADL language in this
thesis. This choice is encouraged by the following reasons: AADL is specifically

6 CESAR (http://www.cesarproject.eu/), ASSERT (http://www-verimag.
imag.fr/ASSERT.html?lang=en), TOPCASED (https://www.polarsys.org/
topcased), COMPASS (http://www.compass-toolset.org/).

32

2.3. Modeling of real-time systems

defined for real-time safety-critical systems modeling; it provides a software ar-
chitecture model (a unique and complete representation of the system), that can
be considered as pivot model for model transformation approaches; its ability to
specify the real-time software and hardware concepts, especially scheduling and
temporal parameters; and its rich ecosystem that contains mature modeling tools
such as Ocarina and OSATE. In addition, our work is also extended to support
the AADL Behavior annex for the specification of behavioral descriptions. More
about the AADL language is presented and discussed in chapter 4.

2.3.3.1 AADL modeling tools

As mentioned before, the AADL language is supported by several tools, either
open-source (OSATE, Ocarina, TOPCASED) or commercial (STOOD, AADL In-
spector) for modeling, analysis and code generation. In the following, we present
some examples and we justify our choice to implement our solution.

OSATE

OSATE (Open Source AADL Tool Environment) 7 consists of a set of plug-ins
to the Eclipse platform. It is an extensible open source environment for AADL
modeling and analysis, that offers the possibility to automatically generate the
graphical representation from the textual one or vice versa. OSATE compiles
AADL models into an XMI-based format according to its meta-model specifica-
tion (EMF (Eclipse Modeling Framework) meta-model for AADL). In addition,
OSATE2 provides a set of additional analysis plug-ins, such as the connection
consistency, resources allocation and fault-tree analyses. It supports also the
compilation of some AADL annexes such as the Behavior and Error-Model an-
nexes.

AADLInspector

AADLInspector ® is a model processing framework for AADL, developed by
Ellidiss-Software company. It comes with a set of analysis plug-ins that can be
extended with additional analysis tools and bridges for remote verification tools.
This tool supports analysis of AADL models and the Behavior, ARINC653 and
Error-Model annexes. It also embeds a set of timing analysis, simulation and code
generation tools through the integration of respectively the Cheddar, MARZIN
and Ocarina tools.

7 OSATE?2 is the version supporting AADL version 2, http://osate.org/
8https://www.ellidiss.com/products/aadl-inspector/

33

Chapter 2. Concepts and state of the art

Ocarina

Ocarina Y [107, 87] is an open source tool suite developed since 2004 and de-
ployed on GitHub in 2013 under the OpenAADL '° project for AADL modeling.
It provides the traditional analysis of AADL models (parsing, semantics checks),
the support of ARINC653, Error-Model and REAL annexes with the possibility
of the use of extra tools like Cheddar for schedulability analysis and Bound-T
for WCET analysis. In addition, it performs automated code generation towards
the AADL runtime PolyORB-HI/C and Ada. Ocarina is a stand-alone tool com-
pletely written in the Ada language. It uses an AST (Abstract Syntax Tree) as
an internal representation of models (AADL, annexes, programming languages,
etc.): the model is decomposed into a set nodes connected hierarchically to create
the corresponding syntax tree according to the grammar of the language.

Discussion

In the context of this thesis, we choose the Ocarina tool suite to implement the
proposed contributions for the following reasons: it is an open-source tool suite;
it may be used as stand-alone compiler since it provides different engineering
steps (modeling, analysis and code generation); it has a modular and extensible
architecture; it can be easily integrated as an external plug-in for other AADL
editors (already used through OSATE and AADL Inspector tools).

Compared to the OSATE platform, which is known by its graphical representation
of AADL models and its comprehensive set of frontend analysis plug-ins, Oca-
rina provides both frontend lexical, syntactic and semantic analyses analyses and
backend modules for model and code generation. In addition, the Ocarina com-
piler contains the required routines to rapidly implement a model transformation,
that may be implemented without extra training (meta-models, transformation
languages, dedicated platforms, etc.). More details about the conceived Ocarina
extension are represented in chapter 5.

2.4 Formal specification of real-time systems

The choice of formalisms is a crucial phase in the use of formal methods. In
the literature, there is an impressive number of specification languages that have
been defined and refined for decades to provide simple, expressive formal models
with their associated tools.

In this section, we present three popular formalisms, that we consider as basic
models for several modern languages. Our goal is not to provide a detailed study

nttps://github.com/OpenAADL/ocarina
Ohttp://www.openaadl.org/

34

2.4. Formal specification of real-time systems

about the existing formalisms in the formal domain, but to highlight some basic
concepts of the specification languages and how they are extended with the notion
of time for real-time systems.

2.4.1 Automata

An automaton [144, 94, 42] (called also a finite-state machine/state machine or a
finite-state automaton/finite automaton) is a transition system, representing an
abstract machine with a finite number of states. It is defined by a finite number
of states, an initial state and a set of conditions (guards) for each transition. At
any time, the automaton can be exactly in one of its states and it can move from
one state to another (a transition).

There are many extensions based on the automata theory such as the timed au-
tomata for real-time systems. The timed automaton [15] is an extension of clas-
sical automata, completed to support time concepts. The automaton transitions
are guarded by clocks (clock values can be compared to integers) to constrain the
behaviors of the automaton. Among the tools for timed automata modeling, there
is the UPPAAL model-checker. UPPAAL [26] is a tool suite for model-checking
of safety and bounded liveness properties of network of timed automata extended
with structured data types, user defined functions and channel synchronizations.
The verified property is expressed as a formula using a subset of TCTL (Timed
Computation Tree Logic) logic. Then it is transformed into a timed automaton
and composed with the system automaton.

The automata are known by their simplicity for quick design. However, they can
be difficult to manage and maintain in the case of larger systems: the states and
transitions can cause a fair degree of spaghetti-factor when trying to follow the
line of the execution.

2.4.2 Petri nets

The Petri nets are transition systems originally proposed by Carl Adams Petri in
1962 [139] and they are considered as one of the oldest models for parallel and
distributed computation. They are defined by a set of places (nodes), transitions
and arcs. The transitions present events (system activities) that may occur and
the places (can contain tokens) present conditions (system conditions and re-
sources). The arcs specify which places are preconditions and/or postconditions
for which transitions.

During the past decades, many work have extended Petri nets, such as CPN
(Colored Petri Net), TPN (Timed Petri Net), PPN (Prioritized Petri Net) and
SPN/GSPN ([Generalized| Stochastic Petri Net). The basic idea of the timed

35

Chapter 2. Concepts and state of the art

Petri net extension [125] is the association of clocks and time intervals to transi-
tions, in order to control the transition time: a transition is enabled if its clock
value respects its time interval. Among the tools for Petri nets modeling there
is the TINA model-checker. The TINA (TIme Petri Net Analyzer) [29] tool is
an environment for the analysis of Petri Nets and timed Petri nets. It allows the
model-checking of general properties like reachability properties, deadlock and
liveness with the use of the State/Event-LTL logic, which is an LTL extension to
express specific properties based on states and transitions of the specified system.

2.4.3 Process algebra

As mentioned before, systems may be described with high-level languages. In
the concurrency theory research area, these specification languages are referred
to as process algebras. Since 1970s, process algebras have become an underlying
theory of parallel and distributed systems. A process algebra is mainly based
on: the definition of parallel processes (behaviors); the representation of the
interactions between processes by communications rather than sharing variables;
and the definition of algebraic laws for these descriptions (often formulated in
terms of a transition system) to be manipulated and analyzed by formal tools.
A large number of process algebras are based on the SOS semantics to build and
compose an LTS (Labeled Transition System) for formal analysis [22].

The basic process algebras are CCS (Calculus of Communicating Systems) [128],
CSP (Communicating Sequential Processes) [84] and ACP (Algebra of Commu-
nicating Processes) [27], and then several languages have been emerged such as
LOTOS (Language Of Temporal Ordering Specification) [1] with its last variant
LNT (LOTOS New Technology) [48], pi-calculus [151] and mu-CRL (Represen-
tation Common Language) [75].

There are several timed extensions of these process algebras: ATP (Algebra of
Timed Processes) [132] (based on CCS and ACP), time CSP [57], timed pi-
calculus [150] and timed mu-CRL [74]. A timed process algebra is an extension of
a classical process algebra that adds a set of specific constructs (types, functions,
variables and references for the time) to represent the timing constraints and its
associated notions (delays, timeout, etc.). Hence, the execution of the processes
is constrained by the progress of the time (counting units of time).

Many tools for process algebras specification and analysis have been developed.
For example, the CWB-NC (Concurrency Workbench of New Century) [52] tool,
originally designed for the verification of systems modeled with CCS and then
extended to support several formal languages (CSP, Basic LOTOS, etc.). This
tool provides model-checking (properties are expressed in the modal mu-calculus
and CTL) and equivalence checking of concurrent systems. The CADP (Con-
struction and Analysis of Distributed Processes) [69] toolbox is another example

36

2.4. Formal specification of real-time systems

that uses the process algebraic formalism for the verification of concurrent sys-
tems. Early versions of CADP support only LOTOS to describe communication
protocols. Then, several languages were added such as FSP, LNT and EXP. The
toolbox provides a comprehensive set of tools for model-checking, equivalence
checking, interactive simulation and performance evaluation. The last example is
the mCRL2 toolset for the analysis of systems modeled with the mCRL2 specifi-
cation language (the successor of the mu-CRL specification language and toolset).
The mCRL2 specifications are linearized and then transformed into L'TSs to allow
the model-checking using properties expressed in the modal mu-calculus.

The process algebras became an underlying theory for the concurrency modeling
and analysis. A good argument supporting their applicability is the impressive
number of languages and associated tools developed during the past decades. Yet,
this may create confusion for the industrial users, who are unsure about which
language to adopt.

2.4.4 Discussion

We have introduced three popular formalisms (with some extensions) for the for-
mal specification. Historically speaking, Petri net is considered as one of the old-
est and interesting concurrency models. Research in concurrency theory started
with the development of the Petri nets. Before that, researchers only considered
sequential processes by means of transition systems or automata. Then, the no-
tion of process algebra has appeared with the development of the CCS model
as a general theory of concurrency. Since then, new process algebras have been
emerged, while automata and Petri nets are extended with concepts like data,
time and hierarchy.

Even though these formalisms share many common features, the choice of the
formalism depends mainly of the context of work. In the context of this thesis, we
aim to formally analyze architectural descriptions of real-time systems, which are
based on architecture and real-time concepts such as concurrent tasks, temporal
parameters, components, communications, etc. For this end, we opt for the
process algebra formalism, since it promotes the specification of the software
systems in terms of concurrent processes with their interactions. This choice is
encouraged by several reasons, such as the results surveyed in [135], where the
author exhibits that process algebras (e.g. pi-calculus, CSP and FSP) are the
top preferred formal method by architectural languages, to formalize their formal
semantics.

Compared to process algebras, automata and Petri nets are considered as low-
level languages, while a process algebra is more related to grammars/languages [164].
Yet, dealing with low-level models may become difficult, especially when speci-
fying large (complex) systems. In the case of Petri nets, the effort for the spec-

37

Chapter 2. Concepts and state of the art

ification of large systems is very high (the complexity is exponential compared
to linear in the case of process algebras) [83]. A process algebra can be seen
as a progressive extension of classical automata. However, instead of describing
directly a transition system, the system specification is simplified with the help of
a high-level language which is quite user-friendly, expressive and design-oriented.
In addition, process algebras are originally designed for concurrency modeling
(constructs for processes and interactions), and currently they represent well-
established concurrency models (CCS, CSP, etc.), that are enhanced by adding
the data and time concepts in many extensions or by defining modern languages.

Among the modern specification languages, we choose the LNT (LOTOS New
Technology) [48] formal language, which is a process algebra based-language (vari-
ant of two standards LOTOS [1] and E-LOTOS [3]) developed since 2005 for the
CADP toolbox. Currently, the LNT language is intensively used for specifying
and verifying concurrent systems using CADP (progressively replacing the LO-
TOS standard). Based on a combination of traits from process calculi, functional
languages and imperative languages, LNT provides sufficiently expressive oper-
ators for data and behavior with a user-friendly notations to simplify writing
and extension. The syntax and semantics of the LNT language are presented in
chapter 3.

Since we deal with real-time systems, we note that timed extensions exist for the
CADP languages (ET-LOTOS [108], RT-LOTOS [54], etc.), but currently, they
are not supported by its tools. Nevertheless, the use of the LNT language stills
sufficient for our purposes: it provides a rich data part that is used to specify
the scheduling algorithms; the time is a part of the proposed LNT mapping (see
chapter 3) and it is smartly included (when needed) to provide LNT specifications
with reduced state spaces and avoid additional transformations (from timed to
untimed models).

CADP [69] (Construction and Analysis of Distributed Processes) is a toolbox for
the design and verification of concurrent systems developed since 1986, available
with both academic and commercial licenses .

Initially, CADP featured a compiler and state space generator for the LOTOS lan-
guage called CAHSAR with an equivalence checker called ALDEBARAN. Nowa-
days, the toolbox offers a comprehensive set of tools for the specification, inter-
active simulation, verification (model checking, equivalence checking, etc), per-
formance evaluation, etc. To deal with large systems, CADP provides a set of
techniques such as the reachability analysis, on-the-fly verification and distributed
verification.

CADP explores an LNT specification using its formal operational semantics de-
fined in terms of an LTS. A translation from LNT into LOTOS is firstly applied

Uhttp://cadp.inria.fr/

38

2.5. AADL related approaches

with the LNT.OPEN, LNT2LOTOS and LPP tools. Then, a generation of an
LTS is performed by the CASAR compiler [64]. The LTS represents the system
state space that will be explored by different analysis tools. CADP contains three
model checkers operating on LT'Ss: XTL [119] (eXecutable Temporal Language);
and EVALUATOR 3/4 [120, 121], which are two model-checkers based on the
MCL (Model Checking Language) temporal logic, a regular alternation-free mu-
calculus (an extension of the modal mu-calculus).

In addition to LNT, CADP provides a scripting language SVL (Script Verification
Language) [67] for the description of the analysis scenarios. More about the
CADP tools and how they are used in this thesis are presented in chapter 5.

2.5 AADL related approaches

The literature is full of formal approaches revolving around the AADL language.
Existing AADL framework and tool-chains provide gateways to other tools for
advanced analysis, validation or implementation, that are often based on the
model transformation into different languages such as Petri nets [146], timed
automate [15], LUSTRE [89], IF [12], TLA+ [148], Signal [30], ACSR [158],
TASM [169], Fiacre [28], Real-time Maude [134] and BIP [49].

Since we deal with Ravenscar compliant models, we note firstly that some ap-
proaches have been proposed for the formal analysis of the Ravenscar systems.
In general, these work aim to analyze Ada real-time systems, such as: Kristina
et al. [113] propose a formal mapping of a Ravenscar compliant runtime kernel
for the verification with the UPPAAL model-checker; authors in [80] work on
the generation of the Ada Ravenscar code from the AADL models, in which a
particular data connector DBX (Deterministic Bridge Exchangers) is manually
mapped in LOTOS to verify its deterministic behavior. In addition, they provide
a static and dynamic semantics for the generated Ada Ravenscar in [81]; authors
in [133] present a transformation of the Ada Ravenscar programs using the IF
timed automata. Compared to these approaches, we use the Ravenscar profile
to apply a set of strong constraints at the model level for safety-critical systems
modeling. We provide an LNT pattern for a Ravenscar compliant task model
that can be completed and automated for the Ada code analysis with the CADP
toolbox, which presents an important perspective. But, we currently focus on
the verification of the architectural models rather than the code analysis.

In the following, we survey about 20 AADL model transformations, classified
according to their source and target languages.

39

Chapter 2. Concepts and state of the art

2.5.1 Classification according to the source model

According to the source AADL model (with or without annexes), a first classi-
fication may be applied for existing AADL model transformations. As included
in Table 2.1, we study work dealing with only AADL models, models enriched
with the Behavior annex (BA) and models extended by the Error-Model annex
(EMA).

The first family includes the transformations of AADL models without annexes.
These approaches consider only the AADL semantics described in its standard
which is enough to formally simulate the system and verify a set of behavioral
properties such as deadlock and liveness. The second family specializes in the
error behavior and analysis based on the Error-Model annex specifications. These
transformations allow the analysis of the performance and the dependability such
as in [149] and [39]. The third family represents analysis approaches for AADL
models completed with the Behavior annex specifications. They allow the formal
simulation and model-checking of behavioral properties.

TABLE 2.1: Classification according to the source model

’ ‘ Target language ‘ Papers ‘

Real-Time Calculus (RTC) | [157]
LUSTRE [39]

Only AADL ACSR [159]
Timed automata 90, 91]
Machine-Readable CSP 168]
GSPN [149]

AADL & EMA | SMV model [40, 38, 41]
HiP-HOPS [126]
BIP 19]
Timed automata 77, 79]
Real-Time Maude 134, 19, 21, 20]
Fiacre 28, 36]

AADL & BA Stateful Timed CSP [173]
TASM [169, 86, 170]
Signal [71, 31]
LNT (our approach) [129, 130]

2.5.2 C(lassification according to the target formalism

Table 2.2 sums up a set of AADL transformation approaches, classified in three
families according to their target formalisms: automata, Petri nets and other
specification languages (e.g. process algebras). We include 18 AADL transfor-
mations with their target languages, the tools used for the transformation/formal
verification and some objectives.

40

2.5. AADL related approaches

TABLE 2.2: Classification according to the target formalism

sorjaedoad
[0€T ‘6Z1] | Teanjona)s pue [edolaetyaq davo eurred | (yoeoiadde ano) T N'T
[891 sortedoad Teroraeyaq Lvd HILVSO dSD POUWILT, [jorels
[98 ‘69T sorptedoad reroraryaq TVVddN'INSV.L TLV ALVSO INSV.L
(21 sorprodord Ajeyes - poseodoy, Al
[0z ‘1g ‘61 ‘veT sonedoad TeIorARyaq urtojyerd apnepy HIVSO OPUBIN oWI-Teoy
SISA
(66T ‘8¢T] | -Teue Ayiqempatps pue peiodwa) VSUHA HILVSO dSOV
[9¢ ‘]7] sorprodord [eIOIARYD(Q ‘UOTYRINUUIS VNILL paseodoy, QI0®RI soSenSue
stk RULIO,
[TLT ‘0¢ ‘zL1]) | -Teue Aipiqempayps pue [eiodurd) | AUOIYDA[O] XopUAg AILVSO [eusdig I d
ia sisATeue Teroduwo) | HJ, IO¥D0YD-[opoUT poseodo], +V1L
[67 sorpredoad [eIOIARTD(Q yIomewrely J19g AIVSO d1g
[68] so1p10dold [RIOTART[D(‘UOTJR[NUIIS Iesor‘9)jeIn | ouAsgipee TUILSNT
[LF1 ‘OF1] seryredourd feroraryaq VNLL rULIRd() Nd.L
e8] sisdreue Aypiqepuadop SNIFON W-LdVAV NVS | s3du Liyed
[671] sisAeue Aypiqepuadap - 449NSs LAVAV NdSD
[r21] SisATeue opowt TAVY Tvvddn - BIBWONE POWL],
[8L sor)edord [eIOIARTD(Tvvddn TV R)RUWOINE POWI T,
[16 ‘06 AY[IqRYDRII MOY-RIRP,/[0I)0D Tvvddn -)eUIO)NE PO T,
voren ejewoIn
-[eao ooururiojtod pue (I ‘SISA } mv
[17 ‘8¢ ‘07] | -Tewe £19yes ‘sonaedord [eroraeyaq SSVAINOD SSVAINOD | Byewomy eye(q-jusAg
[9.] | uworyenuuts ‘sisATeue AJIIQRNPLTDS SHINTL - | ejyewome pLIqAY IRAUIT
s49dD J 520199209 () uoKvIYLIIA 7 uoHvULIO[SUD] abonbuv) 1obun],

1007,

41

Chapter 2. Concepts and state of the art

The first formalism is the automata. Particularly, we note the use of the timed
automata and the UPPAAL model checker. For instance, Hamdane et al. [78§]
describe a tool-chain from AADL into timed automata for the model-checking of
deadlock, liveness and reachability properties. Bozzano et al. [40, 38, 41] propose
a comprehensive platform COMPASS for the analysis of AADL models such as
the requirements validation, functional verification, safety analysis, FDIR (Fault
Detection, Isolation and Recovery) and performance evaluation. This approach
is based on the defined SLIM language, which is an extension of the AADL
language and its Error-Model annex. The SLIM model is transformed into an
EDA (Event-Data Automata) to be explored with different COMPASS tools.

The second family concerns the Petri nets and their extensions. We mention Re-
nault et al. work, in which an AADL subset is firstly transformed into symmetric
nets in [147] and then extended into timed and colored Petri nets in [146] for the
verification of behavioral properties such as missed deadline or missed thread
activation, using the TINA formal analysis tool.

The third family transforms different AADL subsets into diverse specification lan-
guages. The proposed solution in this thesis is included among this family using
the LNT language. In the following, we detail some work form this family that
support the Behavior annex and aim mainly to verify the behavioral properties.

Synchronous approaches

Firstly, we note that a set of approaches addresses synchronism by using syn-
chronous languages as target formalisms such as in [89], where authors explain
how the synchronous paradigm can be used to describe asynchronous behaviors

through the transformation of an AADL subset into the synchronous language
LUSTRE.

Other approaches deal with an AADL synchronous subset, for example, the con-
tributions around the Polychrony framework [171, 172, 30, 114] introduce the
concept of co-design using an AADL subset (periodic threads and data port
connections) for modeling and the Simulink language for the behavioral specifica-
tions. The verification is based on the transformation into the Signal synchronous
language, which allows the exploration of the AADL model with the Polychrony
and SynDEx tools. In addition, the Behavior annex is formalized as polychronous
automata in [31] and then its mapping is completed towards the Signal language
in [71].

Yang et al. [169, 86] use the same synchronous subset adding AADL modes and
offline non-preemptive scheduling policy to define a formal semantics with the
TASM (Timed Abstract State Machine) language. The authors propose mainly
a semantics of the AADL synchronous execution model (thread execution and
communication) with a mapping of the thread Behavior annex. The trans-
formation is implemented in the OSATE environment and formally verified by

42

2.5. AADL related approaches

the Coq theorem prover, in order to verify behavioral properties (deadlock and
reachability) with the TASM and UPPAAL tools. The proof is performed by
equivalence-checking and based on the equivalence checking of the TTS (Timed
Transition System) of both the AADL and TASM models.

In the context of this thesis, we rather handle asynchronous model supported by
the AADL language to deal with larger AADL subsets for more realistic applica-
tions.

Fiacre

Fiacre (Format Intermédiaire pour les Architectures de Composants Répartis Em-
barqués) is a formal specification language to represent both the behavioral and
temporal aspects of real-time systems. The transformation of AADL models
into the Fiacre language is addressed by Berthomieu et al. in the TOPCASED
environment [28]. The verification needs a first transformation into the Fiacre
language, and then the Fiacre model is compiled into an abstract timed transi-
tion system supported by the TINA tool. This work considers the AADL model
as a set of communicating threads and supports periodic/sporadic thread and
event/data port connections but it is restricted to the non-preemptive schedul-
ing. A second version of this work is presented in [36] dealing with an AADL
synchronous subset.

Real time Maude

Another work [134] uses a formal real-time rewriting logic semantics, called Real
time Maude, to transform an AADL subset with its Behavior annex to an exe-
cutable semantics with the Real-Time Maude platform (an AADL simulator and
LTL model checker). In addition, authors in [19, 21, 20] are motivated by the
PALS (Patterns of Adaptive Learning Scales) pattern that reduces the design
and verification of an asynchronous system with its synchronous version. They
define a Synchronous AADL sub-language and provide its formal semantics in
Real-Time Maude.

BIP

BIP (Behavior Interaction Priority) is a language for the description and com-
position of components as well as associated tools for analyzing models and gen-
erating code. Chkouri et al. [49] define a translation from a significant AADL
subset with its Behavior annex into the BIP language, and then the BIP model
is transformed into a non-timed model to enable the model-checking (Aldebaran
and observers tools) and the simulation with the BIP framework. This work sup-
ports periodic/sporadic threads and event/data port connections but it uses a
simple scheduler without preemption.

43

Chapter 2. Concepts and state of the art

2.5.3 Discussion

In general, all the related work aims practically at defining a formal executable
semantics for an AADL subset to allow the model-checking of behavioral prop-
erties. However, subsets, methodologies and tools are diverse. Compared to the
existing approaches, we are distinguished by the following points:

e The AADL2LNT transformation (chapter 4) considers both software and

44

hardware AADL components with the consideration of a significant set of
temporal and queuing standard properties. We focus on the AADL thread
scheduling execution and port connection mechanism with the definition
of an explicit scheduler. We support the event-driven preemptive priority-
based scheduling and asynchronous communications. The considered subset
covers the fundamental real-time features that can be used in more realistic
applications rather than synchronous and non-preemptive approaches.

Many existing work require more than one model transformation to be
connected to the analysis tools. We use LNT as a target model which is a
direct input language (without additional transformations) for the CADP
toolbox. This gateway allows the exploitation of the CADP tools that
implement a variety of formal methods (model and equivalence checking,
simulation, etc) and provides mature solutions for the state space explosion
problem (smart state space reductions, on-the-fly verification, etc.).

For the soundness of the AADL transformation, [169] and [36] propose a
semantics preservation proof based on the formalization of an TTS seman-
tics for a restricted AADL subset. Then, an equivalence relation is checked
with the corresponding TTS of the target language using the Coq theorem
prover. However, the AADL-TTS semantics definition is supposed to be
correct without preservation proving. This semantics gap concerns all the
AADL formal transformations. Due to the informal semantics of the AADL
language, we can not directly prove the equivalence between the AADL se-
mantics and the formal semantics of the target formalism. In this thesis,
we propose an LNT pattern for a task model compliant with the Raven-
scar profile (chapter 3), which is considered as a pivot representation. The
AADL semantics are abstracted as a standard task model which reduces
semantic ambiguity in the transformation.

Several work use OSATE to implement the AADL transformation. In this
thesis, we opt for Ocarina which is an open-source tool suite that can be

used as stand-alone compiler or it may be integrated as a backend for other
AADL editors such as OSATE, which increases the visibility of our work.

The Ocarina-CADP tool-chain is totally automated and transparent for the
model transformation and verification. The verification phase is ensured by

2.6. Conclusion

the SVL script allowing the exploration of the system state space and the
model-checking of a set of generic structural and behavioral properties.

2.6 Conclusion

In this chapter, we introduced the general concepts required in our work. A
set of modeling and specification languages are studied and discussed to justify
the choice of the AADL and LNT languages as a source and target models for
the proposed model transformation in this thesis. Finally, we surveyed some
AADL model transformations classified according to their source models (with or
without annexes) and their target formalisms (Petri nets, automata and process
algebras).

The next chapters are devoted to detail the contributions of this thesis.

