From AADL model to LNT specification

Hana Mkaouar!, Bechir Zalila!, Jérome Hugues?, and Mohamed Jmaiel':?

! ReDCAD Laboratory, University of Sfax, National School of Engineers of Sfax,
BP 1173, 3038 Sfax, Tunisia
hana.mkaouar@redcad.org,

{bechir.zalila,mohamed.jmaiel}@enis.rnu.tn,

2 Université de Toulouse, Institut Supérieur de I’ Aéronautique et de ’Espace,
BP 54032, 31055 Toulouse CEDEX 4, France
jerome.hugues@isae.fr
3 Research Center for Computer Science, Multimedia and Digital Data Processing of
Sfax,

BP 275, Sakiet FEzzit, 3021 Sfax, Tunisia

Abstract. The verification of distributed real-time systems designed by
architectural languages such as AADL (Architecture Analysis and Design
Language) is a research challenge. These systems are often used in safety-
critical domains where one mistake can result in physical damages and
even life loss. In such domains, formal methods are a suitable solution for
rigorous analysis. This paper studies the formal verification of distributed
real-time systems modelled with AADL. We transform AADL model to
another specification formalism enabling the verification. We choose LNT
language which is an input to CADP toolbox for formal analysis. Then,
we illustrate our approach with the ”Flight Control System” case study.

Keywords: AADL, LNT, Distributed real-time systems, Architecture
description languages, Model transformation, Specification languages,
Formal verification

1 Introduction

Building distributed real-time systems is a tedious task. They are usually com-
plex systems, often used in safety-critical domains like avionics and aerospace.
Such systems must satisfy both real-time constraints and other constraints im-
posed by the distribution of nodes. Several solutions have been introduced to
simplify the development process through modeling and code generation thanks
to Architecture Description Languages (ADLs). These languages allow the de-
scription of structure, behaviour and configuration offering an abstract view of
the entire system. The development process of distributed real-time systems re-
quires verification in earlier phases to ensure the correctness of the produced
system. For this purpose, designers have joined verification and validation for-
malisms with ADLs which are considered like a pivot language.

Formal methods are widely used to check rigorously a critical system. They
are used to confirm if the system satisfies the user needs (validation) and if it

complies with its specification (verification). However, a system modelled with
an ADL cannot be directly formally verified. The use of such methods requires
a formal specification of the checked system. Several formalisms are considered
in the formal world for example Petri net, automata and process algebra. In this
context, researches are directed towards the transformation of the architectural
models into other models in order to connect with formal verification tools.

AADL [3] (Architecture Analysis and Design Language) is a rich and com-
plete ADL for embedded real-time systems, with an emphasis on critical avionics
systems. Many work in the literature apply the transformation model alternative
for AADL formal verification: they transform various AADL subsets into differ-
ent specification formalisms and they focus on behavioral analysis by checking
general properties like deadlock with model-checking.

In our proposed approach, we include formal verification in development pro-
cess of systems modelled with AADL. Our work is integrated in the Ocarina [11]
tool set which is a development environment for AADL modeling and code gener-
ation. We adapt process algebra formalism for the transformation which concerns
an interesting AADL subset for communication and scheduling semantics.

We choose LNT [5] as target specification language which derives from two
standards Lotos [1] and E-Lotos [2]. This choice is justified by the expressive-
ness and richness of LNT. It provides expressive enough operators for data and
behaviour description and it has a user-friendly notations to simplify the spec-
ification writing. Indeed, LNT is a CADP [6] (Construction and Analysis of
Distributed Processes) input language. It is a popular formal verification tool-
box that implements many formal methods.

In this paper, we report our proposed transformation AADL/LNT and we
prove its effectiveness with the ”Flight Control System” case study. The remain-
der of this paper is organized as follows: Section 2 gives an overview of AADL
then presents LNT language. In section 3, we detail the translation of AADL
model into LNT specification. In section 4, we present tools used in our work.
Section 5 applies transformation rules on our case study. In section 6, we discuss
related work. Finally, conclusions and future work end the article in section 7.

2 Preliminaries

In this section, we briefly introduce AADL with the considered subset. Then, we
present our target specification language LNT.

2.1 AADL

AADL [3] is an industrial ADL for critical domains like avionics, acrospace and
automotive. It is standardized by the SAE (Society of Automotive Engineers),
the last version (version 2) was published in 2009. AADL is a rich language
with a textual syntax and graphical representation. It allows the modeling of
the structure, behaviour and configuration of distributed real-time embedded

systems. Like most of ADLs, AADL consists of three basic elements: compo-
nents (software, hardware and system), connections (to link components) and
the description of the architecture configuration with AADL properties.