45

Formal pattern

Contents
3.1 Introduction0000000. 48
3.2 LNT Ilanguage ¢ttt vt v, 48
321 Syntax 48
3.2.2 Some definitions oL 49
3.2.3 LNT specification 53
3.3 A Ravenscar compliant task model 54
3.4 Formal mapping, 56
3.4.1 Task definition L. 56
3.4.2 Scheduler definition 0. 59
3.4.3 Communication mapping 64
3.4.4 Composition and synchronization 65
3.4.5 Discussiono 67
3.5 Conclusion 68

47—

Chapter 3. Formal pattern

3.1 Introduction

In this chapter, we present our first contribution in the context of the formal
specification of real-time systems. We propose a formal pattern for a real-time
task model compliant with the Ravenscar profile. This mapping is based on
the definition of a formal semantics using the LNT language, containing specific
definitions for different real-time concepts, mainly, the task with its temporal
parameters, the connections between tasks and the scheduler.

This chapter is organized as follows: firstly, we present the LNT language in
section 3.2; then, we define the supported task model in section 3.3; and in
section 3.4, we describe and justify the formal pattern through four principal
parts (task mapping, scheduler mapping, communication mapping and composi-
tion/synchronization) and we conclude with a discussion.

3.2 LNT language

The LNT (LOTOS New Technology) [48] formal language is proposed by the
VASY and CONVECS teams from INRIA laboratory in France, for specifying
safety-critical concurrent systems. This language combines features from process
algebras and programming languages with a dynamic semantics based on the SOS
(Structural Operational Semantics) rules. LNT has been developed since 2005,
inspired from the proposed improvements for the LOTOS [1] and E-LOTOS [3]
(for Extended-LOTOS) standards. These languages were progressively enhanced
to remove the limitations about the expressiveness, structuring capabilities and
user-friendliness. An historical overview of the evolution of LOTOS and its de-
scendants E-LOTOS and LNT can be found in [70].

3.2.1 Syntax

To provide a practical language, LNT has been defined with an Ada-like syntax,
based on a selected set of features borrowed from imperative languages, functional
languages and value-passing process calculi.

Syntactically speaking, LNT distinguishes data and control parts. A data part is
a fully imperative language in the syntax and semantics. It allows the definition
of types and functions used in the LNT program.

A control part defines behaviors. It allows specifying behaviors using the pro-
cesses definition. This part includes almost all data constructs and adds con-
structs for the behavior like the non-deterministic choice, process parallelism and
communication.

48

3.2. LNT language

3.2.2 Some definitions

In the section, we introduce some LNT constructs required for the proposed
pattern '. We consider these identifiers used later in different LNT constructs
given in BNF 2: M: module; II: process; B: behavior; I: statement; T type; V:
expression; X variable; F: function; G: gate and I': channel.

3.2.2.1 Module

The LNT specification consists typically of a set of LNT modules. Each module
M (Listing 3.1) is named with the same name as its source file (x.1lnt). M
can import other modules (M, ..., M,), thus, all definitions of M,, ..., M, are
visible and can be used in M definitions. The module definitions include LNT
types, channels, functions and processes. In addition, a set of predefined functions
can be specified using the with clause, required for different data types. A set
of pragmas can also be added to the module definition. In the LNT language,
pragmas are used to modify the default setting related to the implementation of
the predefined types. For example, by default the Nat type is defined with 8
bits. With the !'nat bits N pragma, we can specify a new number of bits N
on which a value of the type Nat will be attributed.

LISTING 3.1: LNT module definition

1 |module M [(My, ..., M,)]

2 | [with predefined_functiony , ..., predefined_function,] is
3 | module_pragmay ... module_pragma,

4 definitiong ... definition,

5 |end module

3.2.2.2 Types and channels

The LNT language provides a set of predefined basic types (Boolean, Natural,
Integer, Real, Character and String) with the associated predefined functions
(basic operations such as the addition and comparison) that are automatically
available. LNT allows likewise the definition of advanced types, as shown in
Listing 3.2.

A non-basic type may be a list, a sorted list, a set, an enumerated or a range type
(specified within the type expression). In this case, the associated predefined
functions (such as "empty", "length", "member", "access", "delete"
"remove", "head", "tail" and "union") are generated according to the
specified with clause.

LA detailed definition of syntax and formal semantics of the LNT language can be found in
its reference manual [48]
2 Descriptions between " []" are optional and the vertical bar " | " is used for disjunction.

49

Chapter 3. Formal pattern

LisTING 3.2: LNT type definition

type T is
type_pragmag ... type_pragman
type_expression
[with predefined_functiong, ..., predefined_function,]
end type

[N R N

A channel (Listing 3.3) is a gate type that defines the types of values to be sent
or received during the communication on a given gate. The channel may contain
user-declared or predefined basic types.

LisTING 3.3: LNT channel definition

channel T is

1

2 (Tl,l 5 cee Tl,n);
4 (Tm71 S e, TmJ),
5 |end channel

3.2.2.3 Function

The LNT function F' (Listing 3.4) consists of a function declaration for the gate
parameters, formal parameters and a return type 17" with a function body I, for
the statements. The body I, computes the result value of F' and the output pa-
rameters. Listing 3.5 includes a set of statements proposed by the LNT language.

Li1STING 3.4: LNT function definition

function F [[gate_declarationy, ..., gate-declaration,]]
[(formal_parametery, ..., formal_parametery,)]|[: T] is
function_pragmag ... function_pragma,
Iy
end function

[N

LISTING 3.5: LNT data statements

I1;Is — sequential composition

return [V] — return statement

X =V — assignment

X [W]:= Vi — array element assignment

[X:=] F [[actual_gates]] (actual_parametery, ..., actual_parameter,)
var wvar_declarationg , ..., wvar_declaration, in Iy, end var

case Vo ,..., V, in [var war_declarationg, ..., wvar_declaration, in|
match_clauseq —> Iy | ... | match_clause,, —> I, end case — case statemen
if Vp then Iy [elsif V; then I; ... elsif V, then I,]

[else I,41] end if — conditional statement

loop Iy end loop — forever loop

loop L in Iy end loop — breakable loop

while V loop Iy end loop — while loop

for Iy while V by I; loop I end loop — for loop

I ::= null — no effect
\
\
\
\
\
\
\

© o N o A W N e

o
No= O

[
oW

-
<

50

3.2. LNT language

3.2.2.4 Process

The LNT process (Listing 3.6) is an object describing a behavior. The process
consists of a process declaration for the gate declarations and formal parameters
with a process body B for the behaviors. This behavior B includes almost all
data statements (except return) and adds constructs for the behavior grouped
in Listing 3.7.

LisTING 3.6: LNT process definition

1 | process II [[gate_declarationg, ..., gate_declaration,,]]
2 [(formal_parametery, ..., formal_parameter,)] is
3 | process_pragmag ... Process_pragma;
4 B
5 |lend process
LISTING 3.7: LNT behavior statements
1 |B ::= stop — inaction (without continuation)
2 || B1 ; Ba — sequential composition
s || [omnly] if Vj then By [elsif V; then By ... elsif V, then B,]
4 [else B,y1] end if — conditional behaviour
5 || I [[actual_gates]] [(actual_parameter;, ..., actual_parametery,)]
6 || G| (Og,...,0p,)]|[where V] — communication
7 || select By [] ... [] Bn end select — nondeterministic choice
s || par [Go, ..., Gj in]
9 [G(O,O)v BRI G(O,TL(]) - } By
10 |
11 [G(i’0)7 N G(i,nl) —>] B;
1 I
13 [G(m,O)a 7G(m,nm) - } Bm
14 end par — parallel composition
15 | | hide gate_declarationg, ..., gate_declaration, in B end hide — hiding

3.2.2.5 Gates and parameters

An LNT gate is used for input/output communication or synchronization (List-
ing 3.7: line 7). This behavior is only allowed within the process body, since
functions perform only local calculations from the data part. The LNT language
provides predefined gates such as internal (or invisible) gate "i", which can not
be actually used for communication or synchronization.

The set of the formal gate parameters may be used at the process and function
declarations. A formal gate parameter G; is typed by a channel I" as shown
in Listing 3.8. In a process call (Listing 3.7: line 6), a compatibility relation
between gates is defined, to determine when a formal gate parameter G; can be
instantiated by an actual gate G; (G; and G; are compatible if they are both
declared with the same channel I').

o1

Chapter 3. Formal pattern

A formal parameter consists of the variable parameters (X1,..., X,,) associated to
the same mode parameter (in, in var, out , out var or in out) and the same
type T as shown in Listing 3.8. The different modes are used as follows:

e A value parameter declared with the in mode (default mode) denotes a
constant parameter, so it can not be changed with the process or function
body.

e A value parameter declared with the in var mode denotes a constant pa-
rameter, so it can be changed only as a local value within the process or
function body, but this change is invisible to the caller.

e A value parameter declared with the out mode is a result parameter, so it
is not read within the process or function body, but it should be assigned
and its value is visible after the function or process call.

e A value parameter declared with the out var mode is a result parameter,
as the out mode, it should be assigned and thereafter its value can be read
within the process or function body.

e A value parameter declared with the in out is a modifiable parameter, it
has an initial value that may be modified within the process or function
body, the assigned value is visible after the process of function call.

LisTING 3.8: LNT formal gates and parameters

1 | gate_declaration; ::= Goy ,...,Gp: T
2 | formal_parameter; ::= [in]|in var|out|out var|in out X, ,...,X, :T

3.2.2.6 Statement

In the following, we detail some statements that are frequently used in this thesis.

Variable declaration

The LNT var statement (Listing 3.5: line 8) allows the definition of local variables
by their names and their types. The scope of each variable is the statement I,.

Communication

The LNT processes can communicate (Listing 3.7: line 7) through their declared
gates. A gate allows exchanging data by a rendezvous that blocks the sender and
the receiver in the communication until it takes place. A rendezvous on a same
gate may allow multiple sending and receiving of data (Listing 3.9) at the same
time.

52

3.2. LNT language

L1STING 3.9: LNT communication definition

1 10; :=
2 | [X =>][1]V — output offer
3 | [[X=>] 7P — input offer

Non-deterministic choice

The LNT select statement (Listing 3.7: line 8) allows a non-deterministic choice
between behaviors By, ..., B,,.

Parallel composition

The LNT par statement (Listing 3.7: lines 9..15) is used for behaviors (B, ..., By,)
parallelism and gates (Go, ..., Gy and G(;), ..., G(in,)) synchronization. The be-
havior B; represents often a process instantiation (I1 [Go, ..., Gk, G(i0), ---s G(iny)l(-.))-
The par composition allows two types of synchronization: global and interface.
The global synchronization is defined with Gy, ..., Gk, this communication can
happen only if all behaviors (Bq, ..., B,,) can make it simultaneously. The in-
terface synchronization is defined with Gy, ..., G(in,) gates. In this case, if a
By, is waiting for a communication on gate which belongs to its synchronization
interface list (e.g. G)), this communication can happen only if all processes
synchronized on the same gate (contain G/; ;) in their synchronization interface
lists) can make it simultaneously.

3.2.3 LNT specification

In the LNT language, the system is represented by a set of concurrent processes
communicating through gates typed with channels. As shown in Figure 3.1, a
root process named MAIN should be added to define an entry point of the
whole specification.

process MAIN

synchronization X
process A process B

D process [} gate = —— rendezvous

FiGURE 3.1: Example of LNT specification: graphical representation

53

Chapter 3. Formal pattern

The specification represents an executable semantics in which all parallel pro-
cesses start execution and terminate at the same time with the possibility of
synchronization by rendezvous.

3.3 A Ravenscar compliant task model

In this thesis, we rely on a conventional tasking representation inspired from the
Liu and Layland task model [110]. We define a set of tasks S, consisting of n tasks
denoted by S = {m,....,}, with , = (T;,C;, D;, P;, O;), based on the tasking
descriptions from section 2.2.4.1 (chapter 2).

A set of hypotheses are assumed as follows: the supported architecture is based
on the uniprocessor scheduling; S is a synchronous set of tasks, whose tasks have
implicit-deadlines, fixed-priorities with the support of preemptions; ¢ represents
the priority P; and Vi : D; = T;, C; < T;, O; = constant = 0. Thus, the task may
be simply represented as 7; = (13, C;).

In addition, strong constraints are also considered since we deal with safety-
critical systems. We rely on the Ravenscar profile (see chapter 2: section 2.2.3.2),
that can be applied in real-time tasking description as a subset composed of a
static set of tasks in interaction, running by one preemptive fixed-priority sched-
uler. Precisely, to be Ravenscar compliant, the task model should mainly respect
the following restrictions:

e All tasks must be:

— either periodic tasks;

— or sporadic tasks: they have no fixed first activation, they are activated
in response to asynchronous events (invocation-events) with a fixed
minimal delay between two successive releases (T5).

o All tasks are created at initialization and then activated and executed ac-
cording to their priorities;

e All communications and synchronizations between tasks are achieved using
the protected objects ? with these constraints:
— at most one task can wait on each object;

— sending and receiving operations occur atomically through the pro-
tected object procedures.

3A protected object is a construction based on the well-known concept of monitors for
synchronizations

54

3.3. A Ravenscar compliant task model

e Scheduling is based on FIFO_Within Priorities policy as follows:

— each task has a static priority;

— a task may preempt a task of a lower priority.

The life-cycle of a task can be represented as the state automaton drawn in
Figure 3.2. At any time, the task can be in one of these states (READY, RUNNING
and BLOCKED) as follows:

e READY state: the task is able to be executed by the processor. The READY
task can be resumed (selected by the scheduler), thus it moves to the RUN-
NING state.

e RUNNING state: the task is actually executing. While running, the task
can be preempted, thus it returns to the READY state or it can complete
its execution and becomes in the BLOCKED state.

e BLOCKED state: the task can not execute until an external event occurs.
A BLOCKED task may become READY by a temporal event (dispatch for a
new period) or an invocation-event (for sporadic task).

<\dispatch/event

resume preempt Blocked
@Aplete

. /)
stop error

Missed

FIGURE 3.2: Task state automaton

In this thesis, we consider the RM (Rate Monotonic) scheduling with a negligible
context-switch time. In this case, the indexes 7; .., representing task priorities, are
assigned according to their period values T3 ,, as the task with the shortest period
takes the highest priority. During the scheduling, each 7; ;, representing the gt
job of task 7;, is defined by 7; j=(r; ;, si;, €, d; ;) as described in section 2.2.4.1
(chapter 2). The execution of the set of tasks S is simulated while an hyperperiod
interval. The hyperperiod (H(7; ,)) interval represents the minimum interval of
time until the schedule repeats in a cycle of task execution [46]. H(7m) is
calculated as the least common multiple of all task periods (H (1 ,) =LCM (717,

Chapter 3. Formal pattern

., T5,)) [50], which is considered a sufficient interval of time to study periodic
tasks synchronously activated at O; = 0 under a priority-based uniprocessor
scheduling. For sporadic tasks, the interval H (7 ,) is multiplied, as possible, for
exhaustive analysis.

3.4 Formal mapping

In this section, we detail the formal pattern of the defined real-time task model.
As explained in section 3.2, the LNT syntax combines features of program-
ming languages with concurrency primitives adopted from process algebras. This
makes it suitable to specify concurrent tasks and handle scheduling calculations.
The formal representation should simulate the scheduling, the execution and the
interaction of tasks. Ideally, the task and the scheduler are separately specified
to provide an extensible and modular mapping.

Note that the LNT language is not a specific real-time process algebra: there
are no time operators; all parallel processes start execution and terminate at the
same time with the possibility of rendezvous synchronizations. Therefore, we de-
fine a COUNTER variable to represent time (a timer to count units of time) used
as required to perform temporal calculations (e.g. release time, start and comple-
tion time, preemptions). In addition, we define a HYPERPERIOD variable that
represents H (7), thus, the timer COUNTER is bounded as (0 < COUNTER <
HYPERPERIOD).

Generally speaking, tasks are mapped into LNT processes to be concurrently exe-
cuted, each 7; is represented by one LNT process, named TASK. These TASKs can
communicate with each other, through a particular process, named CONNECTOR.
They are scheduled by a main LNT process, named SCHEDULER, that represents
the scheduler and implements the scheduling algorithm: TASKs are synchronized
(through the LNT gates and channels) with the SCHEDULER to be activated. In
the following, we develop this pattern through four main parts: TASK definition,
SCHEDULER definition, inter-task communication mapping and composition/syn-
chronization.

3.4.1 Task definition

The TASK process is designed to represent the task as a schedulable concurrent
unit with a potentially infinite sequence of jobs by the scheduler. In Listing 3.10,
we include the TASK LNT skeleton. The process declares an LNT gate, named
ACTIVATION, to be synchronized with the SCHEDULER. The TASK behavior
is an infinite 1oop whose body is a non-deterministic choice select in order
to separate execution, error and termination behaviors. The selected behavior

56

3.4. Formal mapping

is determined by the ACTIVATION communication with its different possible
values.

The TASK-SCHEDULER dialogue is defined through a set of activation orders
according to the considered scheduling policies. In the case of the RM pre-
emptive scheduling, we define a set of activation orders distinguishing different
alternatives of preemptive scheduling, mapped with an LNT enumerated type
(T-Dispatch Preemption, T_Preemption_Completion, T Preemption,
T Dispatch Completion, T Completion, T Error and T_Stop).

The task life-cycle, as described with the task state automaton in Figure 3.2,
is mapped in the TASK execution behavior part. The ACTIVATION commu-
nication defines the TASK states: the current state is defined according to the
received SCHEDULER order. Initially, TASK is supposed to be in the READY state.
It is suspended until the reception of the SCHEDULER order on ACTIVATION
gate. All transitions (resume, preempt, dispatch and complete) be-
tween the states of the automaton of Figure 3.2 are translated by suspensions
on the ACTIVATION rendezvous with the SCHEDULER. At the reception of
an activation order (T_Dispatch_Completion, T_-Dispatch Preemption,
T Preemption, and T Preemption Completion), the TASK moves to the
RUNNING state.

After the execution, TASK sends the label T_Completion to the SCHEDULER
meaning that TASK has accomplished the activation order and it is no more in
the RUNNING state. At this level, depending on the received order, TASK may
switch state as follows:

e T Dispatch Completion: TASK starts and completes the execution of
the current period and enters to the BLOCKED state;

e T Dispatch Preemption: TASK starts the execution in the current pe-
riod but with a preemption, thus, it returns to the READY state;

e T Preemption: TASK progresses in its execution but without reaching
the completion time, so it returns to the READY state;

e T Preemption_Completion: TASK finishes the execution of the current
period and enters to the BLOCKED state.

TASK can also receive a T_Error and T_Stop orders which are used respectively
to mark a missed deadline and to stop the system simulation. This concerns the
error and termination behaviors, which allows the definition of two additional
task states MISSED_DEADLINE and STOPPED included in the task state automa-
ton as shown in Figure 3.2, used for verification ends.

Note that periodic and sporadic tasks are represented with the same LNT skeleton
while the difference between them will be in the releasing mode controlled by the

57

Chapter 3. Formal pattern

SCHEDULER. All temporal calculations are encapsulated within the SCHEDULER
which maintains that periodic tasks are released with regular-orders, while spo-
radic tasks receive irregular-orders according to the reception of invocation-events.

LISTING 3.10: TASK LNT skeleton

process TASK [ACTIVATION: LNT_Channel Dispatch,
G : LNT_Channel Data,
—— other gate declarations
] is
loop
select
— execution behavior
select
— a complete execution time
ACTIVATION (T _Dispatch_Completion);
G (DATA)
(]
— preemption
ACTIVATION (T _Dispatch_Preemption)

(]
ACTIVATION (T_Preemption)

© o N o A W N e

e T e e
N4 o ok W N o= O

ACTIVATION (T_Preemption_Completion)
end select;
ACTIVATION (T_Completion)
[]
— error behavior
ACTIVATION (T _Error)
[]
— termination behavior
ACTIVATION (T _Stop)
end select
end loop
end process

NN NN NN NN =
® N O UkE W N = O © ®

N
©

In this thesis, we support inter-task communications, as described in the Raven-
scar profile. In this case, the TASK may declare gates as required for its con-
nections (Listing 3.10: line 2). The exchanged data and events are generically
mapped using an LNT enumerated type (label DATA). TASK interactions are also
controlled through the SCHEDULER orders that fix the input and output times
as follows:

e T Dispatch Preemption represents the start time of the execution,
TASK may receive the inputs;

e T Preemption_Completion represents the completion time, TASK may
send the outputs;

e T Dispatch_Completion represents a complete execution time, so the

o8

3.4. Formal mapping

TASK can receive the inputs at the start time and send the outputs at the
completion time.

3.4.2 Scheduler definition

The SCHEDULER process implements the scheduling algorithm to simulate the ex-
ecution of the tasks. It is synchronized with all TASKs through their ACTIVATION
gates. The SCHEDULER construction depends on the set of tasks S and the con-
sidered scheduling algorithm. In Listing 3.11, we include the SCHEDULER LNT
skeleton. The process declaration has n gates (ACTIVATION._1,.. , ACTIVATION.N)
with &k additional gates (NOTIFICATION_ 1, .. , NOTIFICATION K) when S
contains sporadic tasks (k is the number of sporadic tasks with & < n). The
SCHEDULER behavior consists of three parts as follows:

e [nitialization part: SCHEDULER begins with a set of initializations needed
for the temporal calculations, mainly, the COUNTER and the set of tasks S.

e Operational part: this part implements the scheduling algorithm. While
COUNTER has not reached the HYPERPERTIOD, SCHEDULER simulates the
execution of tasks using Algorithm 1 * (illustrated in Figures 3.4 and 3.3).

e Stopping part: the termination of tasks is not allowed in the Ravenscar pro-
file, but in the context of formal verification, we define a global system ter-
mination when COUNTER = HYPERPERIOD. Therefore, SCHEDULER sends
the T_Stop order for all tasks to mark the end of the simulation.

Following the Ravenscar profile, the task execution is ensured by the priority-
based preemptive scheduling: the task priorities are statically assigned; the sched-
uler runs always the READY task with the highest priority; at any time, if a task
with a higher priority becomes READY, the scheduler performs a context-switch
preempting the current RUNNING task to enable the higher priority task to re-
sume execution.

The set of tasks S is statically included using an LNT array type. Tasks are
indexed by their fixed priorities according to their periods (77.,): 7 (index 1)
has the highest priority and task 7, (index n) has the lowest one. This array
represents the ready-queues in real systems: ready tasks are inserted/deleted at
the head/tail according to their priorities in the ready-queue and at any time
the scheduler selects the task with the highest priority for the execution. In our
mapping, we use a static structure where tasks have fixed indexes to mark their
priorities, while their states (job parameters) are modifiable by the SCHEDULER
itself.

4The time complexity of this algorithm is about O(n?)

99

Chapter 3. Formal pattern

Each 7; is also represented with an LN'T array containing the set of its temporal
parameters and its job dynamic parameters (12 elements), mainly 7,=(C;, 13,7,
Ti54+1, di’j+1, Sijs ei,j) and it is initialized as Ti:(oi, TZL,] = 1, ril = 0 di71 = T;
Si,l = 0, 62"1 = 0)

LI1STING 3.11: SCHEDULER LNT skeleton

process SCHEDULER |
ACTIVATION_1 : LNT_Channel_Dispatch

ACTIVATIONN : LNT_Channel_Dispatch,
NOTIFICATION_.1 : LNT_Channel_Event

NOTIFICATIONK : LNT_Channel Event]
is
— dnitialization part
var
S : LNT _ Type_Task_Array,

© 0 N o Uk W N e

== e
N o= O

13 in

14 S[i] := LNT_Type_-Task (..);

15 ..

16 loop

17 if (Counter < HYPERPERIOD) then
18 — operational part

19 — time allocation

20 —— task state updating

21 — task activation

22 — mnotification for sporadic task
23 else

24 — termination part

25 ACTIVATION_1 (T_Stop)

26

27 ACTIVATIONN (T_Stop)

28 end if

29 end loop

30 end var

end process

w
it

During the scheduling, the SCHEDULER visits tasks in loops (task-loop) in order
of priorities to find and run the READY tasks.

From the highest to the lowest priority, each task is handled to determine its
current state (READY or BLOCKED), thus the first task 7; fixed to be in READY
state, is always the ready task with the highest priority as shown in Figure 3.3.

Note that sporadic tasks are ignored until the reception of an invocation-event
(considered in the BLOCKED state). Thereby, the SCHEDULER should be notified
for every invocation-event which is ensured by the NOTIFICATION i gates.

For each 7;, SCHEDULER compares r; ; and d; ; with the COUNTER value. Thus,
it decides the 7; state as follows:

60

3.4. Formal mapping

Algorithm 1: SCHEDULER algorithm: Operational part

1 begin

2 while (i € S) do

3 if (BLOCKED or MISSED_DEADLINE 7;) then
4 Move to T;41;

5 else if (READY 7;) then

6 Calculate Allocated -Time of 7;;

7 hp(i) =1..(1 — 1);

8 while (h € hp(i)) do

9 if (1; reaches 1y,) then

/* T; 1s preempted by 7, */
10 Update Allocated_-Time of 7;;
11 end if
12 end while

/* 1f 7; respects all rup() 41, the Allocated Time

contains the required time to complete the execution

*/
13 Update T; state;
14 Activate T;;
15 Check sporadic tasks;

/+ 1f we have a preemption, we return to 74; if we have
a notification from a sporadic task, we return to
T1; else we move to Tiy1 */

16 end while

17 end

e BLOCKED: 7; is a not awake sporadic task or it is a periodic task awaiting
for the next dispatch (r; ; >COUNTER);

e MISSED_DEADLINE: 7; has missed a deadline (d;; <COUNTER), in this
case, the T_Error label will be sent to the task;

e READY: 7; is initialized, preempted or dispatched (r; ; <=COUNTER< d, ;).

The BLOCKED or MISSED_DEADLINE tasks are ignored. For the first 7; asserted
to be in the READY state, the SCHEDULER decides about its execution, in order
to be resumed to the RUNNING state.

At this point, the SCHEDULER can execute 7; with the whole capacity C;, and
then, it may move to handle other tasks. This can be sufficient for a non-
preemptive scheduling of a set of periodic tasks. However, in our context, a
task with a higher priority can become READY at any time. Similarly, a sporadic

61

Chapter 3. Formal pattern

Thighest Tﬂrst ready task with Tlowest
the highest priority priority

9/0[C0 QO

Time Update Task
allocation gl task state 4l activation v

FIGURE 3.3: SCHEDULER algorithm: ready task FIGURE 3.4: SCHEDULER algorithm: task-loops

Thighest Tfil'st ready task with Tlowesl

priority the highest priority priority
0000 OO
2 J i i+1 .

Restart the task-loop
from the new Ready,
task 1,.; with the
highest priori

Restart the task-
loop from 1y, after a
sporadic task
becomes Ready

End of the loop,
restart the task-loop
fromt,

task with a higher priority can become READY by the reception of an invocation-
event. These cases can lead to preempt the execution of the current RUNNING
task, so they should be considered during the scheduling. To consider the task
preemption, we change the SCHEDULER ordered task-loop (7; then 7,4, then ...
Tn). The general idea consists of interrupting the loops and restarting the task-
loop to consider new READY tasks as shown in Figure 3.4. In the rest of this
section, we explain this algorithm through three steps achieving the execution of
a given READY task 7;: time allocation, task state updating and task activation.
In addition, we include a non-periodic task checking section added if S contains
sporadic tasks.

3.4.2.1 Time allocation

This part ensures the calculation of the execution time of the current period
for 7; and prepares an activation order that will be sent in the task activation
step. We remind that 7; is the current READY task with the highest priority.
We define a Allocated_Time variable to compute the execution time. It can
return the required time C; to achieve the execution in the current period, or it
can return a part of the execution time, since 7; can be preempted by another
task 7,; which is a new ready task with a higher priority. For this reason, while
calculating the Allocated Time value, SCHEDULER should always check the
states of the tasks with higher priorities. We define hp(i) = {1..i — 1}, a set of
indexes of the tasks with higher priorities than 7;. Simply, SCHEDULER checks
Thp(i),j+1 values which are the next release times of 75,,,;y by comparing COUNTER
+ Allocated.Time value with all rp,¢) ;41 values as shown in Algorithm 1
(lines 7-12). Three alternatives can be presented leading to fix different activation
orders:

1. A complete execution time C; is allocated, if 7; respects all 74, () j11 (COUNTER
+ Allocated Time < Thp(i)JJrl): T_Completion_Execution order

2. A preemption is imposed, if Allocated_Time+COUNTER reaches an ry,<; j11
of 7j,<;, thus (Allocated Time=ry,() ;+1-COUNTER) with two behaviors:

3.4. Formal mapping

2.1. A preemption at the start time of the execution: T_Dispatch_Preemption

order

2.2. A preemption in the middle of the execution: T Preemption order

3. A complete time is allocated when 7; is already preempted: T_Preemption_
Completion order

Note that in the case of a preemption (alternative 2), 7; is preempted by 7,
so the SCHEDULER restarts its task-loop from A to handle 75,;, the new READY
task with the highest priority as shown in Figure 3.4.

3.4.2.2 Task state updating

At this level, 7; is considered in the RUNNING state, SCHEDULER increments
COUNTER with the Allocated _Time value and updates the 7, array for the
next activation. In the case of a preemption, SCHEDULER conserves the task
state and saves the executed time of 7; in order to complete the rest later. Else,
SCHEDULER prepares the tasks for a new period. The periodic task becomes
Ti:(Ci, Ti, 5 =7+ 1, Tij = J* T, dz’,j = di,(jfl) + 15, Sij+1 =0, €541 = 0). On
the contrary, the parameters of a sporadic task can not be predicted. SCHEDULER
has no values for its next activation or deadline. Currently, the sporadic task is
viewed as TZ‘:(CZ‘, TZ‘, j =] + 1, Tij >= di,(j—l); diyj =%, Sij+1 = 0, €ij+1 = 0)
and it will be ignored in the scheduling until the reception of a new notification.

3.4.2.3 Task activation

SCHEDULER sends to 7; its current order with the ACTIVATION_ i gate. It waits
for a T_Completion response from 7; and then it moves to 7,41 calculation. In
the case of a missed deadline, a T_Error label will be the last order sent to 7,
since it will be ignored in the rest of the simulation.

3.4.2.4 Sporadic task checking

The global state of the set of tasks S may change after each task activation (ex-
changing events and data, increase of COUNTER, etc). Particularly, the sporadic
tasks may be waked by the invocation-events and their states may change (to
the READY state), so they should be considered in the scheduling with other
periodic tasks. For this end, after each task activation, SCHEDULER consults all
the NOTIFICATION_i gates. When receiving a notification at ¢; ;, SCHEDULER
applies the following steps:

1. marking ¢; ; equal to the current value of COUNTER;

63

Chapter 3. Formal pattern

2. verifying ¢; ; >=t, ;_1 +1T;: a notification can be ignored. Since we consider
T; as the minimal delay between two successive activations, 7; can not be
reactivated before t; ; + T; (t; j+1 >=t;; + T3):

3. if (2) is verified, then, 7; moves to the READY state with these parameters
Ti:<ci7 E, j = j + 1, Ti,j = ti,jy d@j = 7’7;7j —|—,_TZ, Si,j = 0, 61'7]' = 0) r_[‘th_S7 T; is
considered in the scheduling and served according to its priority;

4. if (2) is verified, then, the SCHEDULER restarts the task-loop (return to 7)
as shown in Figure 3.4: SCHEDULER should recheck the set of tasks to find
the new READY task with the highest priority.

3.4.3 Communication mapping

The tasks can be connected to each other to asynchronously exchange data or
events. In sporadic case, each task has at least one connection needed for its
activation: the reception of an invocation-event wakes the sporadic task that
may move to the READY state.

The LNT processes communicate by symmetrical (bidirectionally) blocking ren-
dezvous on the gates. The LNT rendezvous on a gate allows the synchronization
of processes (several sending and receiving offers at the same time). In our case,
we do not need such advanced synchronizations between processes. We consider
gates unidirectionally and we use only synchronization between pair of processes
(sender and receiver). The asynchronous inter-task connections can not be rep-
resented directly with synchronizations of LNT gates since they are blocking
rendezvous. For this reason, we add an auxiliary process CONNECTOR to repre-
sent the connection by means of the Ravenscar protected objects. CONNECTOR
has two main gates (INPUT and OUTPUT) and a variable to save data/event.

In Listing 3.12, we give the CONNECTOR LNT skeleton. The CONNECTOR behav-
ior consists of three parts through an infinite 1oop which the body is a select
statement to separate sending and receiving data/event and sporadic notification.
Thus, only one operation can be executed at any time and the choice is solved
by the possibility of communication on the gates.

Each connection between two TASKs is mapped with a CONNECTOR synchronized
(rendezvous point) with the sender on the INPUT gate and the receiver on the
OUTPUT gate, which assumes the atomicity of the two operations (sending and
receiving) and the TASK unicity in awaiting at any time (respectively on the
INPUT and OUTPUT gates).

Data are saved and kept until the next reception. Each time a new data is
received, the last one is overwritten. While, events are queued in an LNT list
type with a definite size. We use non-blocking FIFO, in which new incomings

64

3.4. Formal mapping

overwrite previous events in the case of an overflow. In the case of an empty
FIFO, TASK receives an EMPTY label without blocking.

Since we consider a special invocation-event for sporadic task activation, we add
a third gate NOTIFICATION to the CONNECTOR process to be synchronized
with the SCHEDULER. We use this gate to notify the SCHEDULER of every new
reception, thus, it considers the concerned task in the scheduling.

LISTING 3.12: CONNECTOR LNT skeleton

1 | process CONNECTOR |

2 |INPUT: LNT _Channel_Data, OUTPUT: LNT_Channel Data,
3 |[NOTIFICATION: LNT_Channel Event |

4 | (Queue_Size: Nat)

5 | is

6 loop

7 select

8 — inputs of event/data part

9 INPUT ()

[]

— output of event/data part
OUTPUT ()

I e e
w N = O

— sporadic part
— mneeded to notify SCHEDULER
— when receiving a new event
NOTIFICATION ()
end select
end loop
end process

I S S et
S © ®w w4 o « A

3.4.4 Composition and synchronization

We complete the proposed pattern with two indispensable steps: composition
and synchronization. All described LNT processes should be structured (con-
nected) to form the main system. This is ensured by the LNT par composition
for parallelism and synchronization. Thus, we assemble the whole system in the
MAIN process. Note that a set of LNT types and channels are used for the
TASK-CONNECTOR, CONNECTOR-SCHEDULER and TASK-SCHEDULER synchro—
nizations. For example, we include, in Listing 3.13, the type and the channel for
the TASK-SCHEDULER synchronization.

For further explanations, we include an example of a task model whose MAIN
process is included in Listing 3.14 and graphically presented in Fig. 3.5. The
initial task model (71, 75) consists of a periodic task connected to another sporadic
task running on a scheduler (Producer-Consumer system). The obtained LNT
specification contains five processes synchronized in the MAIN process. The par
composition is globally used for the following synchronizations:

65

Chapter 3. Formal pattern

© 0 N o A W N e

=R = e
w N = O

© o N o A W N e

I T o T S T S O S S
= O © ® N O Gk W N = O

e The TASK_.CONSUMER and CONNECTOR on the RECEIVE_A gate;
e The CONNECTOR and TASK_PRODUCER on the SEND_A gate;
e The CONNECTOR and SCHEDULER on the NOTIFICATION_1 gate;

e The TASK_CONSUMER, TASK_PRODUCER and SCHEDULER on the

ACTIVATION_1 and ACTIVATION_2 gates.

LisTING 3.13: LNT types and channels for TASK-SCHEDULER
synchronization

type LNT _Type_Dispatch is
T_Dispatch_Completion ,
T_Dispatch_Preemption ,
T_Preemption ,
T_Preemption_Completion ,
T_Stop,
T _Error,
T_Completion

end type

channel LNT_Channel Dispatch is
(LNT_Type_Dispatch)
end channel

LISTING 3.14: Producer-Consumer: LNT MAIN

process MAIN |
ACTIVATION.1: LNT_Channel_Dispatch
ACTIVATION_2: LNT_Channel_Dispatch
NOTIFICATION_1: LNT_Channel_Event ,
SEND_A: LNT_Channel Port,
RECEIVE_A: LNT_Channel_Port
| is
par
ACTIVATION.1, RECEIVE_A—
TASK CONSUMER [ACTIVATION_1, RECEIVE_A]
1
NOTIFICATION_1, SEND_A, RECEIVE_A—>
CONNECTOR[SEND_A, RECEIVE_A, NOTIFICATION_1]
[
SEND_A, ACTIVATION_ 2—
TASK PRODUCER [ACTIVATION 2, SEND_A]
[
ACTIVATION_1, ACTIVATION_ 2, NOTIFICATION_1—>
SCHEDULER[ACTIVATION_1, ACTIVATION_2, NOTIFICATION_1]
end par
end process

66

3.4. Formal mapping

MAIN

CONNECTOR_
EVENT_
SPORADIC

RECEIVE_A

TASK_
PRODUCER

TASK_
CONSUMER

NOTIFICATION_1

ACTIVATION_2

SCHEDULER

FIGURE 3.5: Producer-Consumer: LNT graphical MATN

3.4.5 Discussion

The defined LNT specification (the set of LNT definitions composed in the
MAIN process) represents a formal executable semantics for a real-time task
model, where TASKs are connected through CONNECTORs and scheduled by the
SCHEDULER.

The proposed LNT mapping is flexible enough to support various task models
with minor changes: periodic/sporadic tasks, independent/communicated tasks
and preemptive/non-preemptive tasks. In addition, real-time features are mod-
ularly designed which increases the mapping extensibility: each component can
be separately completed or extended. For example, the TASK skeleton can be
easily enriched with more behavior. Additional code can be added using LNT
functions or processes, and then they are just called (process instances, function
calls) in the TASK process. Similarly, the scheduling mapping can be extended
with other scheduling algorithms since we specify an explicit SCHEDULER that
encapsulates all scheduling calculations.

Thanks to its programming ability, many scheduling algorithms may be imple-
mented using the LNT language. For instance, we have developed a scheduler
based on the Earliest Deadline First EDF [110], which is the most common pre-
emptive dynamic-priority scheduling for real-time systems. The SCHEDULER
skeleton is conserved. The modifications can be limited in the operational part,
mainly, the time allocation operation. The other manipulations (task state up-
dating, task activation and non-periodic task checking) can be conserved and thus
TASK and CONNECTOR processes need no changes (see section 4.4 of chapter 4).

67

Chapter 3. Formal pattern

3.5 Conclusion

In this chapter, we presented the first contribution in this thesis about the defini-
tion of a formal pattern of a real-time task model using the LNT language. The
proposed LNT pattern is generically specified so that it can be considered as the
base of model transformations based on real-time architectural languages.

The next chapter presents an application of this pattern in the case of an AADL
model-based approach.

68

AADL model transformation

Contents
4.1 Introduction 000, 70
4.2 AADLinanutshell 70
4.2.1 Corelanguageo 70
4.2.2 Behavior annexo 74
423 AADLsubset 75
4.3 Model transformation 76
4.3.1 Scheduling mapping 78
4.3.2 Communication mapping 81
4.3.3 Hierarchical mapping 85
4.3.4 Discussion Lo 88
4.4 Transformation of a larger AADL subset 88
4.5 Behavioral mapping 0000 920
4.5.1 Datamapping 90
4.5.2 Port and port connection new mapping 91
4.5.3 Behavior specification mapping 93
4.6 Conclusion 0 oo, 98

Chapter 4. AADL model transformation

4.1 Introduction

In this chapter, we discuss the applicability of the proposed LNT pattern as a
software engineering practice. We aim at integrating the formal methods in an
AADL model-based development process. During the design phase, the formal
verification of the AADL model seems useful and complementary to traditional
syntactic and semantic analyses. For this end, we define a model transformation
(AADL2LNT) from an initial AADL model into an LNT specification based on the
proposed LNT pattern. This transformation achieves the automatic generation
of an LNT specification compliant with the CADP toolbox.

This chapter is organized as follows: the AADL language and the supported
subset are introduced in section 4.2; the AADL2LNT model transformation is
detailed in section 4.3 through its different levels (scheduling, communication
and hierarchical); a larger AADL mapping is discussed in section 4.4; and finally,
the transformation is extended with the Behavior annex mapping in section 4.5.

4.2 AADL in a nutshell

AADL (Architecture Analysis and Design Language) [10, 60] is an SAE * standard
(SAE AS 5506), proposed since 2004. Its second version was published in 2009
and recently revised in 2017 2. AADL is based on the MetaH language. It is
an architectural language for real-time embedded systems modeling in safety-
critical domains such as avionics, automotive electronics and robotics. AADL
has a textual syntax as well as a graphical representation of some elements (see
Figure 2.5 section 2.3.2). The AADL syntax and static/dynamic semantics are
described in its standard [10], which defines the core language that is designed
to be extensible with property-sets and annexes. In this thesis, we focus on the
AADL core language and the Behavior Annex.

4.2.1 Core language

The AADL core language describes mainly the software and hardware com-
ponents of a system, and how they are assembled to form a complete system.
Different concepts and key elements of the AADL language are summarized in
Figure 4.1. In the following, we detail some AADL elements required for the
AADL2LNT model transformation.

ISAE: Society of Automotive Engineers
2The AADL committee has started work on a major revision AADL V3 based on industrial
experience, using AADL V2.2 as baseline.

70

4.2. AADL in a nutshell

Category

data
subprogram
thread (group)
process

.. more details ...

Identifier
Extends

\
e o o o o

references ows ¢ memory
el Properties e device
R more details e (virtual) processor
L “ e (virtual) bus
1
Package
g 1 ° ports + system
. * access
. i implements
¢ Public declarations . * subprogram
* Private declarations ‘\ * parameter
1
1
LS
~
~ . .
AN Component implementation
references \dentifier
S~ Extends
S * ports
more details * access

* parameter

Properties

FIGURE 4.1: Summary of AADL elements [61]

4.2.1.1 Components

An AADL component is defined through a type (it declares the component inter-
face elements called features) and zero or more implementations (they represent
the component internal structure), as shown in Figure 4.1. AADL defines three
categories of components: software components (subprogram, subprogram
group, data, thread, thread group and process); hardware/execution
platform components ((virtual) processor, device, (virtual) bus, and
memory); and system composition component (system).

Software components

This part models the applicative part of the system, including source text, virtual
address spaces, concurrent tasks and their interactions. It contains mainly the
following components:

Data. The data component represents static data and data types within a
system.

Subprogram. The subprogram component represents sequential executed
source text, which can be coded in programming languages like the C and Ada lan-

71

Chapter 4. AADL model transformation

guage. The subprograms are callable from within thread and subprogram
components.

Thread. A concurrent schedulable unit of sequential execution code. The
thread should be declared within a process component. It is scheduled by
a scheduler (processor component). It can contain subprogram and data
components, and it can provide or require access to data components.

The dynamic semantics of a thread is defined using an hybrid automaton, in-
cluding its different states (e.g. suspended, ready and running). The transitions
between these states occur as a result of dispatch requests, faults and runtime
service calls. The dispatch semantics of a thread is given for the standard dis-
patch protocols such as periodic, sporadic, aperiodic, timed, hybrid, and back-
ground threads. More details about the thread syntax and semantics are
given through the AADL2LNT transformation description in section 4.3.1.

Process. The process component is a virtual address space containing data,
thread and subprogram associated with the process and with its subcom-
ponents.

Hardware components

This part specifies the computing hardware and the physical environment, that
are capable of the scheduling of threads, storing source text and data and per-
forming communication. It contains mainly the following components:

Bus. The bus component represents hardware and associated communication
protocols (communication channels) to exchange control/data among other exe-
cution platform components.

Processor. The processor component is an abstraction of hardware and
software for the scheduling and execution of threads. The processors can
support different scheduling protocols (e.g. RM and EDF).

Device. The device component is considered as an entity to interface with
the external environment (such as sensors). A device can interact with both
hardware and software components (e.g. using port connections).

System component

This part models the hierarchical composites of software and hardware compo-
nents through the system component:

72

4.2. AADL in a nutshell

System. The system component is a composite of system (subsystems) or
of the software and hardware components (see Figure 4.2 below).

4.2.1.2 Connections

The AADL connections are linkages established between the component features
to exchange data and control. There are four categories of features, as shown
in Figure 4.1: port, subprogram, parameter and subcomponent access. They
enable three types of connections: port connection, parameter connection and
access connection.

A semantic connection is represented by a set of one or more connection decla-
rations that follow the component hierarchy from the ultimate connection source
to the ultimate connection destination (for example, the port connections C1, C2
and C3 in Figure 4.2 below).

Port connection

The thread components may declare ports to be in interaction with other com-
ponents (thread, device, processor). They can be declared to be data,
event or event data ports. They are directional: in, out or in out. A port connec-
tion allows the transfer of data and/or event between two components, explicitly
declared between two ports at the process or system levels. More details
about the port and port connections semantics are given through the AADL2LNT
transformation description in section 4.3.2.

4.2.1.3 Properties

AADL properties provide additional information about the AADL elements. The
standard [10] defines a set of predeclared properties and property types (standard
properties). These properties can be associated with the component types, com-
ponent implementations, subcomponents, features, connections and subprogram
calls.

4.2.1.4 AADL system modeling

A system model consists of an application software mapped to an execution
platform. It is modeled through a set of nested components whose top-level is
the system component as included in Listing 4.1 and graphically depicted in
Figure 4.2: the thread component is declared within a process component;
the system contains mainly a set of subcomponents that may be data,
process, processor, bus or device, a set of connections to declare

73

Chapter 4. AADL model transformation

port connections of processes and devices and a set of properties in
which the Actual Processor Binding property is used to bind processes
with the processor.

A system instance represents a complete component hierarchy as specified recur-
sively through the subcomponents of each component: from the system sub-
components down to the lowest level defined in the architecture specification.

4)
system S

process P1 process P2

...................................

I\
device D

processor P

’ data > event > event data

FIGURE 4.2: Example of AADL system model: graphical
representation

LisTING 4.1: Example of AADL system model

1 |system implementation System_Example.Impl

2 |subcomponents

3 | CPU : processor P.Impl;

4| Process_P1 : process Pl.Impl;

5 | Process_P2 : process P2.Impl;

6 | Device_Example : device D.Impl;

7 | Bus_Example : bus B.Impl;

s | connections

9 | C2: port Process_P1.Port_ A —> Process_P2.Port_B

{Actual_Connection_Binding=>(reference (Bus_Example));};
C3: port Device_Example.Port_C —> Process_P2.Port_D
{Actual_Connection_Binding=>(reference (Bus_Example));};
properties
Actual_Processor_Binding=>(reference (CPU)) applies to Process_P1;
Actual_Processor_Binding=>(reference (CPU)) applies to Process_P2;
end System_Example.Impl;

I e~ S S S S
o oA W N = O

4.2.2 Behavior annex

The Behavior annex [9] (called also Behavior model annex) is an SAE standard
(SAE AS 5506/3) originally published in 2011. Then, it is revised in 2017 with a

74

4.2. AADL in a nutshell

number of errata and improvements to align with the AADL V2.2 core language.
The aim of the Behavior annex is to refine the implicit behavior specifications
that are specified by the AADL core language as follows: describing the inter-
nal behavior of the component implementations; extending the default AADL
execution model semantics, such as thread dispatch protocols; providing more
precise subprogram calls synchronization protocols.

A Behavior Specification clause may be added within the subprogram,
thread and device components to describe the behavior as a transition system
with guards and actions. Its dynamic behavior is based on the transitions between
states. A transition is a change of the current state from a source state to a
destination state when its condition (guard) is satisfied. The corresponding set
of actions is consequently performed.

More details about the Behavior annex syntax and semantics are explained in
the AADL2LNT transformation description in section 4.5.

4.2.3 AADL subset

The AADL language describes different concepts of real-time embedded systems
with a rich semantics detailed in its standard [10]. The language covers im-
portant aspects (timing requirements, fault and error behaviors, time and space
partitioning, safety properties, etc.) that can not be wholly analyzed in one work.
According to our verification purposes, we define an AADL subset whose com-
ponents are depicted in Figure 4.3 (AADL part). Moreover, the consideration of
the Ravenscar profile requires some additional restrictions applied at the model
level, meaning that the AADL subset should be Ravenscar compliant. Mainly,
the profile claims that threads are either sporadic or periodic and they are
schedulable according to the RM scheduling.

In this thesis, we aim at defining an executable formal semantics of the AADL
model viewed as a set of communicating tasks. This abstraction allows different
alternatives of verification, such as the schedulability analysis, thread execution
simulation, thread behavior analysis and the verification of a set of communi-
cation properties (see chapter 5).

At the model level, we consider the system as a set of threads in communi-
cation through port connections. Thus, the following components are supported:
data, thread, process, processor and device. We do not support nei-
ther AADL shared access nor AADL flows/modes. For behavioral descriptions,
we consider the Behavior annex, especially, for the thread components to spec-
ify its behavior as a transition system. So the Behavior Specification
clauses are part of the transformation. Finally, the model is completed by a set
of AADL standard properties attributed to different components. We distinguish
the following sets:

75

Chapter 4. AADL model transformation

e Properties specifying constraints for the software-hardware binding such
as the Actual Processor Binding property that can list only one
processor;

e Properties specifying the temporal and scheduling information like Deadline,

Scheduling Protocol, Dispatch Protocol, Period, Priority,
Compute_Execution_Time and Dispatch Offset;

e Properties specifying information for the port connections and queuing such
as Input_Time , Output_Time, Queue_Size, Dequeue_Protocol,
Queue Processing Protocol and Overflow Handling Protocol.

In Listing 4.2, we provide a simple AADL example using the considered subset:
a thread component with the port connections, scheduling properties and Be-
havior annex specification. This thread compares periodically (every 10s) two
arriving data a and b. If they are equal, then an event is triggered through the
success port, else an event is triggered through the fail port.

© ® N o Uk W N R

LT S = S ~ S~ S ST ST
S © W N O ook W N o= O

LiSTING 4.2: Example of AADL thread component

thread compare
features
a: in data port Base_Types::Integer;
b: in data port Base_ Types::Integer;
fail: out event port;
success: out event port;
properties
Dispatch_Protocol => Periodic;
Compute_Execution_Time => 1s .. b5s;
Period = 10s;
end compare;
thread implementation compare.impl
annex behavior_specification {*x
states
sO: initial complete final state;
transitions
s0 —[on dispatch]—> s0
{if (a = Db) success! else fail! end if};
Wk

end compare.impl;

4.3 Model transformation

The AADL2LNT transformation is based on the proposed LNT pattern (chap-

ter 3). In addition, it requires a set of new LNT definitions to cover the considered
AADL subset.

76

4.3. Model transformation

The AADL2LNT transformation is described with a set of corresponding rules
between the AADL and LNT languages. The main idea of the transformation
consists in mapping and encapsulating each AADL component into an LNT pro-
cess to obtain a modular specification. According to the component categories, we
define a set of LNT definitions. The AADL2LNT transformation overview is given
in Figure 4.3, highlighting main corresponding rules between both the AADL and
LNT languages as follows: the AADL thread is transformed into the TASK pro-
cess, that represents the thread component with its supported features, subcom-
ponents and behavior specification; the AADL ports are transformed into LNT
gates; the AADL port connections are mapped using the CONNECTOR processes;
the AADL processor becomes the SCHEDULER process, which implements the
processor scheduling protocol; and the AADL device component is mapped
with a new defined DEVICE process. Finally, all processes are composed and
synchronized to form the whole system in the MAIN process.

,

system M
: p—) memmm—————— » LNT
: 1 1 1
1 1 1 (S 1 N
ICIR H MAIN
thread A)) threadB | ot 1
] 'Y ! [£l THREAD_A s c / THREAD_B
{ 1 [1 (2 g bcb I 1 §END7&,1I. DATA I RECEIVE_G
c2 o 5 CONNECTOR
c3 L E o -
£ | E w REcEVE C3 ~/ SEND_C2
3§ % -
device D E=]
process Y % § &
g E
ommmmm——————— of =i = EVENT_
! £ 8 connecTor
{ threadC 7 E §
1 1 o -
1] O © |
] o o RECEIVE_C2
processor A= .
A\ I
1 THREAD_C DEVICE_D
P data B> data event > event i
1
AADL ===mmmmmmm e H

J

[:] prosess M gate —— rendezvous

FIGURE 4.3: Overview of the AADL2LNT transformation

The AADL2LNT transformation can be represented at three levels, allowing the
mapping of different kind of AADL models as follows:

e Scheduling mapping ensures the transformation of models with independent
threads;

e Communication mapping completes the mapping by considering the port
connections between the thread and device components;

e Hierarchical mapping concerns mainly the system component (with some
additional rules) to achieve the mapping of the whole system within the
obtained MATIN process.

77—

Chapter 4. AADL model transformation

In the following, we develop and justify different AADL2LNT transformation lev-
els: corresponding rules are graphically represented and the obtained LNT def-
initions are included. Later in this chapter, we present the behavioral mapping
level based on the transformation of the Behavior annex.

4.3.1 Scheduling mapping

At this level, we present a set of the execution and scheduling rules, which
concerns only the AADL thread (independent) and processor components
mapped respectively into the LNT THREAD and SCHEDULER processes.

4.3.1.1 Thread mapping

The thread component becomes the TASK process described in section 3.4.1
(chapter 3). The thread rule is illustrated in Figure 4.4. The TASK process
takes the thread implementation name prefixed by "THREAD_" and declares the
default ACTIVATION gate, as included in Listing 4.3.