Components. An AADL component is defined through a type (it declares the
component interface elements called features) and zero or more implementations
(they present the component internal structure). AADL defines three categories
of components: software components (data, thread, thread group, subprogram,
subprogram group and process), hardware components (memory, bus, virtual
bus, processor, virtual processor and device) and system component. We briefly
describe the subset of AADL components considered in our work.

Software components present the applicative part of the system. In our approach,
we consider these components: data represents a data type within the system;
subprogram represents sequentially executed source text which can be coded
in programming languages like C and Ada language; thread is a concurrent
schedulability unit of sequential execution through source code. A thread always
executes within a process; process represents a virtual address space which con-
tains thread and data associated with the process and with its subcomponents.

Hardware components present the computing hardware and the physical environ-
ment. In our work, we consider the following components: bus represents hard-
ware and associated communication protocols to exchange control/data among
other execution platform components; processor is an abstraction of hardware
and software for scheduling and execution of threads.

System component represents a composite of software and hardware components
or system components.

Connections. AADL connection is a linkage established between component
features to exchange data and control. There are four categories of features: port,
subprogram, parameters, and subcomponent access. They enable three types of
connections: port connection, parameter connection and access connection. In
our work, we are interested in the port connection type.

Port connection presents the transfer of data and/or control between two com-
ponents, explicitly declared between two ports. There are three types of ports
in AADL: data, event and event data. Ports are typed with a data component
(the type of transferred data) and they are directional.

Properties. AADL properties provide additional information about AADL el-
ements (component types/implementations, connections, etc). We distinguish:
properties specifying constraints for hardware binding for example Actual Proce
ssor_Binding property to bind thread with the processor and Actual_Connectio

n_Binding to bind connections to the bus; properties specifying temporal infor-
mation like Period and Dispatch Protocol for threads and Scheduling Pro
tocol for processor; and properties specifying information for ports such as
Dequeue Protocol, Input Time and Output_Time to model event processing
policies and their time of arrival.

2.2 LNT

LNT [5] is a specification language for safety-critical systems developed by the
Vasy team in INRIA. The latest version (Version 6.1) was published in 2014. It
is a heir of Lotos [1] language and a simplified variant of E-Lotos [2]. It combines
strong theoretical foundations of process algebra with features from imperative
and functional programming languages. LNT is supported by the CADP toolbox
which offers a rich formal verification like simulation and model checking.

LNT is similar to CSP and CCS process algebra, it represents a system by a
set of processes communicating through channels. An LNT specification consists
of two parts: the data part defines types and functions; and the control part
defines the behaviour (process). The control part is a super-set of data part.
It includes all data part instructions and adds the non-determinism, the asyn-
chronous parallelism and communications. In the rest of this section, we present
the essential elements of the LNT language. We include some definitions to make
the comprehension easier. In the rest of this paper, we adopt the following no-
tations: B for behaviour; G for gate identifier and P for process identifier.

Module. In LNT, the system is modelled by a set of parallel process in com-
munication through communication ports. It is defined in a module, with the
same name as the file in which it is contained. It can import others modules. A
process called "MAIN” defines the entry point of the specification.

Process. An LNT process, whose the definition is included in listing 1.1, is an
object that describe a behaviour, it can be parameterized by a list of formal gates,
a list of formal variables and a list of formal exceptions. LNT allows to describe
several behaviours such as sequential composition, non-deterministic assignment,
conditional behaviour, non-deterministic choice and parallel composition.

Listing 1.1. LNT process definition

process_definition ::= process P
[[gate_declaration_0 ,.., gate_declaration_m]]
[(formal_parameters_0 ,.., formal_parameters_n)]
[raises exception_declaration_0 ,.., exception_declaration_k]
is
B

end process

Parallel composition. LNT processes can be combined in parallel and syn-
chronized on gates with the par instruction. Parallel processes start execution

and terminate in the same time without preemption. par instruction, given in
the listing 1.2, allows two types of synchronization: the global synchronization
(defined with Gy...G,,), this communication can happen only if all processes
can make it simultaneously; and the interface synchronization, in this case, if a
process is waiting for a communication in a gate belongs to its synchronization
interface (G(;,0), -+, G(i,n,)), this communication can happen only if all process
that contain this gate in their synchronization interface can make this commu-
nication simultaneously.