AADL LNT
ACTIVATION
1 1
A P ‘» D PORT_A PORT_D
I
{. thread ' PORT_B PORT_E
B B> readT b E a THREAD_T
; : PORT_F
! S F PORT_C -
= ,>

FIGURE 4.4: AADL thread transformation rule

The supported standard properties are used to specify the temporal param-
eters of the thread, as follows: the Dispatch Protocol property repre-
sents its dispatch model; the Period property represents its period T;; and the
Compute_Execution_Time property represents its capacity C;. In the AADL
language, the dispatch semantics is given for standard dispatch protocols such as
periodic, sporadic, aperiodic, timed, hybrid, and background threads. Since we
consider a Ravenscar compliant model, we support periodic and sporadic dispatch
models, as described in the AADL standard:

e Periodic threads: they are periodically dispatched at time intervals of the
specified Period property value.

78

4.3. Model transformation

e Sporadic threads: they are activated as the result of an event/event data
(invocation-event) arriving at an event/event data port of the thread.
The time interval between two successive dispatch requests will never be
less than the associated Period property value.

LisTING 4.3: LNT THREAD for AADL independent thread

process THREAD_« [ACTIVATION: LNT_Channel_Dispatch] is
loop
select
select
ACTIVATION (T _Dispatch_Completion)

(]
ACTIVATION (T _Dispatch_Preemption)

© ® N o Uk W N e

ACTIVATION (T_Preemption)

(]

ACTIVATION (T_Preemption_Completion)
end select;
ACTIVATION (T_Completion)

e e
B W N = O

ACTIVATION (T _Error)

== =
N o wm

ACTIVATION (T_Stop)
end select
end loop
end process

oo e
S © w

As described in section 3.4.1, the thread dispatching is ensured by the SCHEDULER
through the defined activation orders (T_Completion, T Dispatch Preemption,
T Preemption Completion, T Dispatch Completionand T Preemption).

The LNT processes are suitable for representing AADL thread described in the
AADL standard as a schedulable unit that can execute concurrently with other
threads. The dynamic semantics of the AADL thread are defined using a
hybrid automaton (thread scheduling and execution states automaton) included
in Figure 4.5. THREAD covers an important part of the AADL thread seman-
tics for the thread dispatching, scheduling and execution. Compared to the
standard thread scheduling and execution states automaton, our state automaton
of Figure 3.2 (chapter 3) excepts the awaiting states (shared resources, subpro-
gram calls and background thread) which are not supported in this thesis. In
addition, the standard defines a suspended AWAITING DISPATCH state for the
threads when completing the execution of the current dispatch, this state cor-
responds to the BLOCKED state in the proposed LNT pattern.

79

Chapter 4. AADL model transformation

dispatch l

(Executing)
Read — complete Awaiting
eady — dispatch

Awaiting Awaiting
resource R
Awaiting

return

l error

FIGURE 4.5: AADL thread scheduling and execution states
automaton [10]

4.3.1.2 Processor mapping

The processor component becomes the SCHEDULER process developed in sec-
tion 3.4.2 (chapter 3). The processor rule is depicted in Figure 4.6. The
AADL processor is a hardware component that ensures the scheduling and
execution of threads. The SCHEDULER process represents the processor
component by implementing its scheduling algorithm.

The generation of the SCHEDULER requires the extraction of the task model of the
AADL system, based on tasking descriptions in section 3.3 (chapter 3). Such an
abstraction is feasible since the AADL language is defined to design and analyze
real-time systems. In fact, the AADL model can be abstracted as a task model: a
set of n thread instances S = {7y, ..., 7, }, bound to one processor supporting
the RM scheduling. Different temporal parameters are specified using the set of
the supported standard properties as follows: Dispatch Protocol (periodic
or sporadic), Compute Execution Time (C;), Period (7;), Deadline (D;)
and Priority (P, or simply the index i), Dispatch Offset (O;).

AADL LNT
, ACTIVATION_1 . . . ACTIVATION_N
[
processor X SCHEDULER
NOTIFICATION_1 .. NOTIFICATION_K

FIGURE 4.6: AADL processor transformation rule

For the SCHEDULER process declaration, each thread (7;) is bound to the

4.3. Model transformation

processor through the Actual Processor_Binding property corresponds
to the declaration of an ACTIVATION ¢ gate in the SCHEDULER process to be
synchronized with the equivalent THREAD, as shown in Figure 4.3. In the case
of a sporadic thread, an additional NOTIFICATION_ i gate is also declared.
Based on the developed mapping in section 3.4.2 (chapter 3), the SCHEDULER
process body is composed of three parts, which are generated as follows:

e The initialization part: this part declares and initializes the task array, so
it needs all information about the set of threads and their scheduling
properties.

e The Operational part: this is a generic part depending only of the considered
scheduling algorithm, which is in our case the RM scheduling algorithm.

e The Stopping part: this part requires only the number of thread instances
to include different communications for the T_Stop order.

4.3.2 Communication mapping

The communication mapping level concerns the AADL models with dependent
threads. We support port connections between threads and devices, that
are declared at the process and system levels and typed with the data com-
ponents.

At the communication mapping level, we aim to draw the thread connections
without the consideration of the data contents. We simply map data/event
into an LNT enumerated type (AADLDATA label) exchanged between different
THREADs through the corresponding channel, as included in Listing 4.4.

LisTING 4.4: LNT type and channel for AADL data component

type LNT _Type_Data is
EMPTY, AADLDATA
end type

channel LNT_Channel_Data is
(LNT_Type_Data)
end channel

B B L B N N

4.3.2.1 Port mapping

At the THREAD level, the port declarations are transformed into LNT gate dec-
larations as shown in Figure 4.4. The process body of the THREAD process (List-
ing 4.3) is completed with an initialization part using the LNT var statement.
As shown in Listing 4.5, for each declared port, named P, we proceed as follows:

81

Chapter 4. AADL model transformation

e A gate declaration (PORT_P: LNT_Channel Data) is added;

e A variable (P: LNT_Type_Data) is declared and initialized in the initial-

1zation part;
e A corresponding communication is added as follows:

— For out port: PORT_P (!P)

— For in port: PORT_P (?P)

Note that data or event /event data ports are exactly mapped at the THREAD level,
while the difference between these types (reception, queuing, etc) is ensured by

the communication mechanism using the CONNECTOR processes.

LisTING 4.5: LNT THREAD for AADL thread with port connections

1 | process THREAD.x [ACTIVATION: LNT_Channel Dispatch,
2 PORTIP: LNT _Channel Data, — in port

3 PORT.OP: LNT_Channel Data] — out port

4 |is

5 var I[P : LNT _Type_Data, OP : LNT_Type_Data in

6 IP := EMPTY;

7 OP := EMPTY;

8 loop

9 select

10 select

-
—

ACTIVATION (T _Dispatch_Completion)
PORTIP (?IP)

PORT.OP (!OP)

(]

ACTIVATION (T _Dispatch_Preemption)
PORTIP (?IP)

(]
ACTIVATION (T_Preemption)

I S O T ~ T
S © ® N o oA W N

ACTIVATION (T_Preemption_Completion)
PORT.OP (!OP)

end select;

ACTIVATION (T_Completion)

NONON NN
SISV R

ACTIVATION (T _Error)

NN
ENEY

ACTIVATION (T_Stop)
end select
end loop
end process

W NN
S © »

w
ot

82

4.3. Model transformation

4.3.2.2 Port connection mapping

The port connections are transformed through the synchronizations with the
CONNECTOR process as developed in section 3.4.3 (chapter 3). We conserve the
CONNECTOR definition, as it allows unidirectional communication, so we consider
only 1-to-1 connections with no in out ports.

Each port connection becomes a CONNECTOR instance as shown in Figure 4.7.
The CONNECTOR should be synchronized on its INPUT and OUTPUT gates be-
tween two THREADSs equivalent, respectively, to the threads of in and out ports.

The CONNECTOR represents the AADL semantics port connection which includes
all port connection declarations (at the process and system levels) that fol-
low the component containment hierarchy in the instantiated system from a
source thread (out port) to a destination thread (in port). Thus, all port
connection declarations are abstracted in the CONNECTOR synchronizations. As
shown in Figure 4.3, different port connections, at the process level (inter-
thread connection @) or at the system level (thread-device connection
® and process-process connection @), are similarly transformed into the
CONNECTOR instances.

AADL LNT
FoTTtTTTTTTTTTTTH
{ threadA B,
1 [
1 " \
""""""""" N, INPUT CONNECTOR OUTPUT
Y
. S
thread B ,,"

NOTIFICATION

FI1GURE 4.7: AADL port connection transformation rule

In this thesis, we consider asynchronous port connections, whose determinism
is ensured by the Ravenscar constrained protected object as developed in sec-
tion 3.4.3 (chapter 3). During the port connection, the content of incomings is
frozen during the thread execution: the port variable content is not affected
by the arrival of new incomings. Data and events arriving through in ports are
available to the thread at a specified input time, fixed by the Input _Time prop-
erty. This communication model is assumed in the LNT specification through
the INPUT synchronization (reading the port content) between the CONNECTOR
and the THREAD corresponding to the thread of in port. According to our LNT
pattern, the INPUT rendezvous is fixed at the start time of each period equiv-
alent to the Start_Time value of the Input_Time property. After the INPUT

83

Chapter 4. AADL model transformation

rendezvous any new incoming data or event becomes available only at the next
start time.

In addition, the AADL port output is transferred to other components at an out-
put time specified by the Output_Time property. The transfer of data or event
corresponds to the OUTPUT synchronization with the thread of out port, which
is fixed at the completion time of each period equivalent to the Completion_Time
value of the Output _Time property.

At the THREAD level, the communications are also controlled through the orders
from the SCHEDULER, that fix the input and output times as follows:

e T Dispatch_* represents the start time, THREAD receives the inputs;

e T x Complete represents the completion time, THREAD sends the outputs.

According to the port type (data or event) and the thread Dispatch_Protocol
property (periodic or sporadic), we define three CONNECTOR types. In the case
of the periodic threads with data port connections, a Data CONNECTOR (List-
ing 4.6) is used without queuing or event notifications. It keeps the data until the
next reception, each time a new data is received, the last one is overwritten. When
exchanging events or event data, we use Event CONNECTORs I and IT (List-
ings 4.7 and 4.8) with a list of inputs with a definite size. Event buffers implement
the set of queuing properties as follows: Queue _Size (Queue Size param-
eter), Overflow Handling Protocol (drop oldest, drop newest), Queue_
Processing.Protocol (FIFO, LIFO) and Dequeue_Protocol (one item).

LISTING 4.6: LNT CONNECTOR for AADL data port connection

process Data CONNECTOR|
Input: LNT_Channel Data, Output: LNT_Channel Data]

is
var
Data : LNT _Type_Data in
Data := EMPTY;
loop
select
Input (7?Data)
(]
Output (Data)
end select
end loop
end var
end process

© N o A W N e

e
B W N = O

-
ot

As detailed in section 3.4.3 (chapter 3), the SCHEDULER needs to be notified
for every new incoming invocation-event for the sporadic threads. This is
ensured by the NOTIFICATION gates to synchronize the EVENT_CONNECTORS
with the SCHEDULER (Figure 4.3). Thus, at the reception of a new event, the

84

4.3. Model transformation

EVENT_CONNECTOR notifies the SCHEDULER, to consider the concerned THREAD

in the scheduling.

LISTING 4.7: LNT Event _CONNECTOR I

LISTING 4.8: LNT Event _CONNECTOR II

process Event. CONNECTOR |
Input: LNT_Channel Data,
Output: LNT_Channel_-Data](
Queue_Size: Nat)
is
var
Data
FIFO
Is_New
in

LNT_Type_Data,
LNT_Type_Data_FIFO ,
bool

FIFO := {};
Data EMPTY;
Is_New := false;
loop
select
Input (?Data);
Is_New := true;
if length (FIFO)>=Queue_Size
then
FIFO :=
if;
:= append (Data, FIFO)

tail (FIFO)
end

FIFO

1[]f (FIFO !'= {}) then
Output (Head (FIFO));

FIFO := tail (FIFO)
else
Output (EMPTY)
end if
end select
end loop

end var
end process

4.3.3 Hierarchical mapping

process nonperiodic.Event_CONNECTOR |

is

Input:
Output :
Notification:

LNT_Channel _Data,
LNT_Channel_Data ,
LNT_Channel_Notif](

Queue_Size: Nat)

var

in

Data
FIFO
Is_New

FIFO := {};
Data := EMPTY;
Is_New := false;
loop
select
Input (?Data);
Is_New := true;
if length (FIFO) >=
then
FIFO :=
if;
:= append (Data, FIFO)

LNT_Type_Data,
LNT_Type_Data_FIFO,
bool

Queue_Size
tail (FIFO)
end

FIFO

l[]f (FIFO != {}) then
Output (Head (FIFO));

FIFO := tail (FIFO)
else

Output (EMPTY)
end if

if (Is_New) then
Notification (Incoming Event)|;
Is_New := false

else
Notification (No_Event)

end if

end select

end loop

end var
end process

The hierarchical mapping represents the last phase of the AADL2LNT transforma-
tion. At this level, we transform the system component in order to instantiate
and synchronize all the LNT definitions. In addition, we define transformation
rules for some AADL components, which have no equivalent in the proposed LNT

pattern (chapter 3).

85

Chapter 4. AADL model transformation

4.3.3.1 System mapping

All AADL components are hierarchically structured in the system component.
As shown in Figure 4.3, the system component becomes the LNT MATIN process.
This generation is based on the composition and synchronization phase developed
in section 3.4.4 (chapter 3). The MAIN generation can be resumed in three steps:

e Extracting of the THREAD list: all system subcomponents are visited to
form the list of the THREAD instances.

e Preparing of the CONNECTOR synchronizations: for each port connection, a
CONNECTOR instance is created. We use the connection identifier, which is
prefixed with "SEND_” and "RECEIVE_" to represent two gates. For exam-
ple, the connection C1 from Listing 4.3 is represented by the SEND_C1 and
RECEIVE _C1 gates. These gates are used for the THREAD and CONNECTOR
synchronizations, as shown in Figure 4.3:

— RECEIVE synchronization represents the reading of the port content
by the thread of in port.

— SEND synchronization represents the transfer of the data or event from
the thread of out port.

e Global composition: all THREADs are synchronized with the SCHEDULER
on the ACTIVATION_i gates. Similarly, all CONNECTORs are firstly syn-
chronized with the THREADs on the RECEIVE and SEND gates, then they
are synchronized with the SCHEDULER on NOTIFICATION_i gates as
shown in Figure 4.3.

4.3.3.2 Other rules

Throughout previous mapping levels, the proposed LNT pattern is used in the
definition of AADL2LNT transformation with minor changes. However, the AADL
language represents additional architectural features that are supported in this
thesis. The transformation should then be completed by rules concerning other
AADL components such as processes and devices.

Process mapping

In the AADL language, a thread should be declared within a process com-
ponent. The process component represents a protected virtual address space
that can be ignored in the verification. So the processes have no equivalent in
the produced LNT specification and its dispatch semantics is omitted.

86

4.3. Model transformation

The AADL model may contain a process with a composition of threads. In
this case, the corresponding THREAD instances are directly added in the MAIN
process.

Device mapping

The device components are supported since they can be in interaction with
thread components. They are not mapped at the scheduling mapping level
since they are not scheduled, also their internal behavior is not considered. thus,
we opt to define a simple LNT specification for the devices sufficient for the
thread-device port connections.

The device becomes an LNT process prefixed by "DEVICE_”, as shown 4.8.
Unlike THREAD, DEVICE has no activation gate, but their port declarations are
similarly mapped. DEVICE behavior consists simply of a loop-select statement
gathering PORT_* communications as shown in the example of Listing 4.9.

In addition, device port connections are similarly mapped as the thread port
connections through the CONNECTORs at the MAIN level, as depicted in Fig-
ure 4.3.

AADL LNT
A D PORT_A PORT_D
B device D E PORT_B DEVICE_D PORT_E
| porrc PORT_F

FIGURE 4.8: AADL device transformation rule

LisTING 4.9: LNT DEVICE for AADL device component (example)

process Device.D |
PORTA: LNT_Channel_Event, PORTB: LNT_Channel_Event]
is
var
A: Bool,
B: Bool
in
A:= false; B:= false;
loop
select
PORT-A (7A)

PORTB (!B)
end select
end loop
end var
end process

-8 77

Chapter 4. AADL model transformation

4.3.4 Discussion

The defined AADL2LNT is the result of several adjustments (at the AADL subset)
and refinements (in the LNT pattern) to obtain LNT specifications exploitable
with verification tools. In fact, an LNT specification may fail its state space gen-
eration when the number of states or transitions explodes, known as the space
explosion problem (see section 2.2.5.1 of chapter 2). In this case, the formal veri-
fication phase will be interrupted and the AADL model transformation becomes
obsolete.

For this reason, the proposed LNT pattern is based on the encapsulation of the
temporal calculations within the SCHEDULER, thus the synchronizations between
the processes of the LNT specification are restricted to a set of enumerated labels
(activation orders, data labels, etc.), which allows to reduce significantly the
generated system state space at the verification phase.

In addition, restrictions were applied in the considered AADL subset, especially at
the communication mapping level. The AADL language provides a rich semantics
for ports and their connections in all aspects (topologies, directions, timing, etc.).
Since it provides bidirectional gates and multiple synchronizations, the in out
ports, the n-to-n port connections and the multiple-items dequeuing were mapped
with the LNT language at a first transformation definition [129]. However, the
experiments show that the obtained specifications explode rapidly especially with
highly connected models. Thus, these restrictions are considered to obtain formal
models giving realistic state space size that can be explored by verification tools.

Despite the considered restrictions, we provide a scalable solution (see evaluations
in section 5.6 of chapter 5) without restricting our main purpose of the mapping
of a Ravenscar compliant AADL model (preemptive priority-based scheduling,
asynchronous communication, etc.).

4.4 Transformation of a larger AADL subset

The AADL2LNT transformation may be extended, especially at the scheduling
mapping level, by supporting more AADL real-time features beyond the Raven-
scar restrictions. Firstly, more thread dispatching model can be considered, we
support timed and hybrid models as defined in the AADL standard:

e Timed threads: they are dispatched as the result of an event/event data
or it is issued a time interval specified by the Period property value since
the last dispatch. The Period property value represents a time-out value
ensuring that a dispatch occurs after a period if no event/event data have
arrived.

88

4.4. Transformation of a larger AADL subset

e Hybrid threads: they are dispatched as the result of an event/event data,
as well as periodic dispatch at a time interval specified by the Period
property value.

We remind that THREADs are generically designed for all dispatch protocols, so
modifications are only performed in the SCHEDULER process. To support the
timed and hybrid threads, we extend the SCHEDULER Operational part. In
fact, the non-periodic task checking and task state updating parts are updated to
consider new dispatching characteristics. For the timed threads, THREAD may
periodically progress since it must be activated after a time-out interval. Thus,
it is updated based on last release and deadline times: 7,=(C;, T;, 7 = j + 1,
i = Tij—1) + 15, dij = dij—1y+ T, 855401 = 0, €; ;41 = 0). At the reception of an
event /event data, timed THREAD is handled as the sporadic THREADs: 7,=(C},
Tij=j+Lrig=tij dij=ri;+T; s;=0,€;=0).

For the hybrid threads, THREAD must be periodically activated. Thus, it must
be updated as a periodic thread: 7,=(C;, T;, j = j+ 1, ri; = j T}, dij =
dii-1) + 15, sij+1 = 0, €;;41 = 0). At the reception of an event/event data,
hybrid THREAD is handled as the sporadic THREADs: 7,=(C;, T3, j = j + 1,
Tij = tm‘, dm‘ =Tij + Tz’; Sij = 0, €ij = O)

In addition to the RM scheduler, we have developed an EDF scheduler based on
the preemptive dynamic-priority scheduling. According to the EDF algorithm,
the jobs of a task may have different priorities. At any time, the scheduler
executes the task with the highest priority, which corresponds to the READY
task with the earliest absolute deadline (d; ;).

The EDF SCHEDULER, graphically represented in Figure 4.9, is based on the
SCHEDULER skeleton detailed in section 3.4.2. It is almost conserved using the
same task array and the same activation orders (based on preemptive schedul-
ing). Thus, the TASK and CONNECTOR processes need no changes. The required
modifications are limited in the operational part, mainly, in the time allocation
operation. Briefly described, during the scheduling, the SCHEDULER makes a
complete task-loop to select the READY task with the earliest absolute deadline.
This operation is achieved using an auxiliary array for the absolute deadlines, as
shown in Figure 4.9. The selected task is then assigned to the RUNNING state
to be executed through the task state updating and task activation steps. The
SCHEDULER repeats regularly its task-loop at each unit of time in order to con-
trol all the tasks states since the absolute deadlines of the tasks may change at
any time.

89

Chapter 4. AADL model transformation

Update task e
g Task activation . QJ

S= (B) Q0O

s

the earliest absolute
TL j with the earliest absolute deadline deadline

d,, [d,, d, o | o o

FIGURE 4.9: SCHEDULER algorithm: EDF scheduling

-
S————————

\s

4.5 Behavioral mapping

At this level, the AADL model is completed with behavioral descriptions using the
Behavior annex [9]. The annex extends the AADL standard by further syntax and
semantics to specify the component behavior. The goal is not the specification
of a complicated behavior executed by the threads, we specifically support the
Behavior annex to enrich the communication mechanism: the annex can be used
to handle the inputs and prepare the outputs.

The Behavior annex transformation is directly based on the semantics described
in its standard [9], as its behavioral descriptions are not considered in the pro-
posed LNT pattern. In addition, the Behavior annex mapping requires a new
abstraction level of the AADL model where the thread behavior and the data
content are considered. The transformation rules of the data, thread and port
connection are redefined, especially, at the communication mapping level.

In this section, we illustrate the Behavior annex mapping with a complete THREAD
example, given in Listing 4.10, which corresponds to the mapping of thread
compare in Listing 4.2 from section 4.2.3.

4.5.1 Data mapping

In the case of the data or event data port connection, the ports are typed with the
data components. In the previous levels, the data components were generically
mapped using an LNT enumerated type: the consideration of the data contents
was useless since they are not handled within components. Now, the inputs and
outputs can be used in the Behavior annex description and the port contents
may be exploited in the calculations. Thus, the data abstraction should be
overridden and the data type should be considered during the transformation.
Currently, we deal with basic data types. Each type (Boolean, Integer, Natural,
Float, Character and String) from the AADL Base_Types package is mapped into

4.5. Behavioral mapping

LI1STING 4.10: LNT THREAD for AADL thread with Behavior annex
(example)

process THREAD COMPAREIMPL|[— process declaration
DISPLAY STATE: Channel STATE,
ACTIVATION: LNT_Channel_Dispatch ,
PORT_A: LNT_Channel Data, PORTB: LNT_Channel Data,
PORT_FAIL: LNT_Channel_Event, PORT_SUCCESS: LNT_Channel_Event]

is — process body
var — initialization part
STATE : LNT_Type_States, — thread current state
A : LNT_Type_Data, B : LNT_Type_Data
in
STATE := SO;
A := DATAINIT; B := DATA_NIT,;
loop
select
select — execution behavior

ACTIVATION (T_Dispatch_Preemption)
ACTIVATION (T_Preemption_Completion)

ACTIVATION (T_Dispatch_Completion);
PORTA (?A); PORTB (7B); — inputs
—— Behavior annex mapping
if (STATE = S0) then
STATE S0;
if (A = B) then PORT-SUCCESS (true)
else PORTFAIL (true) end if
end if;
DISPLAY_STATE (Thread_Compare, STATE)

(]

ACTIVATION (T_Preemption)
end select ;
ACTIVATION (T_Complete)

(]

ACTIVATION (T _Error)
(]

ACTIVATION (T_Stop)

end select end loop end var
end process

a suitable LNT type. The LNT_Type Data is no longer a generic type, now it
depends on the data component: LNT_Type_Data represents the data type
and may be declared as Bool, Nat, Int, Real, Char or String. The boolean type
(Bool) is used to map events (the true value marks a new incoming event). In ad-
dition, port types are now differently considered, a set of channels is then defined
for the gate synchronization as shown in Table 4.1. For each data, event or event
data port, a separate LNT channel is used based on the defined LNT_Type Data
type.

4.5.2 Port and port connection new mapping

At the behavioral mapping, the consideration of the data content requires the
extension of the port and port connection transformation rules. In the THREAD

91

Chapter 4. AADL model transformation

TABLE 4.1: LNT channels for the behavioral mapping

Channel
data port
channel LNT_Channel Data is (LNT_Type_Data) end channel
event port
channel LNT_Channel_Event is (Bool) end channel
event data
port channel LNT_Channel_Event_Data is (LNT_Type_Data, Bool) end channel

process, we prepare a set of the required variables and statements grouped in
Table 4.2 (for an AADL port named P) to be incorporated within its different
parts according to the port types and directions. The THREAD declaration part is
completed with the gate declarations using the suitable channel from Table 4.1.

TABLE 4.2: AADL port transformation rule

THREAD
. . communication
gate declaration variables -
i port \ out port
data port PORT_P: P: PORT_P (?P) | PORT.P
LNT_Channel_Data LNT Type_Data ('P)
event port PORT_P: EVENT_P: Bool PORT_P PORT_P
LNT_Channel_Event (?EVENT_P) (true)
event data | PORT_P: P: PORT_P PORT_P
port LNT_Channel _Event_Data | LNT_Type_Data; (?P, ?2EVENT_P|) (!P, true)
EVENT_P: Bool
TABLE 4.3: AADL port connections transformation rule
CONNECTOR
periodic threads ‘ non-pertodic threads
data port
process LNT_Data_Connector process LNT_Data_Connector
[INPUT: LNT_Channel_Data , [INPUT: LNT_Channel_Data,
OUTPUT: LNT_Channel_Data] OUTPUT: LNT_Channel_Data |
event port
process LNT_Event_Connector process LNT_Event_Connector
[Input: LNT_Channel Event, [Input: LNT_Channel Event,
Output: LNT_Channel Event] Output: LNT_Channel Event,
(Queue_Size: Nat) Notification: LNT_Channel_Notif]
(Queue_Size: Nat)
event data
port process LNT_Event_Data_Connector process LNT_Event_Data_Connector
[Input: LNT_Channel_Event_Data, [Input: LNT_Channel_Event_Data,
Output: LNT_Channel Event_Data] Output: LNT_Channel Event_Data ,

(Queue_Size: Nat)

Notification: LNT_Channel_Notif]
(Queue_Size: Nat)

92

© 0 N kR W N

e e e e e =
Gk W N = O

4.5. Behavioral mapping

The THREAD behavior part is completed to represent port variables (declaration
and initialization) and communications. For illustration, the THREAD of List-
ing 4.10 includes the mapping of the data in ports (a and b) and the event out
ports (success and fail).

In addition, considering different port types (data, event or event data) and
thread Dispatch Protocol property (periodic, sporadic, hybrid or timed),
we redefine six CONNECTORs as shown in Table 4.3.

4.5.3 Behavior specification mapping

The thread component is being transformed at the scheduling mapping level, as
well as all the required constructions (types, channels and CONNECTOR processes)
to ensure its port connections. Now, we can complete the THREAD process with
the thread behavior specified with the Behavior annex.

The Behavior_Specification clause, included in Listing 4.11, is composed
of three sections (variables, states and transitions) used to describe the behavior
automaton which is a collection of states with guarded transitions and actions.
In the following, we describe how these different sections are respectively mapped
within the THREAD execution behavior (Listing 4.5).

LI1STING 4.11: Behavior_Specification

annex Behavior_specification {*x
variables

Vie Ty .0 Vi T
states

So: initial state;

Si, Sj: complete state;

S;: state;
Sn: final state;
transitions

—— dispatch condition

So —[on dispatch dispatch_trigger_condition]—> S;;
— exzecution condition

S; —[logical_value_expression]—> S, {

— actions

*ox)

4.5.3.1 Variables and states

The wvariables section allows the declaration of the local variables that can be
used within the scope of the Behavior_Specification clause. The set of
local variables (V] .. V,,,) is added in the THREAD process within its initialization
part, they are declared with the same name and the corresponding type.

93

N O e W N =

Chapter 4. AADL model transformation

The states section allows the declaration of the behavior automaton states. A
state may be declared as:

initial state (before the initialization of the thread);

final state (after the finalization of the thread);

complete state;

A state without qualification is referred to as an intermediate execution
state (discrete state of execution behavior).

Note that one state may play the role of a initial, complete and final
state at the same time. A behavior automaton starts from an initial state
and terminates in a final state. As shown in Listing 4.12, all states are added
in the LNT specification using an LN'T enumerated type LNT_Type_STATES.

LiSTING 4.12: LNT Type_STATES type for Behavior annex states

type LNT Type STATES is
S0, .., SN
end type

channel LNT_Channel CURRENT_STATE is
(LNT_Type NAMES, LNT_Type STATES)

end channel

4.5.3.2 Transitions

The transitions section describes the behavior of the state machine. The behavior
is created by linking the states using the guarded transitions (S;- [guard] ->S;
{actions}). The transition specifies the behavior as a change of the current
state from a source state S; to a destination state S; which can be guarded by
the conditions (dispatch or execute).

Different supported transitions are grouped in Table 4.4 with the corresponding
LNT statements. In the THREAD process, we map explicitly the current state of
the behavior automaton using a STATE variable of the type LNT_Type_STATES.
This variable is initialized by the initial state, and then, it can change the
value (S, .., S,,) according to the THREAD behavior. For verification ends, a chan-
nel LNT_Channel _CURRENT_STATE (Listing 4.12) and a gate DISPLAY _STATE
(line 2 of Listing 4.10) are added to mark the current state of each THREAD.

94

4.5. Behavioral mapping

Complete states. A complete state, as defined in the Behavior annex stan-
dard [9], acts as a suspend/resume state out of which threads are dispatched.
In consistence with the core AADL semantics, a thread in the Awaiting Dispatch
state from the thread scheduling and execution states automaton (Figure 4.5) may
be in one of its complete states. A transition out of a complete state is ini-
tiated by a dispatch once its condition is satisfied. This behavior corresponds to
updating of the STATE variable, that can take one of the complete states after
every T_Dispatch_Completion activation order. In this way, we assume that
the behavior automaton is embedded within the THREAD state automaton: in
the RUNNING state, the THREAD can move into one of the complete states.

The thread behavior automaton may: suspend itself at a complete state;
reactivate from the complete state repeatedly based on temporal events or the
arrival of invocation-events; and involve transitioning to intermediate execution
states until attaining a new complete state. In the THREAD process, differ-
ent transitions are specified using the LNT conditional statements that are di-
rectly placed after the ACTIVATION communication. A transition, between two
complete states S; and Sj, has the following form: if ((STATE==S;) and
(conditions)) then actions end if, in which, the STATE variable is
assigned to the new complete state (STATE:=S;;) and then the corresponding
actions are included. This i f statement embeds all transitions into the intermedi-
ate execution states, as shown in Table 4.4 (transitions with execute conditions),
the intermediate state S, is hidden in the equivalent if statement.

Conditions. A condition determines whether a transition is taken and then
the corresponding actions are performed. The transitions can be guarded by the
dispatch (on dispatch) or execute conditions as shown in Listing 4.11.

The dispatch conditions specify explicitly dispatch trigger conditions out of a
complete state. The dispatch condition means that the thread controls its
state when it is dispatched. The condition specifies a dispatch trigger condition,
which is a boolean expression describing a logical combination of the triggering
events (the arrival of events or event data).

The periodic threads are always considered to be unconditionally handled by
the dispatch conditions without the dispatch_trigger_condition. In the
case of a sporadic or timed thread, the invocation-events can be used in the
dispatch_trigger_condition expression, which refines the AADL dispatch
model by defining different behaviors for each incoming event in the case of sev-
eral event port declarations. The dispatch timeout condition must only be
declared within the timed threads, and must be declared in only one transition
out of a complete state to specify the behavior when the thread is dispatched
after a period without invocation-event.

In the THREAD process, the semantics of on dispatch conditions is implicitly

95

Chapter 4. AADL model transformation

TABLE 4.4: Behavior annex transitions transformation rule

‘ Behavior annex

LNT

dispatch con-
dition

S; —[on dispatch]—> S;

if (STATE = Si) then
STATE := Sj;

end if;

DISPLAY STATE (STATE)

dispatch trig-
ger condition

S;—Jon dispatch ip.;
and..or ipey]—>95;

S;—Jon dispatch ip,
and..or ipe,]—>Sk

if ((STATE = Si) and
(EVENTIPEl) and .. or
(EVENTIPEN)) then
STATE := Sj;
elsif ((STATE = Si) and
(EVENT.IPEL) and
(EVENTIPEM)) then

or

S
S;—[on dispatch ipe,]—>S)
S;—Jon dispatch ipy]—>9;

STATE := Sk;
end if
for timed
thread ;—|on dispatch timeout]—>S; | if (STATE = Si) and

(EVENTIPEN) then

STATE := Sj;
elsif (STATE Si) and
(EVENTIPEL) then

STATE := SI;

elsif (STATE = Si) then
STATE := Sk;
end if

execute condi-
tion

S;—[on dispatch]—> S,
Sz—lipa1 and..or ipg,]—>S;
Sz —[iper and..or ipgm,|—>Sk

if (STATE — Si) and
(IPD1) and .. or
(IPDN)) then
STATE := Sj;
elsif (STATE = Si) and
(IPDL) and .. or
(IPDM)) then
STATE := Sk;
end if

e ip.: name of event or event data in port

e ipy: name of data or event data in port

assumed since we include the behavior mapping after the ACTIVATION com-
munication, thus at each activation, the THREAD controls its state and executes
the corresponding actions. Similarly, in the case of a timed thread, the on
dispatch timeout condition is implicitly ensured. As shown in Table 4.4,
all possible event or event data ports are checked using the if statement before
handling the timeout case. If there are no new incoming events, the thread is

96

e S jk: complete states

e S,: intermediate execution state

4.5. Behavioral mapping

activated after a period by the SCHEDULER and all ports variables remain at the
false value. So the THREAD executes the behavior of the last alternative, that of
the timeout condition.

The dispatch_trigger_condition is an expression of event or event data
port names. Thus, the if condition checks the equivalent EVENT_P variables as
included in Table 4.4. These dispatch_trigger_condition expressions are
easily mapped in LNT, since the language provides all logical disjunction and
conjunction operators (and, and then, or, or else),

The execute condition signifies that the transition is guarded by a logical expres-
sion based on the input values. It allows the selection between multiple transi-
tions out of a given state to other states. The logical value expression is
included in the if condition using the variables of the data or event data ports.

4.5.3.3 Actions

The behavior action blocks are associated with a transition (between {}) and per-
formed when the transition is taken. The actions consist of the control structures
(basic actions, conditionals, finite loops, etc) grouped in sequences or sets.

TABLE 4.5: Behavior annex actions transformation rule

] ‘ Behavior annex ‘ LNT

Assignment action

op (= vV OP :=V

op := any OP := any LNT _Type_Data
Communication action:
output op! PORT_OP (!0P)

op!(v) PORT.OP(Type_Data (V))
Communication action:
input ip? PORTIP (7IP)

ip?(x) PORTIP(?X)
Conditional execution of
alternative actions if (L) actions if (L) then B

elsif (L) actions elsif (L) B

else actions end if | else B end if
Conditional repetition of
actions while (L) {actions} while L loop

B
end loop
e op: name of out port e v: value e L: logical value expression
e ip: name of in port e x: variable e V: value of type LNT_Type_Data

e B: behavior statement

97

Chapter 4. AADL model transformation

In this thesis, we support sequences of actions that are executed in a given or-
der (contrary to action sets that can be executed in any order). These actions
are transformed one by one (separated by a semicolon) within the if transition
statement to be sequentially executed when the if condition is satisfied. The
supported actions are transformed in the LNT language using the suitable state-
ments as shown in Table 4.5. As illustrated in Listing 4.10 (lines 25..35), the
THREAD COMPARE _IMPL represents a complete Behavior specification
clause mapping.

4.6 Conclusion

In this chapter, we described the AADL2LNT transformation, taken an AADL
model as a source model, to obtain an LNT specification. We detailed firstly how
the proposed LNT pattern (chapter 3) is used to transform the AADL model
execution, port connections and system hierarchy. Then, we proposed an LNT
mapping for the Behavior annex. The model transformation is achieved through
its different levels (scheduling, communication and behavioral mapping) to support
different kinds of AADL models: models with independent threads, models
with connected threads and models completed with the Behavior annex.

The produced LNT specification is ready for the verification phase with the
CADP toolbox, developed in the next chapter 5, in which we present the im-
plementation and validation of our contributions.

98

Implementations and validation

Contents
5.1 Introduction00000000. 100
5.2 Ocarina architecture. 000 100
5.3 Ocarinaextensions.00 102
5.3.1 Behavior annex parsing 102
5.3.2 LNT code generation. 103
5.3.3 SVL script generation 105
54 Tool-chain 106
55 Casestudies. o o 108
55.1 AADL modeling 108
5.5.2 LNT code generation 115
5.5.3 Formal verification L. 117
5.5.4 Analysisresults 123
5.5.5 Manual verification oL 124
5.6 Scalability 000000 e 126
5.6.1 Testsuiteo o 126
5.6.2 Results and interpretations 126
57 Conclusion 000000 129

Chapter 5. Implementations and validation

5.1 Introduction

This chapter is dedicated to detail the implementation and validation of the
proposed theoretical contributions and research activities performed in the last
chapters (3 and 4), in the context of the formal verification of the AADL lan-
guage. We describe firstly how the model transformation and formal verification
phases are automated by means of our Ocarina extension. Then, we detail our
experiments to validate the proposed contributions.

This chapter is organized as follows: section 5.2 represents the Ocarina architec-
ture; our implementations are detailed in section 5.3; The resulting tool-chain
is represented in section 5.4; Experiments on three case studies are detailed in
section 5.5; A scalability study is discussed in section 5.6.

5.2 Ocarina architecture

Ocarina is a model processor for the AADL language. Its compiler is designed
with the Ada language with a modular architecture, as depicted in Figure 5.1.
As mentioned before (section 2.3.3.1 of chapter 2), analyses and generations are
handled using ASTs (Abstract Syntax Tree) which are the internal representation
of models (AADL, annexes, programming languages, etc.). Based on the language
grammar rules, the model is decomposed into a set nodes hierarchically connected
to create the corresponding syntax tree. These ASTs are manipulated in three
distinguished parts:

e Central library: this part consists of a set of routines allowing the AST
construction and manipulations of the AADL models (Generic routines)
and other languages such as Ada, C and Petri nets (Specific routines).
These routines are used to manipulate files and strings and to facilitate the
access and update of the nodes of the ASTs (functions for node builder and
finder).

e Frontends: this part ensures lexical, syntactic and semantic analyses of
AADL models. From the syntactic phase, the AADL AST is created using
routines of the central library, which is then semantically checked according
to the described semantics in the AADL standard [10]. At the instantiation
phase, the tree is decorated with information about properties and relations
between components, to obtain a complete AADL AST. This tree represents
a hierarchical view of the AADL instance model, whose root is the top-level
system component of the model describing the entire application topology
(access for all subcomponents of the AADL model). In addition to AADL,
other secondary frontend modules are developed in order to support the

100

5.2. Ocarina architecture

syntax of some annexes (ARINC653, EMV2 and REAL). These annexes are
handled with separate lexical, syntactic and semantic analyzers according
to their grammars to produce specific ASTs.

Backends: this part provides different automatic code generations. Us-
ing central library routines, the instantiated frontend ASTs are expanded
and then used for model and code generation. The expansion phase aims
to simplify or add some constructions of the ASTs (such as adding spe-
cial port for dispatching in the case of thread components). During this
phase, high-level errors can be detected like unsupported dispatch protocol
or missed connections. The code generation phase is modularly designed
for maintainability /extensibility and optimization ends: the AADL model
considered as a pivot model from which a set of model can be separately
generated using specific modules. Each code generation has its specific
modules that implement transformation rules to construct an intermediate
tree of the target language (Tree conversion), which will be scanned (Code
printing) to finally generate source code files.

Frontend Central library

- 000

AADL+ |—, Lexical analysis T <— | Generic routines

Annexes .
I Specific routines
Syntactic % l
- Backend

analysis —
abstract syntax tree e
. - o
—> expansion = E’m
expanded
instance tree
. 1)
Semantic S’\
" - {" 19
analysis A0
complete abstract
syntax tree Tree —_

conversion
abstract syntax tree

of target language

C d i t- —————————————
instance tree) Code ||

FIGURE 5.1: Ocarina compiler architecture

In this thesis, we contribute to the Ocarina project by adding extensions to
implement the AADL2LNT transformation, in order to draw a gateway to the
CADP toolbox. We extend the compiler with a set of modules in its different
parts. Since we support the Behavior annex at the behavioral mapping level, this
annex is considered as input and should be analyzed in the frontend part. The
central library is enriched with the required routines for both Behavior annex and

101

Chapter 5. Implementations and validation

LNT ASTs, based respectively on the Behavior annex [9] and LNT [48] grammars.
Finally, the AADL2LNT transformation rules are applied in the backend part to
produce the LNT specification.

5.3 Ocarina extensions

In this section, we describe our implementations within the Ocarina compiler to
analyze the Behavior annex specifications and produce the final LNT specification
for a given AADL model.

5.3.1 Behavior annex parsing

From the Behavior grammar described in the Behavior annex standard [9], we
add routines for the Behavior annex syntax tree (BA AST) construction, whose
root corresponds to the behavior_annex rule in the Listing 5.1. Then, the tree
is composed of lists for variables, states and transitions sections.

LISTING 5.1: Behavior_annex grammar rule [9]

behavior_annex ::=

[variables { behavior_variable } +]

[states { behavior_state } + |

[transitions { behavior_transition } +]

[N

The frontend handles Behavior_specification clauses following Ocarina
analysis phases as shown in Figure 5.1:

e Behavior lexical analysis: the specification is parsed to distinct tokens and
identify the Behavior annex keywords.

e Behavior syntactic analysis: the set of tokens is analyzed according to the
Behavior annex grammar. For each Behavior_specification, a BA
AST is created and hierarchically constructed and then attached to its

corresponding AADL component (thread, device, subprogram, etc.).
Thus, the AADL AST is completed with BA ASTs to obtain a final AADL-
BA AST.

e Behavior semantic analysis: the BA ASTs are analyzed after the semantic
analysis of the AADL model. Then, each BA AST is visited to check
semantics rules detailed in the Behavior annex standard [9] as follows:

— Naming rules such as the unicity of identifiers in the scope of the

Behavior_specification clause;

102

5.3. Ocarina extensions

— Internal semantic rules to validate the specification descriptions such
as transitions from final states are not allowed;

— External semantic rules to validate dependencies between the Behavior_
specification clauses and the core AADL language such as local
variables must be explicitly typed with a declared data component,
and the compatibility rules with the Dispatch Protocol property
values (e.g. the dispatch_trigger_condition can not be de-
clared within the behavior of a periodic thread)

Note that, throughout these phases, if a problem is detected, an error message
will be displayed to explain the problem and the compilation will be interrupted.

The Behavior annex is defined to refine the implicit behavior specifications that
are specified by the AADL core language (e.g. extending the execution and dis-
patch semantics of threads). Thus, the Behavior annex descriptions depend on
the AADL component which requires the respect of a set of semantics depen-
dency rules (external semantic rules). For this reason, the semantic analysis is
applied on the complete AADL-BA AST, so that, these rules are easily verified
on both AADL and BA ASTs.

To verify the Behavior annex parser, we implemented an Behavior annex backend
generator, which gathers a set of functions regenerating Behavior_specification
code from an BA AST. A test suite is also defined using the Behavior annex stan-
dard examples to check different syntactic and semantic rules.

5.3.2 LNT code generation

In this section, we describe the LNT generator implemented within the Ocarina
compiler in order to produce an LNT specification compliant with the CADP
toolbox. Based on the LNT grammar described in its manual [9], a set of LNT
routines are firstly added in the central library for the LNT AST construction.
Then, the defined AADL2LNT transformation with its different mapping levels is
implemented within the Ocarina backend.

We remind that only instantiable systems are accepted for the AADL2LNT trans-
formation, which means that the model is successfully analyzed (lexically, syn-
tactically and semantically) and all the components are bound to each other, as
when all threads are bound to the processor. In addition, we note that a set
of standard properties should be used as described in section 4.2.3 (chapter 4) and
the data components should be typed with the standard Base_Types package.
Else, an error or warning message is displayed. Firstly, the AADL AST is created
and instantiated in the frontend and becomes ready for the manipulations with
the LNT generator. Then, depending on the AADL model kind, the appropriate
transformation level is applied in the Backend. Note that non-supported elements

103

Chapter 5. Implementations and validation

(e.g. bus, shared access) are automatically ignored. And when using the
Behavior annex, the transformation is applied on the complete AADL-BA AST.

5.3.2.1 Model transformation

Following the Ocarina backend modular architecture, we implement the AADL2LNT
transformation in two phases. The transformation rules are directly applied on
the AADL AST to simultaneously build the LNT AST (AADL-LNT tree con-
version). Then, the LNT AST is scanned by the LNT code generator (LNT
printing) in order to produce source code files (% .1nt).

To obtain an LNT modular specification, we generate a set of LNT modules,
which corresponds to the construction of a set of LNT ASTs. Two main modules,
Types and Main, are always generated for all LN'T specifications. Then, according
to the mapping level, a set of LNT modules is added as follows:

e Threads module consists of a set of the THREAD and DEVICE declarations,
whose generation depends mainly on the port declarations in the thread
or device components.

e Processor module contains the SCHEDULER process with a set of LNT func-
tion definitions required for the thread scheduling and execution. The
SCHEDULER generation needs the extraction of a set of thread informa-
tion (task model) to be included in its initialization part, such as the list of
thread instances and the set of values of each thread properties.

e Port_Connections and Port_Connections_BA are generic modules included
within the compiler resources. They are copied in the work directory as
required for the communication or behavioral mapping. Each module consists
of a set of CONNECTOR declarations that will be instantiated for each port
connection.

All declared processes in different modules should be instantiated and synchro-
nized to form the whole system, which is based on the generation of two modules:

e Types module consists of a set of LNT types, functions and channels re-
quired for different temporal calculations and process synchronizations:
THREAD-CONNECTOR, CONNECTOR-SCHEDULER and THREAD-SCHEDULER.
This module depends largely on the mapping level: some generic definitions
at the communication mapping level, are replaced at the behavioral mapping
level.

104

5.3. Ocarina extensions

e Main module imports all the other modules to specify the MAIN pro-
cess based on different definitions (types, channels, processes THREAD,
SCHEDULER, etc.). This module is the entry-point of the whole LNT spec-
ification, which will be later used in the verification phase.

During the AADL2LNT generation, a set of naming rules are applied, for trace-
ability ends. At the THREAD level, all AADL port identifiers are conserved and
prefixed by "PORT_". Also, all port content variables, Behavior annex variables
and states identifiers are conserved in the behavioral mapping. Similarly, at the
MAIN level, the generation conserves AADL component implementation identi-
fiers as follows: the thread identifier is prefixed by "THREAD_”; the device
identifier is prefixed by "DEVICE_". For each AADL port connection, two identi-
fiers are prepared based on the connection name which is prefixed with "SEND_”
and "RECEIVE_" to represent two gates (see in section 4.3.3.1 of chapter 4).

5.3.3 SVL script generation

In addition to LNT modules, we note that a second input is provided for ana-
lyzing with the CADP toolbox. A script file (demo.sv1) containing a set of
operations with SVL (Script Verification Language) [67] language is also gener-
ated to automate the verification phase. In the following, we present the SVL
language, then we propose an SVL script for the AADL model verification.

5.3.3.1 SVL language

The CADP tools are traditionally invoked (with many options) from the com-
mand line. Using the SVL language, the use of several tools is simplified within a
single script to orchestrate verification phases. SVL is both a high-level language
for the description of complex verification scenarios and a compiler dedicated to
this language.

Briefly, the SVL language offers a way to describe verification phases, under the
form of sequences of statements based on expressions. The SVL statements are
either: assignments (to produce a file containing a representation of an expres-
sion); behavior comparisons; temporal logic verifications (verifying a temporal
logic formula in an expression); deadlock/livelock checks; property definitions; or
property checks. The expressions represent the state spaces and the operators
for the composition, generation, abstraction, etc.

5.3.3.2 SVL script for AADL model

In this thesis, SVL is used to describe the AADL model verification based on
the model-checking of a set of behavioral properties. These properties are spec-

105

Chapter 5. Implementations and validation

ified using the SVL property statement embedding a temporal logic verification
statement, that contains the temporal logic formula.

This file is directly created for each AADL system (a model-text transformation
without an SVL AST). The script skeleton is included in Listing 5.2, having two
main parts: compilation of the LNT specification (assignment statement) and
model-checking of a set of generic properties (property definitions and checks).

A property definition consists of a name, optional parameters, comments and
possibly an expected result (excepted TRUE/FALSE) that must be attached
to each embedded verification statement (temporal logic verifications, deadlock-
/livelock checks, etc.).

In the case of a verification statement, a property is defined to evaluate a formula
(temporal logic formula) on a B behavior, with the 7" tool using the M method,
as shown in line 21 of Listing 5.2. This structure is used to specify a set of
properties to evaluate the LNT specification with the CADP model-checkers (see
section 5.5.3.2 of chapter 5).

LisTING 5.2: SVL script skeleton for AADL models

% DEFAULT MCL_LIBRARIES="standard . mcl”
— Compilation of LNT specification
"Main . bcg”’= generation of "Main.Int”;
— Verification of a set of generic properties
— deadlock/livelock checking statements
property DEADLOCK FREEDOM is
deadlock of ”Main.bcg”;
expected FALSE;
end property;
property LIVELOCK is
livelock of "Main.bcg”;
expected FALSE;
end property;
— property definition
property property_name (parameters) “comment” is
B |= [using M] [with T] formula;
expected TRUE;
end property;
— model—checking
check property_name (parameter_1);
check property_name (parameter.i);

T = I R N N N

[T T S S
N~ O © ® N O oA W N = O

check property_name (parameter_n);

N
w

5.4 Tool-chain

The implemented AADL2LNT transformation allows the definition of a tool-chain
based on Ocarina for architectural modeling and CADP for formal verification,

106

5.4. Tool-chain

as depicted in Figure 5.2. Note that the AADL2LNT extension has been validated
and integrated in the official Ocarina GitHub repository to be available for aca-
demic and industrial users '. In addition, the CADP toolbox can be downloaded
with both academic and commercial licenses from its official web site 2.

As input, the tool-chain takes an AADL model that may contain Behavior annex
specifications. This model is handled by different frontend analysis phases. Then
it is transformed in the backend modules. As result, the following outputs are
generated: the LNT specification composed of 5 LNT modules in separate files
(Threads, Processor, Ports, Types and Main); and the script file (demo.suvl).

The provided tool-chain ensures an automatic and transparent AADL model
transformation and formal verification. The transformation is proceeded using
the Ocarina command line, then, the generated SVL script is simply invoked to
begin the verification with the CADP toolbox.

In addition, the produced LNT specification can be considered as a good base of a
manual verification. In this case, designers may complete different LNT modules
and verify new properties (to be added in demo.svl) for a specific case study (see
section 5.5.5 of chapter 5).

Lexical analysis @+ AADL generic LNT+BA specific
‘ routines routines

Syntactic analysis 1
AADL+BA 4
—
model Semantic analysis
i AADL-LNT tree
Instantiation S conversion

4 ; ;
LNT code SVL code Code generation
generation generation Ada, C

Analysis l
Results LNT Modules SVL Script

—
LTS generation
[Model-Checking] [Simulation] Code
| |
| |

FIGURE 5.2: Ocarina-CADP tool-chain

'Ocarina GitHub: https://github.com/OpenAADL/ocarina
2CADP web site: http://cadp.inria.fr/

107

Chapter 5. Implementations and validation

5.5 Case studies

The proposed AADL2LNT transformation has been tested with various real-time
systems. In this section, we present experiments performed on three case studies
(flight control system, line follower robot and pacemaker device) through different
development phases: modeling, model transformation and formal verification. In
addition, we discuss the usability of the analysis results and the possibility of a
manual verification.

5.5.1 AADL modeling

In the design phase, we model the considered real-time case studies with the
AADL language with its Behavior annex. As shown in Table 5.1, the FCS (flight
control system) case study allows the illustration of both scheduling and commu-
nication mapping levels. While, the Robot (line follower robot) and Pacemaker
systems cover different transformation levels including the behavioral mapping.

TABLE 5.1: Case studies

‘ Mapping level ‘ FCS ‘ Robot ‘ Pacemaker
Scheduling thread periodic sporadic + periodic | sporadic + timed
Processor RM + EDF RM RM
Communication | port connection | data event data event
states - intermediate + | complete
Behavioral complete

conditions - dispatch + execute

dispatch + timeout

5.5.1.1 Flight control system

The flight control system (FCS) is a safety-critical avionics system for aircraft
controlling. This system controls the altitude, trajectory and speed of an airplane.
We consider a simplified version, composed of 7 periodic tasks which collaborate
in order to send a feedback to the control display system. As shown in Figure 5.3,
the fastest subsystem executes at 10 ms, it acquires the state of the system
(angles, position, acceleration) and computes the feedback law of the system.
The order is then sent to the flight control surfaces. The intermediate subsystem
is the piloting loop, it executes at 40 ms and determines the acceleration to
apply. The slowest subsystem is the navigation loop, it executes at 120 ms and
determines the position to reach. The required position of the airplane is acquired
at the slow rate.