Listing 1.2. LNT parallel composition

par [Go ,..., Go in]
[G,0) s---+ Gong) = 1 Bo
[
[Gm,0) s+ »Glmnm) —> 1 Bm
end par

Communication. In LNT, processes communicate by rendezvous on gates.
LNT gate can be typed with channel. A channel defines a set of gate profiles.
With the same gate, process can send and receive messages. The communication
is blocked in sending or receiving. In effect, the process waiting for a communi-
cation is suspended and terminates after the rendezvous takes place.

3 Transformation Rules

Model transformation plays an essential role in model-driven engineering for
various purposes such as modeling, optimization and analysis. It defines a mech-
anism for generating a target model based on information extracted from a
source model. One important issue in this domain is the semantic preservation
that should be considered while defining the transformation description. In our
approach, we provide a model transformation description with a set of model
transformation rules from AADL to LNT for formal verification. We abstract
AADL model as a set of communicating execution units in real-time context.
Precisely, we consider port communication between AADL threads enriched with
scheduling properties. We find LNT language suitable and expressive enough to
specify AADL semantic in different aspects such as hierarchy of components,
parallel execution and connection types.

Basically, we translate every AADL component (type/implementation) into
an LNT process. We present AADL port connections with LNT gates and we
implement AADL properties with LNT programming structures. With this strat-
egy, we extract the three ADL basic elements (seen in section 2.1) from AADL
model. So we obtain a specification with the same structure of the initial model.

3.1 Scheduling Mapping

In our approach, we consider periodic thread scheduling and execution mecha-
nism without sharing resources. Our mapping considers the schedulability test

like a primary condition before checking other constraints. It concerns AADL
thread and processor components detailed in below sections.

Periodic Thread. First rule (table 1) in our transformation description con-
cerns AADL thread. Every implementation of thread component is presented
with an LNT process <Thread_*>. It has a set of gate declarations correspond-
ing to AADL ports with a set of parameters corresponding to AADL temporal
properties like execution time, input/output time, period and priority.

Table 1. Transformation rule for AADL Thread

Rule 1
Thread
process <Thread_AADLIdentifier>
- Features [OutR : Request,
InR : Response,
° data/event/event data port —— AADL ng;)P declarations
- Properties]
e Period; (LEM = Nat,
A . priority : Nat,
e Compute Execution Time; Destination : Connections,
o Deadline; Idt : Identifier ,
e Input_Time; Execution_Time : Time,
- ’ Input_-Time : IO_Time_Spec,
e Qutput_Time; Output_-Time : IO_Time-Spec,
Y Priority. Period : Nat,
Deadline : Nat)

Initially, all <Thread_*> processes are considered in the ready state. To start
the execution and enter the running state, every <Thread_x> contacts the proces-
sor, it requests time corresponding to its Activate Execution_Time parameter.
Depending on processor scheduling, <Thread *> can be in three behaviours:

- Starting execution and remaining in the running state until the completion
of execution in the current dispatch;

- In the case of a completion, <Thread *> enters the awaiting dispatch state
for the next dispatch;

- In the case of a preemption, <Thread_*> returns to the ready state to request
the needed time to complete execution;

- In the case of exceeding its deadline, <Thread x> declares (with specific gate)
the failure of schedulability test and stop its execution.

LNT language is not a specific process algebra for real-time systems, it has
no time operators and no preemptions. So we use counters to present time. We
perform calculation, based on AADL property values, to deduct needed values
like dispatching and communication times.

Processor. For Rule 2 (table 2), we extract the scheduler of AADL pro-
cessor providing thread scheduling functionality. It becomes an LNT process
<Processor_*> with two gates: the first one for receiving <Thread *> requests
and the second for sending the response. This process complete the scheduling
mapping by computing start and completion execution time for each bounded
thread.

Table 2. Transformation rule for AADL Processor

Rule 2
Processor
process <Processor_AADLIdentifier>
_ Features [Input : Request,
. Output : Response_List] is
e requires bus access __ code

- Properties end process
e Scheduling Protocol

When starting, <Processor_*> receives requests from all ready threads which
are queued and sorted by priority. After all calculations, it sends a response to
enable the execution. Thus, each bounded thread gets its execution time and
then starts the running state.

Thanks to its programming ability, we can implement many scheduling al-
gorithms with LNT. We developed the Rate-monotonic scheduler for periodic
threads: threads can be preempted; they share no resources; their deadlines are
equal to their periods; and they have static priorities.