108

5.5. Case studies

Reclluired
Pos:ition

(phs—c)

F1GURE 5.3: Flight control system

120 ms 40 ms 10 ms
--------------------- R R A R Rl
' ' '
' ' '
' ' '
Requireds Requirad '
-celerath Jo ! . '
Navigation Law Acceleration Piloting Law Angle Fe;j::rk order 1
(NL) (acc,c)l (PL) (angle,!lt) (FL) :
' ' '
' ' '
' 1 Observed (angle_o) '
: 1 Angle angie-o :
1Observed ! !
1Acceleration ' Feedback angle "
Observed 1(acco) . Filter £ .
Position ' ' (FF) '
(pos-o) ! ! :
' ' '
' ' '
' ' '
' Piloting Filter ' e 1
1 PF) 1 position
! ((acc_i)} Acceleration '
' ' Position 1
' ' isiti '
Navigation Filter ' L Acquisition acceleratidn
(NF) T — 0 (AP)
: (pos-D) : (aco) |
' ' '

The FCS AADL model, depicted in Figure 5.4, composed of 7 periodic threads
(FL, PL, PF, NL, NF, AP and FF) grouped in one process (process_FCS)

bound to one processor.

The model contains a set of inter-thread port

connections (declared at the process level) and a set of thread-device port
connections with 4 devices (declared at the system level).

System_FCS

Operator

pos_c |

CPU

process_FCS

Platform
NL PL FL
pos M > o —]
p J» pos_c o H | angle ¢ gqer i order '7
i | angle ¢ B order i, » N e
.5 pos_o acc ¢ '-‘ ,' acc_c acc of anglefo;:
A i A ’j
PF FF IMU
o> e
] aceo angle o | 1 angle
f angle acc
acc_i angles | .
A l
NF
FrRCR ops
! — acc
i ,' acc ‘1 |
i ; i it g'positioll

P i‘ Wl pos-! position 4 I d position

---------------------------- R |

55.1.2

The Robot system is a machine that follows a black line on a white area.

FIGURE 5.4: FCS AADL model

Line follower robot

It

uses sensors to detect the line and control units to make movement decisions and

109

Chapter 5. Implementations and validation

command motors (wheels). The sensors control regularly the follow-up of the
black line and send information to control units. The motors are commanded
(turn on/off) only if the Robot loses the line, which is obviously a non-periodic
action. So the motor tasks would be modeled using sporadic threads.

The Robot AADL model, depicted in Figure 5.5, is composed of right and left
similar sides. Each Robot side is represented with 3 threads: a periodic Sensor
thread for sensing; a periodic Control thread for controlling; and a sporadic
Motor thread for turning off/on the motor. These threads are in communi-
cation (sensor-control/control-motor) through event data port connections. At
the system level, all the considered threads are declared in process compo-
nents that are bound to one processor. The system may be completed with
other hardware components to represent devices for the sensors and motors,
yet the current software version is sufficient for our purposes.

System_Robot

proc_sensor_left proc_sensor_right
__Sensor Sensor
i H i
! 1
.: sensor_event f.sensor_event f
i isensor_event i i
| = sensor event! ______________!
\ proc_control -
info_sensor_L info_sensor_R
CPU
~ Control_L Control_R
R e Cr e
.'flnfo_sensor :’ i info_sensor '€
1 1 1 1
i order_motor i H order_motor |
[! i 7
_ order_motor_L order_motor R\ _
proc_servomotor_left proc_servomotor_right
order order Motor
Motor _________

FIGURE 5.5: Robot AADL model

The Robot AADL model is extended with a set of Behavior annex specifications
describing the control behavior to keep following of the black line. This behavior
concerns mainly the Control thread. Each period, the Control thread
receives information (with the info_sensor port) from the Sensor thread
and sends, when needed, an order (with the order motor port) to the Motor
thread. If the sensor detects a deviation, the corresponding motor should be
stopped to make the Robot turn and find again the black line. If the sensor
detects the line again, then the control unit re-activates the motor to maintain

the advancement of the Robot.

The Robot threads communicate through event data port typed with Boolean
as follows: in the sensor-control connection, the true value means that the Robot

110

5.5. Case studies

is on the line and the false value signifies that the Robot goes out of the line; and
in the control-motor connection, the true value represents an order to the motor
to turn-on and contrary the false value is an order to turn-off.

The described behavior is specified within the Behavior_Specification of
the Control thread, as included in Listing 5.3. This specification is mainly
composed of two complete states s_.online and s_outline to model the
Robot states, respectively, on and out of the black line. Initially, the Robot is
considered in the s_online state (declared as initial). Every dispatch, the
Robot controls its state. Then, according to the info_sensor port variable
value, it may change the state. Being in one of its complete states (s_online
or s_outline), the Robot may stay in the same state or it may move to another
complete state, which is designed using the execute conditions (via interme-
diate execution states s1 and s2). While the info_sensor port value is not
changing, the Robot keeps the same state (lines 9 and 14 in Listing 5.3). If it is
changed, the Robot moves into another state (lines 10 and 15 in Listing 5.3). In
this case, the order _motor port variable is updated and an event is sent to the
corresponding Motor thread.

LISTING 5.3: Robot: Control Behavior_Specification

thread implementation Control.Impl
annex Behavior_specification {*x
states
s_online : initial complete final state;
sl, s2 : state;
s_outline : complete state;
transitions
s_online —[on dispatch]—> sl;
sl —[info_sensor]—> s_online;
sl —[not info_sensor]—> s_outline {
—— order for motor to turn off
comm_motor !(false)};
s_outline —[on dispatch]—> s2;
s2 —[not info_sensor]—> s_outline;
s2 —[info_sensor]—> s_online {
—— order for motor to turn on
comm_motor ! (true)};

© 0 N o A W N R

[e e
N o ok W N o= O

4)5
end Control.Impl;

= e
© ®

5.5.1.3 Pacemaker

The Pacemaker [106, 98] is a real-world case study. It is a medical device inserted
in the body of a patient, to regulate his/her heart beating with electrical impulses,
as shown in Figure 5.6. The Pacemaker is used in the case of heart rhythm
problems (inability to maintain a normal heart rate).

111

Chapter 5. Implementations and validation

s
‘< qg
am A Pa(:émaker
Leads ;\
NS

FIGURE 5.6: A pacemaker implantation (taken from [47])

Depending on the heart problem, the Pacemaker provides different modes that
perform different kinds of therapeutic behavior. Modern pacemakers are designed
to pace only when necessary. The mode determines the type of pacing that
must be implemented. In this thesis, we consider the VVI (Ventricle-Ventricle-
Inhibited) mode which is a single-chamber pacing mode: only ventricular cham-
ber is sensed and paced; and the pace is inhibited when the heart is beating
fast enough on its own. In this mode, two parameters are required: the LRL
(Lower Rate Limit) which is the minimum rate that must be guaranteed by the
pacemaker; and the VRP (Ventricular Refractory Period) which is a refractory
period after stimulation (pace or beat) in which senses are ignored.

The Pacemaker AADL model ? is depicted in Figure 5.7. Structurally speaking, it
consists of two main parts: the device controller monitor (DCM system), which
embeds the software implementing the therapeutic behavior to monitor; and a
pulse generator (PG device) with tow electrical leads for ventricle and atrium
heart chambers. The DCM system consists of a Pacemaker_SW process
bound to a processor component. Since we deal with the VVI mode, atrium
heart chambers are not designed. Thus, PG device represents only ventricle
lead. The Pacemaker system is included in Listing 5.4. The DCM system
and PG device are in communication through event port connections to sense
the heart beating (sense in port) and to send a pacing order (pace out port).

LI1STING 5.4: Pacemaker: Pacemaker system implementation

connection_02 : port DCM.normal_Beat —> PG.normal_beat;
end Pacemaker.Impl;

1 |system implementation Pacemaker.Impl

2 |subcomponents

3 PG : device Pulse_Generator.impl;

4 DCM : system Device_Controller _Monitor.Impl;

5 | connections

6 connection_00 : port PG.ventricle_sense —> DCM. ventricle_sense;
7 connection_01 : port DCM. ventricle_pulse —> PG.ventricle_pulse;
8

9

3This model is inspired from the AADL pacemaker model published by El-
lidiss technologies: http://www.ellidiss.fr/public/wiki/attachment/wiki/
AADL/Pacemaker.aadl#L207

112

5.5. Case studies

System_Pacemaker

DCM

Pacemaker_SW

MMode VRPTimeout

PG D 1
1 m————————
pace_or_normal_vrp Hinput
1 [

1
1 1
"]
. vrp_timeout ﬁ—{omput i
ventricle_sense sense] H 1
ventricle_sense : } sense ! L |
. ventricle_pulse ace LRLTimeout
ventrile_puise Puse } PR e { e
1
1 ace_or_normal Irlb—} input !
normal_bea normal_beat ormal § pace_or_| - P 1
< T<hormal 1 1 I
] Irl_timeout H output 1
[— ! [|
CPU
- J
. J

FIGURE 5.7: Pacemaker AADL model

The VVI therapeutic behavior is accomplished using 3 threads (within the
Pacemaker_SW process) interconnected and enriched with Behavior annex
specifications. The VVI pacing is not a periodic action, it depends on sensing
and VRP/LRL periods. Thus, we use a sporadic thread to present the VVI
mode (thread VVIMode). In addition, VRP and LRL periods are considered
as two timers that should be reinitialized after each pacing or beating event. So
they are consequently designed as timed threads (Dual Or Timer VRP and
Dual Or_Timer LRL).

The defined thread components are then completed with Behavior annex de-
scriptions. In Listings 5.5 and 5.6, we include the Behavior_Specification
of the VVIMode and Dual Or_Timer VRP threads. The VVIMode specifi-
cation consists of one complete state and 3 transitions to describe different
VVI mode behaviors as follows: when the heart has no beat during an LRL pe-
riod, VVIMode causes a pace (an event on the pace port) (transition line 21
in Listing 5.5); if the sense (event on the sense port) comes too soon after a
beat (during the VRL period), it will be ignored (transitions lines 9 and 13 in
Listing 5.5); and when the heart is beating regularly, VVIMode detects a normal
beating rhythm (an event on the normal port)(transition line 13 in Listing 5.5).
The Dual Or Timer VRP specification is mainly based on a timeout transition
(line 7 in Listing 5.6), in which an event is sent to the VVIMode thread to
mark the end of the VRP period (received on the vrp_timeout event port).

113

Chapter 5. Implementations and validation

LisTING 5.5: Pacemaker: VVIMode Behavior_Specification

1 |— wvrp data subcomponent saves the VRP state,

2 |— it takes the walue 1 during the VRP and 0 otherwise
3 |thread implementation VVIMode.Impl

4+ |annex Behavior_Specification {xx

5 states

6 sl : initial complete final state;

7 transitions

8 — out of VRP

9 sl —[on dispatch vrp_timeout]—> sl {

10 vrp = 0

b

— normal heart rate rhythm is detected

= e
[CI-

13 sl —[on dispatch sense |-> sl {
14 if (vrp = 0)
15 normal!; — sent an event in mnormal port

pace_or_normal_vrp !;
pace_or_normal_lrl !;
vrp = 1

end if

== = e
© o N o

[V)
o
—

out of LRL, a pace is sent

—[on dispatch Irl_timeout]—> sl {
pace!;
pace_or_normal_vrp !;

pace_or_normal_Irl !;
vrp = 1

NONONNNN N
N T e S O R T
w |
=

};
ko)

end VVIMode. Impl;

NN
© ™

LISTING 5.6: Pacemaker: Dual_Or_Timer_VRP
Behavior_Specification

thread implementation Dual Or_Timer VRP.impl
annex Behavior_Specification {*x
states
sl : initial complete final state;
transitions
sl —Jon dispatch input |-> sl1;
sl —[on dispatch timout]—> sl {
output!
}s

*k
end Dual Or_Timer_ VRP .impl;

© 0 N o U W N R

_ e
=]

—114-—

5.5. Case studies

5.5.2 LNT code generation

The model transformation of our case studies are performed by the AADL2LNT
Ocarina extension. Table 5.2 sums up the transformation metrics. We obtain
three LNT specifications (with their SVL scripts) as follows:

e FCS LNT specification counts 905 code lines, 100% generated by our exten-
sion. It contains 24 processes, instantiated and synchronized at the MAIN
process: the thread-device port connections are similarly mapped as
the inter-thread port connections.

e Robot LNT specification counts 648 code lines, generated by our exten-
sion with some manual additions. The MAIN process consists of 11 pro-
cesses. Different Behavior specifications are mapped within the
corresponding THREADs. In Listing 5.7, we include extracts from the
THREAD _CONTROL_IMPL process equivalent to the Control thread, we
note that:

— Since Bool is reserved to represent events, the data Boolean type is
mapped by an LNT range type (range (0..1) of Nat), where 0
represents the false value and 1 represents the true value.

— Different intermediate states are hidden and their transitions are em-
bedded within the if transition statement. Starting from a specific
complete state, all possible alternatives (transitions) are added in
the if statement to reach a new complete state. For example, from
the S_ONLINE state, there are two alternatives to reach the S_ONLINE
and S_OUTLINE states (lines 4 and 8 in Listing 5.7).

e Pacemaker LNT specification counts 713 code lines, generated by our ex-
tension with some manual additions. The MAIN process instantiates 9 pro-
cesses. Different Behavior_specifications are mapped within the
corresponding THREADs. We include in Listing 5.8 and 5.9 extracts from the
THREAD_VVIMode_IMPL and THREAD_DUAL_OR_TIMER_VRP_IMPL pro-
cesses equivalent to the VVIMode and Dual Or _Timer VRP threads. We
note that:

— EVENT_»* variables are used for the event port mapping.

— The THREAD _VVIMode_ IMPL process includes all transitions from the
AADL initial model (3 transitions of Listing 5.5) since they are out of
complete states.

— The THREAD DUAL_OR_TIMER_VRP_IMPL contains the if transition
statement of an on dispatch timeout condition which is implic-
itly ensured after checking the EVENT_INPUT event port (lines 6 .. 12
in Listing 5.9).

115

Chapter 5.

Implementations and validation

TABLE 5.2: Case studies transformation and verification metrics

FCS Robot Pacemaker
AADL ‘ LNT AADL ‘ LNT AADL ‘ LNT
source code lines source code lines source code lines
188 ‘ 905 138 ‘ 648 108 ‘ 713
transformation transformation transformation
7 threads 7 THREADs 6 threads 6 THREADs 3 threads 3 THREADs
4 devices 4 DEVICEs - - 1 device 1 DEVICE
1 process - 5 processes - 1 process -
17 data connec- | 12 10 event data | 4 Event_Data- | 13 event connec- | 5
tions Data_CONNECTORs| connections CONNECTORs tions Event _CONNECTORS
1 processor 1 SCHEDULER 1 processor 1 SCHEDULER 1 processor 1 SCHEDULER
1 system 1 MAIN 1 system 1 MAIN 1 system 1 MAIN
LTS LTS LTS
2439 states 918 states 5688 states
B 14570 transitions | 953 transitions B 5691 transitions

The LNT specification complexity depends on the threads and port connections
numbers. From models with independent threads, we obtain simple LNT mod-
els without CONNECTOR synchronizations. While with highly-connected models,
the processes number increases significantly.

LI1STING 5.7: Robot: extract of THREAD_CONTROL process

STATE := S_OUTLINE;

process THREAD.CONTROLIPML |
ACTIVATION (T_Dispatch_Completion);
PORT_INFO_SENSOR (?INFO_SENSOR,?EVENT_INFO_SENSOR);
if (STATE =— S_.ONLINE) and (INFO_SENSOR =— LNT_Type_Data (0)) then

COMM.SERVO := LNT_Type_Data (0)

elsif (STATE =— S_ONLINE) and (INFO_SENSOR =— LNT_Type_Data (1)) then

© 0 N O TR W N =

STATE := S_ONLINE — no actions
elsif (STATE =— S_.OUTLINE) and (INFO_SENSOR
STATE := S_ONLINE;
COMM.SERVO := LNT_Type_Data (1)
elsif (STATE =— S_.OUTLINE) and (INFO_SENSOR
STATE := S_OUTLINE
end if;
PORT_-COMM_SERVO (COMM.SERVO, true);
DISPLAY_STATE (Thread_Control, STATE)

=
o

e e s e
W N oUW N e

end process

-
©

LNT_Type_Data (1)) then

LNT_Type_Data (0)) then

The provided Ocarina extension automates an important part of the defined

AADL2LNT transformation and eliminates its complexity *.

Especially, in the

SCHEDULER mapping which is less generic (extraction of the task model) com-
pared with others THREAD, DEVICE and CONNECTOR process generation. For
example, the Robot Processor module counts 273 lines (nearly 50% of code).
Another difficulty resides at the hierarchical mapping level. The mapping of the
MAIN process seems tricky since we deal with a lot of process instances and gates.
Without forgetting that all port connections, following component hierarchical
containment (process and system levels) should be abstracted at the MAIN

4Note that manual additions are only at the behavioral mapping level

116

5.5. Case studies

level. For instance, to map the 7 threads of the FCS case study, we should syn-
chronize 24 process instances on 31 different gates. In addition, the mapping of
Types module depends on the mapping levels and may count up to 20 definitions
between types, functions and channels in the case of the behavioral mapping.

LISTING 5.8: Pacemaker: extract of THREAD VVIMode process

NN NN N R e e e
A WD =R O © KOOk W RO

e
= o

1 | process THREAD_VVIMODEIMPL [...
2 ACTIVATION (T_Dispatch_Completion);
3 PORT_SENSE (?EVENT_SENSE) ;
4 PORT_LRL.TIMEOUT (?EVENT_LRL.TIMEOUT);
5 PORT_VRP_-TIMEOUT (?EVENT_VRP.TIMEOUT);
6 — on disptch VRP.TIMEOUT
7 if (STATE = S1) and (EVENT_.VRP.TIMEOUT) then STATE := S1; VRP := 0
8 — on disptch Iri_-timeout
9 elsif (STATE =— S1) and (EVENTLRL.TIMEOUT) then
STATE := S1;
PORTPACE (true);
PORT_PACE.ORNORMALIRL (true);
PORT PACE.ORNORMAL.VRP (true);
VRP := 1
— on disptch sense
elsif (STATE = S1) and (EVENTSENSE) then
STATE := S1;
if (VRP = 0) then
PORTNORMAL (true);
PORT_PACE.ORNORMALLRL (true);
PORT_PACE.OR.NORMAL_VRP (true);
VRP = 1
end if
end if
5 |end process
LISTING 5.9: Pacemaker: extract of THREAD DUAL_OR_TIMER VRP
process
1 | process THREAD DUAL.OR.TIMER_VRP.IMPL |
2 | ...
3 ACTIVATION (T_Dispatch_Completion);
4 PORTINPUT (?EVENT.INPUT);
5 — on dispatch event_port
6 if (STATE = S1) and (EVENT.INPUT) then
7 STATE := S1
8 — on dispatch timout
9 elsif (STATE = S1) then
STATE := S1;
PORT.OUTPUT (true)
end if;

=
w N

DISPLAY STATE (DUAL_OR-TIMER_-VRP, STATE)

i
S

end process

-
ot

5.5.3 Formal verification

After AADL2LNT transformation, various analyses can be performed by the
CADP toolbox. In this thesis, we deal with two important formal techniques:
simulation and model-checking. The LNT specification can be directly simulated

117

Chapter 5. Implementations and validation

using the CADP simulators like the OCIS (Open/Ceesar Interactive Simulator)
simulator enabling step-by-step simulation with backtracking.

In addition, an automatic verification phase can be carried out by the generated
SVL script. In Listing 5.10, we include an extract from the Pacemaker SVL
script. We remind that this script allows two steps, the compilation and then the
verification of the LNT specification, respectively detailed in the next sections.

LisTING 5.10: Pacemaker: mini SVL script

% DEFAULT MCL_LIBRARIES="standard . mcl”
"Main.bcg”’= divbranching reduction of "PACEMAKER DCM Main. Int”;
property Scheduling_Test (THNAME, ID)

"Thread $THNAME scheduling test”

is
"Main.bcg” |= with evaluator3
NEVER (7”ACTIVATIONS$ID !T_Error”);
expected TRUE;
end property;
check Scheduling_Test (VVIMODE, 1);
property Connection (ID)
"After a SEND $ID action, a RECEIVES$ID is eventually reachable”

© 0 N o Uk W N e

== e
N o= O

is

I
= W

"Main. bcg” |= with evaluator3
AFTER_1.INEVITABLE 2 (’SEND.$ID !x’ , "RECEIVES$ID !x’);
expected TRUE;

end property;

check Connection (CONNECTION.00);

check Connection (CONNECTIONO1);

check Connection (CONNECTION_02)

[S
S © ®w 94 o

5.5.3.1 Compilation: state space generation

This is an imperative step to enable the CADP verification of the LNT specifi-
cations. A translation from LNT into LOTOS is firstly applied with a set of the
CADP tools, as follows:

e LNT.OPEN is a script used to automate the conversion of LNT programs
to LOTOS code. It provides a connection between LNT2LOTOS and the
OPEN/CASAR framework [65] °.

e LPP is an LNT preprocessor that helps translating the LNT notations (for
numbers, lists, etc.) into LOTOS models.

SOPEN/CAESAR is an environment that allows user-defined programs for simulation, ex-
ecution, verification and test generation to be developed in a simple and modular way. This
framework includes various modules such as the OCIS simulator, the EVALUATOR, model-
checker, etc.

118

5.5. Case studies

e LNT2LOTOS translates the LNT program into LOTOS. The input specifi-
cation must be a valid LNT program (compilable) according to the language
syntax described in its manual [48].

Thereafter, an LTS is generated from the LOTOS program by the CASAR com-
piler [64] and saved with the BCG (Binary-Coded Graphs) format. The LTS
represents the state space of the LNT specification that will be explored later
in model-checking. LTSs can be explicitly manipulated as BCG graphs, which
is both a format for LTSs representation and a set of libraries and programs
dealing with LTSs (information (BCG_INFO), display (BCG_-DRAW), edition
(BCG_EDIT), minimization (BCG_MIN), etc.).

In addition, the LTS generation can be smartly reduced to improve the verifica-
tion performance. It can also be personalized using the SVL language (hiding,
cutting, renaming labels, etc.). As illustrated in Listing 5.11, we include the
generation of the control_thread_states.bcg graph from which we obtained an LTS
which is depicted in Figure 5.8. It is a divbranching reduction [68] of the
Robot case study that hides all LTS labels except the DISPLAY STATE and
INFO_SENSOR gates, in order to highlight the Behavior annex states and tran-
sitions of the Control thread. The resulting control_thread_states.bcg, drown
in Figure 5.8 by BCG_DRAW tool, represents a reduced LTS of the Robot LNT
specification.

LisTING 5.11: Robot: smart generation with the SVL language

1 |7control_thread _states.bcg”’=

2 divbranching reduction of

3 hide all but

4 DISPLAY STATE, INFO_SENSOR in "ROBOT_Main. Int”
5 |end hide;

Table 5.2 includes LTS metrics of our case studies. These results show the effec-
tiveness of our contribution and the improvements achieved for our work and for
the Ocarina formal verification in general:

e FCS, Robot and Pacemaker systems are presented with small state spaces,
compared to the considered AADL subset (event-driven threads, Behavior
annex, preemptive scheduling, etc.).

e Considering the scheduling mapping level, the obtained activation graph
can be compared to analysis results performed with existing schedulability
analysis tools. For instance, we choose Cheddar [156] tool, since it supports
AADL as input model. The generation of the FCS LTS can be personalized
by cutting the T_Stop and T_Completion labels, thus we obtain the
activation graph counting 52 states corresponding to the same number of
context switches found by Cheddar when analyzing the FCS AADL model.

119

Chapter 5. Implementations and validation

Note that AADL device presence only increases the transitions number
without changing the activation graph.

The FCS was experimented in [129] using a first version of the AADL2LNT
transformation. Regarding the state explosion problem met with this old
mapping, we note a significant reduction (up to 100%) in the state space
with the current transformation version, compared to statistics given in [129].

Note that the Ocarina tool suite is extended in [145, 146, 147] by the gen-
eration of a Petri net model for formal analysis with the Tina tool. This
work is illustrated with the same Robot case study in [145]. Compared to
our experimental results, we note a significant reduction in the state space
metrics: about 918 states and 953 transitions for the Robot LNT specifi-
cation, compared to 65 527 states and 425 985 transitions for a Petri net
model without a timer.

INFO_SENS{R 10 ITRUE INFO_SENSDR !1 I'TRUE

FIGURE 5.8: Generated LTS corresponding to Listing 5.11

5.5.3.2 Verification: model-checking

After state space generation, we reach the verification phase based on the model-
checking of a set of structural and behavioral properties. In this thesis, we work
with the EVALUATOR [120, 121] model-checkers to verify properties expressed

120

5.5. Case studies

in the MCL temporal logic . In our case, the verified properties are integrated
in the SVL script using property statements, which embed MCL temporal logic
formulas, as developed in section 5.3.3. To specify different properties, we use
a set of standard macros (standard.mcl library) for the temporal operators pa-
rameterized by action and/or state formulas, such as SOME (R) (there exists at
least one action sequence R), NEVER (R) (there is no action sequence R) and
AFTER 1 _INEVITABLE 2 (A, B) (after action A, the action B is inevitably
reachable). We include below the set of generic properties for different mapping
levels:

e Scheduling mapping

— Scheduling Test property (Listing 5.12): this property may be
applied at the system level so it will analyze the schedulability of the
whole task model, in addition, it can be parametrized to indicate if a
given thread has respected all its deadlines (absence of the T_Error
label);

— Is_Preempted property (Listing 5.13): a thread may be preempted
by the SCHEDULER, this property detects if a given thread has been
preempted during the scheduling. The absence of all the T_Preemption,
T Dispatch Preemptionand T_Preemption_Completion labels
means that the thread is never preempted.

e Communication mapping

— Connection property (Listing 5.14): this property verifies if a port
connection is well established, through a given port connection AB,
after the transfer of the data or event (a rendezvous on SEND_AB gate),
there is at least one reading of the port content (a rendezvous on
RECEIVE_AB gate);

— Data_Loss property (Listing 5.15): this property detects the loss of
data through a given data port connection AB, it detects the occurrence
of two successive transfers of data (rendezvous on SEND_AB gate),
without a reading of the port content, in this case, the oldest input is
overwritten by the newest one;

— Overflow FIFON property (Listing 5.16): this property detects if
a list (FIFO with N size) of an event/event data port is overflowed,
it detects the occurrence of N+1 successive transfers of events, with-
out any reading of the port content, in this case, the oldest input is
overwritten by the N+1th one.

6The MCL language is based on the alternation-free fragment of the modal mu-calculus [120]
for temporal logic formula specification.

121

Chapter 5. Implementations and validation

I N

[T B o N © o N o A W N e

© 0 N O U W N e

= e
No= O

e Behavioral mapping

— Transition property (Listing 5.17): verifies the transitioning be-
tween two given complete states Sy and S; through the DISPLAY _STATE

communication for a given thread.