3.2 Communication

Port feature and port connection semantic are well detailed in AADL standard.
We are interested in port communication between threads and processes. Port
declarations are transformed in gate declarations in LNT processes. However,
port connections cannot be transformed directly in gate synchronizations. LNT
provides a rendezvous communication that cannot present AADL semantic port
connection in which inputs and outputs are frozen. For example, incoming data,
event or event data are not available to the receiving thread until the next dis-
patch (the default input time). So, we do not synchronize <Thread *>s directly
on gates. In addition, LNT language does not provide queues with its gates.
To obtain the closest behaviour, we add an auxiliary LNT process (table 3) to
present connections and handle queues. Thus, <Thread_*> is never blocked in a
communication and ports can stack inputs in the case of exchanging events. The
additional generic process <*Port_*> has two gates: the first one for inputs (can
be from Bus, Thread or Process) and the second one for outputs (can be data or
a list of event/event data). <*Port_*> implements connection properties: type

of communication: data, event, event data; queue size; overflow handling pro-
tocol: drop oldest, newest drop, error; queue protocol: FIFO, LIFO and dequeue
protocol: one item, multiple items, all items. Particularly, <DataPort_*> presents
sampled data port connection, which is a specific port connection semantic for
data ports and periodic threads.

Table 3. Transformation rule for AADL communication

Rule 3
Port
process <EventPort_AADLIdentifier>
- Types [Input : Channell,
Output : ChannellI]
® data/event/event data (ConnectIDs Connections ,
- Properties Queue_Size : Nat,

Overflow_Handling_Protocol

. Overflow_Handling_Protocol_Type ,
Queue _Size; Queue_Processing_Protocol
Overflow_Handling Protocol; Queue_Processing_Protocol_Type,

) Dequeue_Protocol
Dequeue_Protocol; Dequeue_Protocol_Type,

Dequeued_Items. Dequeued_Items : Nat)

o (Queue_Processing Protocol;
L]
°
L]
°

Port connections
process <DataPort_AADLIdentifier>

. Input : Ch I,
- Port Connection Topology [Onui;ut . Cir;ﬁ(;eln]

e n-to-n for event/event data port
e 1-to-n for data port

- Sampled Data Port Communication
e Immediate
e Delayed

In LNT, gates are bidirectional. So we can present all AADL port directions:
in, out and in out. The correspondence between in/out ports is ensured with
identifiers, every connection (from out to in port) has an identifier. Sender in-
cludes a list of connection identifiers in its output. <EventPort_*> has a list of ac-
cepted connection identifiers (parameter ConnectIDs) to verify if its <Thread *>
is concerned by the received input. Thus, we can specify all AADL connec-
tion topologies. The Example presented in listings 1.3 and 1.4 transforms Pro-
ducer/Consumer communication: Producer provides inputs to two consumers
Consumerl and Consumer2. This is an 1-to-n topology and event data type
AADL port connection. In LNT, we get five processes. Process_Producer sends
messages. Each EventPort _ConnPC* identifies its concerned inputs with identi-
fiers Producer D__Consumer* D.

Listing 1.3. AADL initial model

system implementation S.Impl
subcomponents
Producer : process A.Impl;
Consumerl : process B.Impl;
Consumer2 : process B.Impl;
— code
(3(,)]]]]&‘,(31,i()]|5
—— code

ConnPC1 : port
Producer.D —> Consumerl.D;
ConnPC2 : port
Producer.D —> Consumer2.D;
— code
end S.Impl;

3.3 Parallel composition

Listing 1.4. LNT obtained model

par
Process_Producer [..] (
—— parameters
{Producer_-D__Consumerl_D ,
Producer_D__Consumer2_D })
I

—— code
EventPort_ConnPC1 [..] (
— par‘duleters
{Producer_D__Consumerl_D})
I
—— code
EventPort_ConnPC2 [..] (
—— parameters
{Producer_D__Consumer2_D })

end par

Process and System AADL components are organized into a hierarchy of sub-
components: process may contain a composition of threads and system presents
a composition of components. To preserve this structure, we translate these hi-
erarchical organizations using par behaviour with rule 4 (table 4).

Table 4. Transformation rule for parallel composition

Rule 4

Process

- Features

e data/event/event data port
- Subcomponents

e Thread
- Connections

e Port connection

process <Process_AADLIdentifier> |
— AADL gate declarations

] is
par .. in

<Thread_AADLIdentifier> [..]

[
<Thread _AADLIdentifier> [..]
[

end par
end process

System

- Subcomponents
e Process
e Processor
e Bus
- Connections
e Port connection
e Bus access

process Main is
par .. in
<Process_ AADLIdentifier> [..]