LisTING 5.12: SVL schedulability property

property Scheduling_Test (ID) is
"Main.bcg” |= with evaluator3
NEVER (”ACTIVATIONS$ID !T_Error”);
expected TRUE;

end property;

LisTING 5.13: SVL preemption property

property Is_Preempted (ID)
"Preemption test”
is
"Main. bcg”|= with evaluator3
SOME (truex . "ACTIVATION_$ID !T DISPATCH PREEMPTION”
truex . (7ACTIVATION_$ID !TPREEMPTION”)
truex . 7ACTIVATIONSID !T PREEMPTION COMPLETION”);
expected TRUE;
end property;

LisTING 5.14: SVL connection property

property Connection (ID)
?After a SEND_$ID action ,
a RECEIVES$ID is eventually reachable”
is
"Main.bcg” |= with evaluator3
AFTER_1_INEVITABLE 2 (’SENDS$ID !x’ ., 'RECEIVES$ID !x’);
expected TRUE;
end property;

LisTING 5.15: SVL data loss property

property Data_Loss (ID)
?Between two consecutive SEND_$ID actions ,
there must be a RECEIVES$ID ation”
is
"Main_$ID . becg” =
hide all but "RECEIVES$ID”, "SEND $ID” in ”“Main.bcg”
|= with evaluator3
NEVER (truex . ”SEND_$ID !AADLDATA”
(not "RECEIVE.SID !AADLDATA”)x*
"SEND _$ID !AADLDATA”);
expected TRUE;
end property;

—122—

5.5. Case studies

LisTiNG 5.16: SVL FIFO property

property Overflow FIFO_3 (ID)
"Between 3 consecutive SEND_$ID actions ,
there is a RECEIVE$ID action”
is
”"Main . bcg” = with evaluator3
NEVER (truex.”SEND $ID !AADLDATA” .
"SEND $ID !'AADLDATA” .
?SEND_$ID !'AADLDATA” .
(not "RECEIVE_SID !AADLDATA”).
"SEND _$ID !AADLDATA”);
expected TRUE;
end property

© ® N o Uk W N e

== e
N o= O

LisTING 5.17: SVL transition property

property Transition (THNAME, Si, Sj)
"Thread $THNAME, being in state $Si,
the corresponding $Sj state is eventually reachable”
is
"Main.bcg” |= with evaluator3
AFTER_1_.INEVITABLE_2 (”DISPLAY_STATE !$THNAME !$Si”,
"DISPLAY STATE !$THNAME !8$Sj”);
expected TRUE;
end property;

© 0w N O G A W N =

At this level, we can explain the necessity of additional synchronizations like the
DISPLAY STATE communication and the T _Error label in the ACTIVATION
communication as detailed in section 3.4.1 (chapter 3) and section 4.5.3.2 (chap-
ter 4). These synchronizations are visible in the resulting LTS, that so, the
thread behavior can be traced and any Behavior annex state can be inspected.

These properties allow the detection of serious problems at the model level. Since
we deal with real-time systems, it is necessary to validate temporal and commu-
nication parameters such as the deadlock detection, schedulability test and the
detection of connection failures (FIFO overflow, loss of data, broken links) at
early phases of the development process.

5.5.4 Analysis results

An import issue in the AADL formal approaches concerns the usability of the
analysis results produced by the formal tools. In our work, we provide a user-
friendly (simple) output form that is easily interpreted with non formal-expert
designers.

Based on a traceable mapping of the LNT specification and SVL properties, we
preserve information from the initial AADL model through model transformation
and verification so that they are kept until the generation of analysis results.

—123-

Chapter 5. Implementations and validation

The traceability is firstly assumed during the model generation as described in
section 5.3.2.1: the LNT specification preserves the identifiers of the AADL com-
ponents, ports, port connections and Behavior annex variables/states, which are
used in the naming rules of the LNT processes, gates and variables. Thus, ele-
ments from AADL model and Behavior specification can be identified in the pro-
duced LNT specification. In addition, the use of parameterized and commented
properties furthers the traceability and gives understandable results. The pa-
rameters are used to present connections, threads and Behavior states by their
initial AADL names. Thus, each thread, port connection or complete state
can be separately verified and so failures are rapidly localized in the AADL model.

The FCS, Robot and Pacemaker case studies are successfully checked (compilation
and verification). We note that, in general, all generated LNT specification are
compilable with CADP. However, an unicity error may occur when using same
port connection names at different levels (process and system), since all port
connections are abstracted, with their AADL model names, at the MATN process.
To avoid this error, designers should simply use different names (pairwise distinct)
for all port connections in the AADL model.

The displayed analysis results are simple and meaningful: each verified property is
displayed with a Pass or Fail decision. For illustration, we include an extract
from the Pacemaker analysis output in Figure 5.9, which corresponds to the
SVL script of Listing 5.10: Scheduling Test and Connection properties
are applied in the Pacemaker case study. Results for VVIMode thread and all
port connections of Listing 5.4 are obviously identified in Figure 5.9.

Note that different case studies, FCS (48 properties), Robot (28 properties) and
Pacemaker(27 properties), are verified in few second in a basic machine. They
are well scheduled and deadlock-free. All connections are well established. We
test the Robot system with different FIFO sizes and we find that sensor-control
queue size should be >= 2 to avoid overflow problem.

5.5.5 Manual verification

The automatic generation of the LNT specification is an advantageous achieve-
ment in this thesis, allowing an important formal verification phase. Yet, case
studies have their specific details, that may not be modeled in the AADL language
or not considered in our subset. In this case, the produced specification misses
information which may be essential in the verification phase. While defining the
AADL2LNT transformation, we opted to design a modular and traceable map-
ping (see section 3.4.5 of chapter 3) to obtain a comprehensible LNT specification
favoring the manual extensions for a specific case study.

For illustration, we apply advanced analysis on the Pacemaker case study: the
DEVICE_PULSE_GENERATOR_IMPL is completed to be dispatch by the SCHEDULER.

124

5.5. Case studies

@ - o0 hana@h k-pc: ~fsvn_hanajworking/thesis_case_studies/pacemaker
"Main.bcg" = divbranching reduction of "sv100l_ PACEMAKER DCM_Main.bcg"
(* 5499 states, 5499 transitions, 16.6 Kbytes *)

property Scheduling_Test (VVIMODE, 1)
| Thread VVIMODE scheduling test

PASS

property Connection (CONNECTION 00)
| After a SEND_CONNECTION 00 action, a RECEIVE CONNECTION 00 is eventually reachable

PASS

property Connection (CONNECTION_O01)
| After a SEND_CONNECTION 01 action, a RECEIVE_CONNECTION 01 is eventually reachable

PASS

property Connection (CONNECTION_02)
| After a SEND_CONNECTION 02 action, a RECEIVE_CONNECTION_02 is eventually reachable

PASS

FIGURE 5.9: Analysis results corresponding to Listing 5.10

Thus, we can verify the therapeutic behavior of the pulse generator. These
changes consider the DEVICE PULSE_GENERATOR_IMPL and SCHEDULER pro-
cesses with some modifications in the Types module.

Now, we can check, for example, the normal rhythm detection as follows: firstly,
the DEVICE_PULSE_GENERATOR_IMPL should be periodically dispatched to sends
event on sense port every 90 ms; and secondly, we define a new SVL property
(Listing 5.18) that verifies if the THREAD VVIMODE_IMPL puts an event on the
normal (connection_02 port connection) port without any pacing event (no
event in the connection_01 port connection).

LisTING 5.18: Pacemaker: SVL normal rhythm property

property Normal Rhythm is
"Main.bcg” |= with evaluator3
SOME (truex . "RECEIVE.CONNECTION 02 !TRUE”) and
NEVER (”RECEIVE.CONNECTION.01 !TRUE”);
expected TRUE;
end property;

o A W N =

In addition, we add a reachability property, included in Listing 5.19, for the FCS
case study to verify if an order is finally sent by the FL thread (connection
V14 at the system level).

LisTING 5.19: FCS: SVL order reachability property
property ORDER is
"Main.bcg” |= with evaluator3
SOME (truex . "SEND V14 !AADLDATA”);
expected TRUE;
end property;

I N

125

Chapter 5. Implementations and validation

5.6 Scalability

The proposed tool-chain has been initially tested with a set of case studies (flight
control system, pacemaker, robot, door management system, etc.) from the
AADLIib 7 library to validate the correction of the AADL2LNT generation. Such
examples with certain scale are easily verified in few minutes with basic machines.
In addition, we carry out a set of advanced experiments to evaluate the scalability
of our solution.

In a formal context, the state space explosion is a serious issue that discourages
the application of formal methods. As defined in section 2.2.5.1 (chapter 2), the
state space explosion problem occurs when the system state space becomes too
large to be verified. In our work, we deal with real-time systems based on parallel
concurrent behaviors, which often lead to generate large state spaces. To avoid
the pitfall of explosion problem, a set of adjustments (discussed in section 4.3.4 of
chapter 4) were applied on the LNT mapping in order to obtain small state spaces.
The resulting LTS size depends on many factors related to the given AADL model
in different points (tasking model, scheduling protocol, communication, etc.). In
this thesis, we propose a scalability study based on two main factors which are
the number of threads and the simulation interval H (7).

5.6.1 Test suite

A test suite is defined, composed of 100 AADL models, to evaluate three model
families: (i) models with independent threads; (ii) models with periodic threads
and data port connections; (iii) models with sporadic threads and event port
connections. The test is based on a set of generalized Produce-Consumer system:
we increase progressively the number of Produce-Consumer couples with different
thread periods to also increase the H (1 ,) value.

Starting from models with only 2 threads, we reach 40 and 70 threads to be
tested during thousands of units of time (a unit may be any time interval e.g.
10ms). The prepared AADL Produce-Consumer models are transformed into
LNT specifications by Ocarina and then compiled into LTSs by CADP.

5.6.2 Results and interpretations
Tables 5.3, 5.4 and 5.5 summarize some of the resulting LTS metrics. Table 5.3

concerns a set of exhaustive tests of family (i): the H (7 _,) value is between 100
and 30 000 units of time (row 1) and the number of threads is between 50 and

TAADLID is a library of reusable AADLv2 models under the OpenAADL project (https:
//github.com/OpenAADL/AADLib)

126

5.6. Scalability

70 (column 1). Tables 5.4 and 5.5 regroups respectively results of families (ii)
and (iii): the H(7_,) value is between 100 and 5 000 units of time (row 1) and
the number of threads is between 2 and 40 threads (column 1). For each test,
we give the number of states of the generated LTS.

In general, the LTS size grows as the number of threads and units of time
(H(1y.,)) increases, yet each family test has some particular observations:

(i) This family includes the state spaces generated from independent-thread
AADL models. As shown in Table 5.3, LTSs are quite small compared to
the important number of threads. The exhaustive experiments reach 50
threads tested until 30 000 units of time without explosion. We notice an
interesting results with 50 and 60 threads, simulated during 100 units of
time, which are tested in pretty small spaces (about one hundred states).
Note that, beyond 70 threads, LTSs grow exponentially and the state
explosion problem is more frequent which makes models, with such a scale,
hard to be verified.

(ii) When adding port connections, the corresponding LNT processes (CONNECTOR)
are added in the produced LNT specification which increases the size of gen-
erated LTS. For this reason, tests are limited to 40 threads, and beyond
that, the state explosion problem is more frequent. Nevertheless, we still
obtain interesting results: starting with only 29 states for 2 threads and
100 units of time, reaching 2 020 states for 40 threads and 5 000 units of
time (Table 5.4).

(iii) This family includes models with sporadic threads and event or event data
ports. In the Produce-Consumer system, the consumer thread becomes
sporadic with an event in port. Being tested in the same scope as the
family (ii), the resulting LTSs of this family are much bigger and lead to
some explosions (mainly with 40 threads). This is explained by the fact
that additional synchronizations are required for the sporadic threads
scheduling (NOTIFICATION synchronizations between the CONNECTORs
and SCHEDULER). Yet, we still obtain reasonable results. For example,
models with 10 and 20 threads are successfully simulated with small state
spaces.

This test suite has been carried out on a machine with high-performances ® us-

ing the 2017-J ”"Sophia Antipolis” CADP version. The generation of all LNT
specifications needs a few seconds. While, the analysis time (LTS generation and
model-checking of properties) depends evidently of the test and may require some
minutes or hours. The LTS generation of all tests of family (ii) needed 28 minutes,

8 Processor Intel Xeon(R), 2.20 GHz x32, 63GB RAM, running Linux MATE 1.12

127

Chapter 5. Implementations and validation

TABLE 5.3: State spaces results of family (i)

periodic independent threads
100 \ 5 000 \ 10 000 \ 30 000
50 | 114 | 1716 | 2859 | 16 001
60 | 134 | 1 804 00 o0
70| oo | 1884 | 2610 00

TABLE 5.4: State spaces results of family (ii)

periodic threads with data port connections
100\300 \ 500 \ 1 000 \ 1500\3000\5000

2 29| 37| 23 30 37 113 89
121 | 140 | 196 266 326 116 386
10 | 153 | 175 | 115 386 175 145 523
20 | 305 | 350 | 230 498 350 395 | 1003
40 | 428 | 269 | 774 836 700 | 2290 | 2 020

oo

TABLE 5.5: State spaces results of family (iii)

sporadic threads with event port connections
100‘ 300\ 500\ 1000\ 1500‘ 3000‘ 5 000

2 136 563 997 2 052 2 904 5 910 9 782
8 1590 | 702812116 | 27318 | 39254 | 85212 | 134 064
10| 2802 | 9875 | 17820 | 39 788 | 58401 | 134 750 | 212 148
20 | 7960 | 36 655 | 63 192 | 129 619 | 211 519 | 504 365 | 835 786
40 | 38 820 00 00 00 00 00 00

which is a satisfying time for a test suite composed of 43 models counting up to
40 threads. Regarding family (iii), the analysis time of a Producer-Consumer
model with 10 threads simulated during 1 500 units of time is about few seconds
(with a basic machine, it may take 4 minutes). While, it takes about 1 hour for
the Producer-Consumer model with 20 threads simulated during 1 000 units of
time.

To conclude, the size of LTS depends directly on the number of threads, but also
on other minor factors such as the scheduling mapping and the obtained activa-
tion graph: sporadic and preemptive threads are more expensive (in size) than
independent, periodic or non-preemptive threads; similarly, highly-connected
threads increase significantly the size of the LTSs. Compared to the consid-
ered subset, the proposed AADL model verification requires reasonable resources
in memory and time. These experimental results are promising, showing the
effectiveness of our solution to verify real-time systems with respectable scale.

128

5.7. Conclusion

5.7 Conclusion

In this chapter, we firstly presented the AADL2LNT Ocarina extension conceived
and implemented as part of research activities conducted in this thesis. Based on
this extension, an automatic tool-chain is obtained connecting two powerful tools:
Ocarina for AADL modeling and CADP for formal verification. The usefulness
and the feasibility of this tool-chain have also been highlighted through three
case studies: flight control system, line follower robot, pacemaker device. Dif-
ferent design and verification phases are explained and discussed to evaluate the
proposed model transformation and formal verification phases of AADL models.
Finally, we end this chapter with a scalability study.

The proposed model verification brings useful analysis results that help designers
in the AADL model correction and improvement. This operation may be itera-
tively applied after each model modification, throughout the system development
process, until the generation of the final application.

129

Conclusion and perspectives

6.1 Conclusions

In this thesis, we reported our experience in the context of the formal verifica-
tion of real-time systems. The main problem concerns the integration of formal
methods in an MDE approach, that requires a formal expertise and significant
effort for the specification and verification activities. In this context, a common
solution is the use of model transformation techniques to connect MDE platforms
with existing analysis tools, which raises several challenges about the semantic
gap between design and formal models, the complexity and the correction of the
model transformation, the usability of the analysis results and the applicability
in the case of large scale systems (state space explosion problem).

6.1.1 Reminder of the contributions and results

Our main objective is to assist designers in the formal verification activities of
real-time systems. We proposed an MDE approach integrating an automatic
formal verification phase, hiding all formal aspects for non-formal expert design-
ers. This characteristic is a key feature to encourage formal methods practice in
software engineering.

A first theoretical contribution (chapter 3) in this thesis consists of the defini-
tion a formal pattern for a Ravenscar task model. The considered real-time task
model is formally mapped through the LNT language based on the process alge-
bra concept suitable for concurrent models and a rich data part sufficient for the
mapping of scheduling policies. This pattern is described, justified and refined
several times to be modular and extensible. It provides a formal executable se-
mantics considering mainly the scheduling execution and communication which

131

Chapter 6. Conclusion and perspectives

are indispensable for a useful analysis of real-time systems. The main idea of
this pattern consists in the encapsulation of the temporal calculations (execution
times, preemptions, etc.) within the scheduler, in order to restrict the synchro-
nization between processes, which reduces significantly the generated system state
space. This pattern is generically designed to be used as a pivot model for other
real-time transformation applications.

The proposed LNT pattern has been applied and tested in an MDE development
process based on the AADL modeling language (chapter 4). A model transfor-
mation AADL2LNT is defined to translate a given AADL model into an LNT
specification. The transformation supports an important AADL subset com-
posed of a set of software and hardware components (data, thread, process,
processor and device), port connections and a set of temporal and com-
munication properties. This proposition is also extended to consider the Behav-
ior annex that adds behavioral descriptions for the thread components. The
AADL2LNT transformation is implemented within the Ocarina tool suite, allowing
the generation of the LNT specification with an SVL script. These outputs are
used by the CADP toolbox to achieve the formal verification by model-checking
of a set of structural and behavioral properties for the schedulability analysis,
thread execution simulation, thread behavior analysis and the verification of
a set of communication properties.

The AADL2LNT Ocarina extension (chapter 5) can be downloaded from the Oca-
rina GitHub repository ! to be used as a stand-alone compiler or to be integrated
in OSATE through the OSATE2-Ocarina-plugin 2. We provided a tool-chain that
covers all the required verification phases and issues (formal specification, model-
checking, analysis results and state space explosion problem), to take advantage
of existing well-experimented analysis tools such as CADP. The proposed solution
has been illustrated with various real-time systems form the AADLib library. In
this manuscript, we presented experiments performed on three case studies: flight
control system, line follower robot and pacemaker device (chapter 5). In addition,
a scalability study is carried out to prove the efficiency and the applicability of
our work in the verification of real-time systems with a respectable scale. A test
suite is performed to evaluate the different kinds of the AADL models supported
in our work: models with independent threads, models with periodic threads
and data port connections and models with sporadic threads and event port
connections.

The proposed solution brings promising results face to the formal verification
challenges (analysis time and state space explosion), which is encouraging for
more advanced mapping and analysis. We believe that our solution is a repre-
sentative example of how formal methods can be smoothly integrated into the

'Ocarina GitHub: https://github.com/OpenAADL/ocarina
2Since the release of OSATE 2.0.9, the OSATE2-Ocarina-plugin is part of the distribution.

132

6.2. Perspectives

development of safety-critical systems, by defining appropriate formal patterns
and model transformations between high-level languages.

6.2 Perspectives

Although the contributions of this thesis have yielded interesting results, there is
still scope to supplement and improve them. In the following, we identify some
perspectives concern the different phases of our work.

LNT real-time pattern

A promising perspective concerns the formal analysis of the Ravenscar tasking
profile for Ada programs. We provided an LNT pattern for a Ravenscar com-
pliant task model that can be adapted for code analysis ends. In this case, the
attention turns to the implementation phase to automate verification activities.
It is possible to integrate this proposition within the Ocarina tool suite and even
suitable since it already provides a code generator for the Ada language [87].

In addition, the proposed pattern can be archived as a Ravenscar library in the
LNT language. This library includes the LNT definitions for the Ada tasking
sub-language such as tasks and protected procedures. The scheduler definition
may also be added for different scheduling policies (RM, EDF, etc.).

AADL2LNT model transformation

The AADL2LNT transformation is defined to formally verify the AADL models
compliant with the Ravenscar profile for safety-critical systems. Thus, only peri-
odic and sporadic threads with preemptive fixed-priority scheduling were used
at first. In addition, a larger subset, beyond the Ravenscar restrictions, is also
considered in section 4.4 (chapter 4) adding mainly timed and hybrid dispatch
protocols with the EDF scheduling policy. In the same direction, the AADL2LNT
transformation can be extended in future work through its different levels as
follows: the scheduling mapping can be extended to support the multiprocessor
architecture; and the communication mapping may be completed by networking
aspects via the AADL bus and virtual bus components. In another direc-
tion, the AADL2LNT transformation may be completed by defining new mapping
levels such as the access mapping to consider the AADL shared resources.

Formal verification

The empirical evaluation performed in this thesis proves the effectiveness of the
proposed solution to verify realistic large scale systems. However, results are

133

Chapter 6. Conclusion and perspectives

relatively limited in the case of highly-connected models, that involve commu-
nication and synchronization increasing significantly the generated state spaces.
In this context, an important perspective concerns the use of the compositional
state space construction based on the compositionality, one of the most promising
approach to fight the state explosion problem. This technique can be used in our
work since it is provided by the CADP toolbox in [68]. It seems useful for the
verification of AADL highly-connected models, especially when considering the
Behavior annex mapping (to manage the additional synchronization required for
concert data exchanging between the threads). The compositional verification
relies on the divide-and-conquer paradigm to breakdown the complexity of large
systems. It can be applied at the LTS generation level (to be included in the SVL
script) to separately generate different processes, then minimize them separately
before combining them.

Implementation and documentation

The current Ocarina extension allows an important generation and we are contin-
uously working on our implementations to fix bugs and complete the generation
in the behavioral mapping for a total automation.

Currently, the proposed AADL2LNT transformation is detailed through our pub-
lications [129, 130] and the present manuscript. We plan also to provide a practi-
cal designer manual (tutorial) containing concise and clear descriptions about the
transformation scope, objectives and outputs, to facilitate the use of the Ocarina
extension.

134

Bibliography

[1] ISO/IEC. LOTOS a formal description technique based on the temporal
ordering of observational behaviour. International Standard 8807, Inter-
national Organization for Standardization Information Processing Systems
Open Systems Interconnection, Geneve. 1989.

[2] RTCA/DO-178B: Software Considerations in Airborne Systems and Equip-
ment Certification. 1998.

[3] ISO/IEC. Enhancements to LOTOS (E-LOTOS). International Standard
15437, International Organization for Standardization 4AS Information
Technology, Geneva. 2001.

[4] ISO/IEC/IEEE 42010: Systems and software engineering-architecture de-
scription. Technical report, ISO/IEC/IEEE, 2011.

[5] RTCA/DO-178C: Software Considerations in Airborne Systems and Equip-
ment Certification. 2011.

[6] RTCA/DO-333: formal methods supplement to DO-178C and DO-278A.
2011.

[7] UML Profile for MARTE: Modeling and Analysis of Real-Time Embedded
Systems, Version 1.1. 2011.

[8] OMG Unified Modeling Language (OMG UML) Version 2.5. 2015.

[9] AS5506/3: Architecture Analysis and Design Language (AADL) Annex D:
Behavior Model Annex. 2017.

[10] AS5506C: SAE Architecture Analysis and Design Language (AADL) AADL
V2.2, 2017.

[11] ISO/IEC 15408: The Common Criteria for Information Technology Secu-
rity Evaluation (CC), version 3.1, revision 5. 2017.

[12] T. Abdoul, J. Champeau, P. Dhaussy, P. Y. Pillain, and J.-C. Roger. AADL
execution semantics transformation for formal verification. In Engineering
of Complex Computer Systems, 2008. ICECCS 2008. 13th IEEFE Interna-
tional Conference on, pages 263-268. IEEE, 2008.

135

Bibliography

[13]

[14]

[15]

[16]

[17]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

136

R. Allen and D. Garlan. A formal basis for architectural connection.
ACM Transactions on Software Engineering and Methodology (TOSEM),
6(3):213-249, 1997.

J. B. Almeida, M. J. Frade, J. S. Pinto, and S. M. de Sousa. An overview of
formal methods tools and techniques. In Rigorous Software Development,
pages 15-44. Springer, 2011.

R. Alur and D. L. Dill. A theory of timed automata. Theoretical computer
science, 126(2):183-235, 1994.

M. Amrani. Towards the Formal Verification of Model Transformations:
An Application to Kermeta. PhD thesis, University of Luxembourg, 2013.

S. Andova, M. G. van den Brand, L. J. Engelen, and T. Verhoeff. Mde
basics with a dsl focus. In Formal Methods for Model-Driven Engineering,
pages 21-57. Springer, 2012.

N. Audsley, A. Burns, R. Davis, K. Tindell, and A. Wellings. Real-time
system scheduling. In Predictably Dependable Computing Systems, pages
41-52. Springer, 1995.

K. Bae, P. C. Olveczky, A. Al-Nayeem, and J. Meseguer. Synchronous
AADL and its formal analysis in real-time Maude. In International Con-
ference on Formal Engineering Methods, pages 651-667. Springer, 2011.

K. Bae, P. C. Olveczky, and J. Meseguer. Definition, semantics, and analysis
of multirate synchronous AADL. In International Symposium on Formal
Methods, pages 94-109. Springer, 2014.

K. Bae, P. C. Olveczky, J. Meseguer, and A. Al-Nayeem. The Syn-
chAADL2Maude tool. In International Conference on Fundamental Ap-
proaches to Software Engineering, pages 59-62. Springer, 2012.

J. C. Baeten. A brief history of process algebra. Theoretical Computer
Science, 335(2-3):131-146, 2005.

J. E. Barnes. Experiences in the industrial use of formal methods. Electronic
Communications of the FASST, 46, 2011.

B. Barras, S. Boutin, C. Cornes, J. Courant, J.-C. Filliatre, E. Gimenez,
H. Herbelin, G. Huet, C. Munoz, C. Murthy, et al. The Coq proof assistant
reference manual: Version 6.1. PhD thesis, Inria, 1997.

L. M. Barroca and J. A. McDermid. Formal methods: Use and relevance
for the development of safety-critical systems. The Computer Journal,

35(6):579-599, 1992,

Bibliography

[26]

[27]

[28]

[31]

[34]

[35]

[36]

J. Bengtsson, K. Larsen, F. Larsson, P. Pettersson, and W. Yi. Uppaal-a
tool suite for automatic verification of real-time systems. In International
Hybrid Systems Workshop, pages 232-243. Springer, 1995.

J. A. Bergstra and J. W. Klop. Fixed point semantics in process algebras.
1982.

B. Berthomieu, J.-P. Bodeveix, C. Chaudet, S. Dal Zilio, M. Filali, and
F. Vernadat. Formal verification of AADL specifications in the Topcased
environment. In International Conference on Reliable Software Technolo-
gies, pages 207-221. Springer, 2009.

B. Berthomieu*, P.-O. Ribet, and F. Vernadat. The tool tina—construction
of abstract state spaces for petri nets and time petri nets. International
journal of production research, 42(14):2741-2756, 2004.

L. Besnard, A. Bouakaz, T. Gautier, P. Le Guernic, Y. Ma, J.-P. Talpin,
and H. Yu. Timed behavioural modelling and affine scheduling of embedded
software architectures in the AADL using Polychrony. Science of Computer
Programming, 106:54-77, 2015.

L. Besnard, T. Gautier, P. Le Guernic, C. Guy, J.-P. Talpin, B. Larson, and
E. Borde. Formal semantics of behavior specifications in the architecture
analysis and design language standard. In Cyber-Physical System Design
from an Architecture Analysis Viewpoint, pages 53-79. Springer, 2017.

J. Bézivin. On the unification power of models. Software and Systems
Modeling, 4(2):171-188, 2005.

J. Bézivin and O. Gerbé. Towards a precise definition of the omg/mda
framework. In Automated Software Engineering, 2001.(ASE 2001). Pro-
ceedings. 16th Annual International Conference on, pages 273-280. IEEE,
2001.

P. Binns, M. Englehart, M. Jackson, and S. Vestal. Domain-specific soft-
ware architectures for guidance, navigation and control. International Jour-

nal of Software Engineering and Knowledge Engineering, 6(02):201-227,
1996.

B. S. Blanchard. System engineering management. John Wiley & Sons,
2004.

J.-P. Bodeveix, M. Filali, M. Garnacho, R. Spadotti, and Z. Yang. Towards
a verified transformation from AADL to the formal component-based lan-
guage FIACRE. Science of Computer Programming, 106:30-53, 2015.

137

Bibliography

[37]

[40]

[41]

[42]

[43]

[44]

[47]

[48]

138

E. Boiten. Modeling in event-b—system and software engineeringabrial jean-
raymondcambridge university press, may 2010 isbn-10: 0521895561. Jour-
nal of Functional Programming, 22(2):217-219, 2012.

M. Bozzano, A. Cimatti, J.-P. Katoen, V. Y. Nguyen, T. Noll, and
M. Roveri. The compass approach: Correctness, modelling and performabil-
ity of aerospace systems. In International Conference on Computer Safety,
Reliability, and Security, pages 173—186. Springer, 2009.

M. Bozzano, A. Cimatti, J.-P. Katoen, V. Y. Nguyen, T. Noll, and
M. Roveri. Safety, dependability and performance analysis of extended
AADL models. The Computer Journal, 54(5):754-775, 2010.

M. Bozzano, A. Cimatti, J.-P. Katoen, V. Y. Nguyen, T. Noll, and
M. Roveri. Safety, dependability and performance analysis of extended
AADL models. The Computer Journal, 54(5):754-775, 2010.

M. Bozzano, A. Cimatti, J.-P. Katoen, V. Y. Nguyen, T. Noll, M. Roveri,
and R. Wimmer. A model checker for aadl. In International Conference on
Computer Aided Verification, pages 562-565. Springer, 2010.

J. R. Buchi. Weak second-order arithmetic and finite automata. Mathe-
matical Logic Quarterly, 6(1-6):66-92, 1960.

A. Burns. The Ravenscar Profile. ACM SIGAda Ada Letters, 19(4):49-52,
1999.

A. Burns, B. Dobbing, and T. Vardanega. Guide for the use of the ada
ravenscar profile in high integrity systems. ACM SIGAda Ada Letters,
24(2):1-74, 2004.

G. Buttazzo, G. Lipari, L. Abeni, and M. Caccamo. Soft Real-Time Sys-
tems. Springer, 2005.

G. C. Buttazzo. Hard real-time computing systems: predictable scheduling
algorithms and applications, volume 24. Springer Science & Business Media,
2011.

S. Care. Pacemakers. http://www.sterlingcare.com/
resources/resources/diseases—and-conditions-library/
view/pacemakers/, 2012.

D. Champelovier, X. Clerc, H. Garavel, Y. Guerte, F. Lang, C. McKinty,
V. Powazny, W. Serwe, and G. Smeding. Reference manual of the LNT to
lotos translator. 2018.

Bibliography

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

M. Y. Chkouri, A. Robert, M. Bozga, and J. Sifakis. Translating AADL
into BIP-application to the verification of real-time systems. In Models in
Software Engineering, pages 5—19. Springer, 2009.

A. Choquet-Geniet and E. Grolleau. Minimal schedulability interval for
real-time systems of periodic tasks with offsets. Theoretical computer sci-
ence, 310(1-3):117-134, 2004.

E. M. Clarke and E. A. Emerson. Design and synthesis of synchronization
skeletons using branching time temporal logic. In Workshop on Logic of
Programs, pages 52-71. Springer, 1981.

R. Cleaveland and S. T. Sims. Generic tools for verifying concurrent sys-
tems. Science of Computer Programming, 42(1):39-47, 2002.

S. A. Cook. The complexity of theorem-proving procedures. In Proceedings
of the third annual ACM symposium on Theory of computing, pages 151—
158. ACM, 1971.

J.-P. Courtiat, C. A. Santos, C. Lohr, and B. Outtaj. Experience with
rt-lotos, a temporal extension of the lotos formal description technique.
Computer Communications, 23(12):1104-1123, 2000.

P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model
for static analysis of programs by construction or approximation of fix-
points. In Proceedings of the 4th ACM SIGACT-SIGPLAN symposium on
Principles of programming languages, pages 238-252. ACM, 1977.

J.-M. Couvreur. On-the-fly verification of linear temporal logic. In Inter-
national Symposium on Formal Methods, pages 253-271. Springer, 1999.

J. Davies and S. Schneider. A brief history of timed csp. Theoretical Com-
puter Science, 138(2):243-271, 1995.

R. I. Davis and A. Burns. A survey of hard real-time scheduling for multi-
processor systems. ACM computing surveys (CSUR), 43(4):35, 2011.

K. Evensen and K. Weiss. A comparison and evaluation of real-time soft-
ware systems modeling languages. In AIAA Infotech@ Aerospace 2010,
page 3504. 2010.

P. H. Feiler and D. P. Gluch. Model-based engineering with AADL: an

introduction to the SAE architecture analysis € design language. Addison-
Wesley, 2012.

139

Bibliography

[61]

[62]

[63]

[64]

[65]

[69]

[70]

[71]

140

P. H. Feiler, D. P. Gluch, and J. J. Hudak. The architecture analysis &
design language (aadl): An introduction. Technical report, Carnegie-Mellon
Univ Pittsburgh PA Software Engineering Inst, 2006.

P. H. Feiler, J. Hansson, D. De Niz, and L. Wrage. System architecture vir-
tual integration: An industrial case study. Technical report, CARNEGIE-
MELLON UNIV PITTSBURGH PA SOFTWARE ENGINEERING INST,
2009.

R. France and B. Rumpe. Model-driven development of complex software:
A research roadmap. In 2007 Future of Software Engineering, pages 37—54.
IEEE Computer Society, 2007.

H. Garavel. Open/Cesar: An open software architecture for verification,
simulation, and testing. In International Conference on Tools and Algo-
rithms for the Construction and Analysis of Systems, pages 68-84. Springer,
1998.

H. Garavel. Open/caesar: An open software architecture for verification,
simulation, and testing. In International Conference on Tools and Algo-
rithms for the Construction and Analysis of Systems, pages 68-84. Springer,
1998.

H. Garavel and R.-P. Hautbois. An experiment with the lotos formal de-
scription technique on the flight warning computer of airbus 330/340 air-
crafts. In Proc. of the first AMAST International Workshop on Real-Time
Systems. Citeseer, 1993.

H. Garavel and F. Lang. Svl: a scripting language for compositional verifi-
cation. In Formal Techniques for Networked and Distributed Systems, pages
377-392. Springer, 2002.

H. Garavel, F. Lang, and R. Mateescu. Compositional verification of asyn-
chronous concurrent systems using CADP. Acta Informatica, pages 1-56,
2015.

H. Garavel, F. Lang, R. Mateescu, and W. Serwe. CADP 2011: a toolbox
for the construction and analysis of distributed processes. International
Journal on Software Tools for Technology Transfer, 15(2):89-107, 2013.

H. Garavel, F. Lang, and W. Serwe. From LOTOS to LNT. In ModelEd,
TestEd, TrustFd, pages 3—26. Springer, 2017.

T. Gautier, C. Guy, A. Honorat, P. Le Guernic, J.-P. Talpin, and
L. Besnard. Polychronous automata and their use for formal validation
of AADL models. Frontiers of Computer Science, 2017.

Bibliography

[72]

[73]

[74]

[75]

[76]

[77]

[79]

[80]

[81]

[82]

[83]

D. Geniet and J.-P. Dubernard. Scheduling hard sporadic tasks with reg-
ular languages and generating functions. Theoretical computer science,
313(1):119-132, 2004.

M. J. Gordon and T. F. Melham. Introduction to hol a theorem proving
environment for higher order logic. 1993.

J. F. Groote. The syntax and semantics of timed pcrl. In CWI, PO BOX
94079, 1090 GB. Citeseer, 1997.

J. F. Groote and A. Ponse. The syntax and semantics of pcrl. In Algebra
of Communicating Processes, pages 26-62. Springer, 1995.

S. Gui, L. Luo, Y. Li, and L. Wang. Formal schedulability analysis and
simulation for AADL. In Embedded Software and Systems, 2008. I[CESS’08.
International Conference on, pages 429-435. IEEE, 2008.

M. E. Hamdane, A. Chaoui, and M. Strecker. From AADL to Timed
Automaton-A Verification Approach. International Journal of Software
Engineering € Its Applications, 7(4), 2013.

M. E. Hamdane, A. Chaoui, and M. Strecker. From AADL to Timed
Automaton-A Verification Approach. International Journal of Software
Engineering € Its Applications, 7(4), 2013.

M. E.-K. Hamdane, A. Chaoui, and M. Strecker. Toolchain based on mde
for the transformation of AADL models to timed automata models. Journal
of Software Engineering and Applications, 6(03):147, 2013.

[. Hamid and E. Najm. Real-time connectors for deterministic data-flow.
In Embedded and Real-Time Computing Systems and Applications, 2007.
RTCSA 2007. 13th IEEE International Conference on, pages 173-182.
[EEE, 2007.

[. Hamid and E. Najm. Operational semantics of ada ravenscar. In Interna-
tional Conference on Reliable Software Technologies, pages 44-58. Springer,
2008.

M. Hecht, A. Lam, and C. Vogl. A Tool Set for Integrated Software and
Hardware Dependability Analysis Using the Architecture Analysis and De-
sign Language (AADL) and Error Model Annex. In ICECCS, pages 361—
366, 2011.

U. Herzog. Formal methods for performance evaluation. In School organized
by the Furopean Educational Forum, pages 1-37. Springer, 2000.

141

Bibliography

[84]

[85]

[36]

[87]

[88]

[89]

[90]

[91]

142

C. A. R. Hoare. Communicating sequential processes. Communications of

the ACM, 21(8):666—677, 1978.

W. Horn. Some simple scheduling algorithms. Naval Research Logistics
(NRL), 21(1):177-185, 1974.

K. Hu, T. Zhang, Z. Yang, and W.-T. Tsai. Exploring AADL verifica-
tion tool through model transformation. Journal of Systems Architecture,
61(3):141-156, 2015.

J. Hugues, B. Zalila, L. Pautet, and F. Kordon. From the prototype to the
final embedded system using the ocarina AADL tool suite. ACM Transac-
tions on Embedded Computing Systems (TECS), 7(4):42, 2008.

M. Z. Igbal, S. Ali, T. Yue, and L. Briand. Applying uml/marte on indus-
trial projects: challenges, experiences, and guidelines. Software € Systems
Modeling, 14(4):1367-1385, 2015.

E. Jahier, N. Halbwachs, P. Raymond, X. Nicollin, and D. Lesens. Virtual
execution of AADL models via a translation into synchronous programs. In
Proceedings of the 7th ACM & IEEE international conference on Embedded
software, pages 134-143. ACM, 2007.

A. Johnsen, K. Lundqvist, P. Pettersson, and O. Jaradat. Automated
Verification of AADL-Specifications Using UPPAAL. In HASE, pages 130—
138, 2012.

A. Johnsen, K. Lundqvist, P. Pettersson, M. Torelm, et al. AQAF: an
Architecture Quality assurance framework for systems modeled in AADL.
In Quality of Software Architectures (QoSA), 2016 12th International ACM
SIGSOFT Conference on, pages 31-40. IEEE, 2016.

F. Jouault and I. Kurtev. Transforming models with atl. In International
Conference on Model Driven Engineering Languages and Systems, pages
128-138. Springer, 2005.

A. K. Karna, Y. Chen, H. Yu, H. Zhong, and J. Zhao. The role of model
checking in software engineering. Frontiers of Computer Science, pages
1-27, 2018.

S. C. Kleene. Representation of events in nerve nets and finite automata.
Technical report, RAND PROJECT AIR FORCE SANTA MONICA CA,
1951.

A. G. Kleppe, J. B. Warmer, and W. Bast. MDA explained: the model
driven architecture: practice and promise. Addison-Wesley Professional,
2003.

Bibliography

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

J. C. Knight. Safety critical systems: challenges and directions. In Soft-
ware Engineering, 2002. ICSE 2002. Proceedings of the 24rd International
Conference on, pages 547-550. IEEE, 2002.

H. Kopetz. Real-time systems: design principles for distributed embedded
applications. Springer Science & Business Media, 2011.

F. Kordon, J. Hugues, A. Canals, and A. Dohet. Embedded systems: anal-
ysis and modeling with SysML, UML and AADL. John Wiley & Sons,
2013.

F. Kordon, J. Hugues, and X. Renault. From Model Driven Engineering to
Verification Driven Engineering. In SEUS, pages 381-393, 2008.

A. Kornecki and J. Zalewski. Certification of software for real-time safety-
critical systems: state of the art. Innovations in Systems and Software
Engineering, 5(2):149-161, 2009.

[. Kurtev. State of the art of qvt: A model transformation language stan-
dard. In International Symposium on Applications of Graph Transforma-
tions with Industrial Relevance, pages 377-393. Springer, 2007.

P. Lago, I. Malavolta, H. Muccini, P. Pelliccione, and A. Tang. The road
ahead for architectural languages. IEEE Software, 32(1):98-105, 2015.

L. Lamport. Proving the correctness of multiprocess programs. IEEFE trans-
actions on software engineering, (2):125-143, 1977.

A. v. Lamsweerde. Formal specification: a roadmap. In Proceedings of the
Conference on the Future of Software Engineering, pages 147-159. ACM,
2000.

C. Larman and V. R. Basili. Iterative and incremental developments. a
brief history. Computer, 36(6):47-56, 2003.

B. R. Larson. Formal semantics for the pacemaker system specification.
ACM SIGAda Ada Letters, 2014.

G. Lasnier, B. Zalila, L. Pautet, and J. Hugues. Ocarina: An environment
for AADL models analysis and automatic code generation for high integrity
applications. In Reliable Software Technologies—Ada-Furope 2009, pages
237-250. Springer, 20009.

L. Léonard and G. Leduc. A formal definition of time in lotos. Formal
Aspects of Computing, 10(3):248-266, 1998.

143

Bibliography

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

144

J. Y.-T. Leung and J. Whitehead. On the complexity of fixed-priority
scheduling of periodic, real-time tasks. Performance evaluation, 2(4):237—
250, 1982.

C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogramming
in a hard-real-time environment. Journal of ACM, 20(1):46-61, January
1973.

L. Luacio, M. Amrani, J. Dingel, L. Lambers, R. Salay, G. M. Selim, E. Syr-
iani, and M. Wimmer. Model transformation intents and their properties.
Software € systems modeling, 15(3):647-684, 2016.

D. C. Luckham, J. J. Kenney, L. M. Augustin, J. Vera, D. Bryan, and
W. Mann. Specification and analysis of system architecture using rapide.
IEEE Transactions on Software Engineering, 21(4):336-354, 1995.

K. Lundqvist and L. Asplund. A ravenscar-compliant run-time kernel for
safety-critical systems. Real-Time Systems, 24(1):29-54, 2003.

Y. Ma, H. Yu, T. Gautier, J.-P. Talpin, L. Besnard, and P. Le Guernic.
System synthesis from AADL using Polychrony. In Electronic System Level
Synthesis Conference (ESLsyn), 2011, pages 1-6. IEEE, 2011.

J. Magee, N. Dulay, S. Eisenbach, and J. Kramer. Specifying distributed
software architectures. In Furopean Software Engineering Conference,
pages 137-153. Springer, 1995.

[. Malavolta, P. Lago, H. Muccini, P. Pelliccione, and A. Tang. What in-
dustry needs from architectural languages: A survey. Software Engineering,
IEEE Transactions on, 39(6):869-891, 2013.

I. Malavolta, P. Lago, H. Muccini, P. Pelliccione, and A. Tang. Architec-
tural languages today. http://www.di.univaq.it/malavolta/al/
#home, 2017.

C. Mascolo. Mobis: A specification language for mobile systems. In Inter-
national Conference on Coordination Languages and Models, pages 37-52.
Springer, 1999.

R. Mateescu and H. Garavel. Xtl: a meta-language and tool for temporal
logic model-checking. STTTaAZ98, pages 33-42, 1998.

R. Mateescu and M. Sighireanu. Efficient on-the-fly model-checking for
regular alternation-free mu-calculus. Science of Computer Programming,
46(3):255-281, 2003.

Bibliography

[121]

[122]
[123]

[124]

[125]

[126]

[127]

[128]
[129]

[130]

[131]

[132]

[133]

[134]

R. Mateescu and D. Thivolle. A model checking language for concurrent
value-passing systems. In International Symposium on Formal Methods,
pages 148-164. Springer, 2008.

D. D. McCracken and E. D. Reilly. Backus-naur form (bnf). 2003.

N. Medvidovic and R. N. Taylor. A classification and comparison frame-
work for software architecture description languages. IEEE Transactions
on software engineering, 26(1):70-93, 2000.

T. Mens and P. Van Gorp. A taxonomy of model transformation. Electronic
Notes in Theoretical Computer Science, 152:125-142, 2006.

P. M. Merlin. A study of the recoverability of computing systems. PhD
thesis, University of California, Irvine, 1974.

Z. Mian, L. Bottaci, Y. Papadopoulos, and M. Biehl. System dependabil-
ity modelling and analysis using AADL and hip-hops. IFAC Proceedings
Volumes, 45(6):1647-1652, 2012.

S. P. Miller and M. Srivas. Formal verification of the aamp5 microprocessor:
A case study in the industrial use of formal methods. In wift, page 2. IEEE,
1995.

R. Milner. A calculus of communicating systems. LNCS, 92, 1980.

H. Mkaouar, B. Zalila, J. Hugues, and M. Jmaiel. From AADL model
to LNT specification. In Reliable Software Technologies—Ada-Europe 2015,
pages 146-161. Springer, 2015.

H. Mkaouar, B. Zalila, J. Hugues, and M. Jmaiel. An ocarina extension
for AADL formal semantics generation. In Proceedings of the 33rd Annual
ACM Symposium on Applied Computing, pages 1402-1409. ACM, 2018.

A. K.-L. Mok. Fundamental design problems of distributed systems for
the hard-real-time environment. PhD thesis, Massachusetts Institute of
Technology, 1983.

X. Nicollin and J. Sifakis. The algebra of timed processes, atp: Theory and
application. Information and Computation, 114(1):131, 1994.

[. Ober and N. Halbwachs. On the timed automata-based verification of
ravenscar systems. In International Conference on Reliable Software Tech-
nologies, pages 30-43. Springer, 2008.

P. C. Olveczky, A. Boronat, and J. Meseguer. Formal semantics and analysis
of behavioral AADL models in Real-Time Maude. In Formal Techniques
for Distributed Systems, pages 47-62. Springer, 2010.

145

Bibliography

[135]

[136]

[137]

[138]

[139]

[140]

[141]

142]

[143]

[144]

[145]

[146]

[147)

146

M. Ozkaya. The analysis of architectural languages for the needs of prac-
titioners. Software: Practice and Experience, 48(5):985-1018, 2018.

G. O4AZRegan. 7 formal specification language. In Concise Guide to
Formal Methods, pages 155—-171. Springer, 2017.

D. E. Perry and A. L. Wolf. Foundations for the study of software archi-
tecture. ACM SIGSOFT Software engineering notes, 17(4):40-52, 1992.

K. Petersen, C. Wohlin, and D. Baca. The waterfall model in large-scale
development. In International Conference on Product-Focused Software
Process Improvement, pages 386-400. Springer, 2009.

C. A. Petri. Communication with automata. PhD thesis, Institut fuer
Instrumentelle Mathematik, 1962.

G. D. Plotkin. The origins of structural operational semantics. The Journal
of Logic and Algebraic Programming, 60:3-15, 2004.

R. S. Pressman. Software engineering: a practitioner’s approach. Palgrave
Macmillan, 2005.

A. N. Prior. Time and modality, 1957.

J.-P. Queille and J. Sifakis. Specification and verification of concurrent
systems in cesar. In International Symposium on programming, pages 337—
351. Springer, 1982.

M. O. Rabin and D. Scott. Finite automata and their decision problems.
IBM journal of research and development, 3(2):114-125, 1959.

X. Renault. Mise en wuvre de notations standardisées, formelles et
semi-formelles dans un processus de développement de systemes embarqués
temps-réel répartis. PhD thesis, Université Pierre et Marie Curie-Paris VI,
2009.

X. Renault, F. Kordon, and J. Hugues. Adapting models to model checkers,
a case study: Analysing AADL using Time or Colored Petri Nets. In 2009
IEEE/IFIP International Symposium on Rapid System Prototyping, pages
26-33. IEEE, 20009.

X. Renault, F. Kordon, and J. Hugues. From AADL architectural mod-
els to Petri Nets: Checking model viability. In 2009 IEEE International

Symposium on Object/Component/Service-Oriented Real-Time Distributed
Computing, pages 313-320. IEEE, 2009.

Bibliography

[148]

[149]

[150]

[151]

[152]
[153]

[154]

[155]

[156]

[157]

[158]

[159]

[160]

J.-F. Rolland, J.-P. Bodeveix, M. Filali, D. Chemouil, and D. Thomas.
Modes in asynchronous systems. In FEngineering of Complex Computer
Systems, 2008. ICECCS 2008. 13th IEEE International Conference on,
pages 282-287. IEEE, 2008.

A.-E. Rugina, K. Kanoun, and M. Kaaniche. The ADAPT Tool: From
AADL Architectural Models to Stochastic Petri Nets through Model Trans-
formation. CoRR, abs/0809.4108, 2008.

N. Saeedloei and G. Gupta. Timed pi-calculus. In International Symposium
on Trustworthy Global Computing, pages 119-135. Springer, 2013.

D. Sangiorgi and D. Walker. The pi-calculus: a Theory of Mobile Processes.
Cambridge university press, 2003.

E. Seidewitz. What models mean. IEEFE software, 20(5):26-32, 2003.

B. Selic. A systematic approach to domain-specific language design using
uml. In Object and Component-Oriented Real-Time Distributed Computing,
2007. ISORC"07. 10th IEEFE International Symposium on, pages 2-9. IEEE,
2007.

L. Sha, T. Abdelzaher, K.-E. Arzén, A. Cervin, T. Baker, A. Burns, G. But-
tazzo, M. Caccamo, J. Lehoczky, and A. K. Mok. Real time scheduling
theory: A historical perspective. Real-time systems, 28(2-3):101-155, 2004.

N. Shankar, S. Owre, and J. M. Rushby. The pvs proof checker: A reference
manual. Computer Science Laboratory, SRI International, Menlo Park,
CA, 3, 1993.

F. Singhoff, J. Legrand, L. Nana, and L. Marcé. Cheddar: a flexible real
time scheduling framework. In ACM SIGAda Ada Letters, pages 1-8. ACM,
2004.

O. Sokolsky and A. Chernoguzov. Performance analysis of AADL models
using real-time calculus. In Monterey Workshop, pages 227-249. Springer,
2008.

0. Sokolsky, I. Lee, and D. Clarke. Schedulability analysis of AADL models.
In Proceedings 20th IEEE International Parallel € Distributed Processing
Symposium, pages 8-pp. IEEE, 2006.

O. Sokolsky, I. Lee, and D. Clarke. Process-algebraic interpretation of
AADL models. In International Conference on Reliable Software Technolo-
gies, pages 222-236. Springer, 2009.

I. Sommerville. Software engineering. New York: Addison-Wesley, 2010.

147

Bibliography

[161]

162]

163

[164]

[165]

[166]

[167]

168

[169]

[170]

[171]

[172]

148

I[. D. Standard. Standard 00-55: The procurement of safety critical software
in defence equipment. UK Ministry of Defence, 1991.

J. A. Stankovic. Misconceptions about real-time computing: A serious
problem for next-generation systems. Computer, 21(10):10-19, 1988.

M. Stigge and W. Yi. Graph-based models for real-time workload: a survey.
Real-time systems, 51(5):602-636, 2015.

W. M. Van der Aalst. Pi calculus versus petri nets: Let us eat AAIJhumble
pieAAl rather than further inflate the AAIJpi hypedAl. BPTrends, 3(5):1-
11, 2005.

R. Van Ommering, F. Van Der Linden, J. Kramer, and J. Magee. The koala
component model for consumer electronics software. Computer, 33(3):78-
85, 2000.

V. Vyatkin. Software engineering in industrial automation: State-of-the-
art review. Industrial Informatics, IEEE Transactions on, 9(3):1234-1249,
2013.

J. M. Wing. A specifier’s introduction to formal methods. Computer,
23(9):8-22, 1990.

C. Yang, Y. Dong, F. Zhang, E. Ahmad, and B. Gu. Formal semantics of
AADL models with machine-readable CSP. In Computer and Information
Science (ICIS), 2012 IEEE/ACIS 11th International Conference on, pages
565-571. IEEE, 2012.

7. Yang, K. Hu, D. Ma, J.-P. Bodeveix, L. Pi, and J.-P. Talpin. From
AADL to timed abstract state machines: A verified model transformation.
volume 93, pages 42—68. Elsevier, 2014.

Z. Yang, K. Hu, D. Ma, and L. Pi. Towards a formal semantics for the
AADL behavior annex. In Proceedings of the Conference on Design, Au-
tomation and Test in Europe, pages 1166-1171. European Design and Au-
tomation Association, 2009.

H. Yu, Y. Ma, T. Gautier, L. Besnard, P. Le Guernic, and J.-P. Talpin.
Polychronous modeling, analysis, verification and simulation for timed soft-
ware architectures. Journal of Systems Architecture, 59(10):1157-1170,
2013.

H. Yu, Y. Ma, T. Gautier, L. Besnard, J.-P. Talpin, P. Le Guernic, and
Y. Sorel. Exploring system architectures in AADL via Polychrony and
SynDEx. Frontiers of Computer Science, 7(5):627-649, 2013.

Bibliography

[173] F. Zhang, Y. Zhao, D. Ma, and W. Niu. Formal verification of behavioral
AADL models by stateful timed CSP. IEEE Access, 5:27421-27438, 2017.

[174] Y. Zhang, Y. Dong, Y. Zhang, and W. Zhou. A study of the AADL mode
based on timed automata. In 2011 IEEE 2nd International Conference on
Software Engineering and Service Science, pages 224-227. IEEE, 2011.

149