[
<Bus_AADLIdentifier> [..]

[
<Processor_AADLIdentifier> [..]
[
end par
end process

For AADL process that contains a composition of threads. It becomes an
LNT process containing a composition of <Thread_*>s. Else, there is no need to
transform AADL process. Similarly, we apply rule 4 on AADL system compo-
nent. It becomes the LNT ”Main” process which composes process instances of
transformed software and hardware subcomponents.

3.4 Synchronization

All transformed components should be synchronized to assemble the whole sys-
tem. For synchronization, we define the following rules:

Rule 5 For each in/out communication, we apply two level of synchronization:

I/ every in port of <Thread *> is synchronized with an instance of <*Port_x>
process;

IT/ the obtained composition from I/ is synchronized with <Thread *> of
out port.

In listing 1.5 and 1.6, we give an example where we apply rule 4 for two

communicating AADL threads ThreadA and ThreadB. We obtain three syn-

chronized processes: a first ”par” composition (Thread threadB in global

synchronization with DataPort_ConnAB on gate SyncI) is in synchronization

with Thread_threadA (on gate SyncII).

Listing 1.5. AADL initial model Listing 1.6. LNT obtained model
thread ThreadA process Process_P_Impl |
features — gate declarations

D : out data port DataAB;]
end ThreadA ; is
thread ThreadB —— code
features par Syncll in

D : in data port DataAB; Thread_threadA [SynclI]
end ThreadB; I

par Syncl in

process implementation P.Impl Thread_-threadB [SyncI]
subcomponents I

threadA : thread ThreadA; DataPort_ConnAB

threadB : thread ThreadB; [SyncIl, SyncI]
connections end par

ConnAB : data port end par

threadA .D —> threadB .D; —— code
end P.Impl; end process

Rule 6 (table 5) Gates are synchronized in competition access or simultane-
ous access: all <Thread *> are in competition access to <Bus_*> for sending
messages (respectively to <Processor_*> for sending requests) and in simul-
taneous access for receiving messages (respectively for receiving responses).

3.5 Other transformation rules

In this section, we complete the presentation of our transformation description.
It concerns Data, Subprogram and Bus AADL components. Due to the lack of
space, we expose briefly the rest of rules.

Table 5. Bus and Processor binding transformation

Rule 6

Bus access
par
- Properties inlztés, gut[Bu]; —> (B]
e Actual Connection Binding; I us-=> [mnbus, outbus
Rq, Rs —> <Processor_> [Rq, Rs]

|l
Rq, Rs, inBus, outBus —>
par Rs in
. par
- Properties <Thread_> [Rq, Rs, inBus]

e Actual Processor Binding; [
end par

I
par Rs, outBus in
<Thread_> [Rq, Rs, outBus]
[
end par
end par
end par

Processor binding

Rule 7. Data is considered as a simple data type without features. It is trans-
lated to a suitable LNT type <Data_*> in order to present the exchanged data
between threads. In addition, we add corresponding channels for gate communi-
cations.

Rule 8. Subprogram becomes an LNT process without gates, containing the
same parameters as AADL subprogram. We can translate code given in the
programming language of the source text (Ada or C). Thus, subprogram calls are
translated into a simple process instantiation in the corresponding <Thread *>.

Rule 9. Bus becomes an LNT process <Bus_*>, with two ports (input, output)
modeling a queue with a capacity determined by a parameter. <Bus_*> uses
the push type where the communication is initiated by the sender. It allows the
bound of any connection category: data/event/event data connection and imme-
diate/delayed connection. <Bus_*> exchanges a message contained the following
information: sender identifier, list of connection identifiers, exchanged data and
data sending interval time.

4 Tools

Our contribution benefits from a couple of powerful tools Ocarina for modeling
and CADP for analyzing:

Ocarina is a tool set designed in Ada for AADL modeling. It provides syntactic
and semantic analysis, verification and code generation from AADL models in
Ada and C languages. Ocarina compiler has two parts a frontend and a backend.
Frontend analyzes AADL model and presents it as Abstract Syntax Tree (AST).
Backend treats AADL AST to produce all types of generation.

We began our implementations in Ocarina backend (implementation details
will be exposed in a forthcoming paper). We do not use model transformation
languages for our generation. We apply directly transformation rules on AADL
AST to generate an LNT AST. Then, we scan this tree in order to produce the
corresponding LNT code file.

CADP is a toolbox for the design and verification of concurrent systems. It
supports several specification languages (Lotos, Fsp, LNT, etc). It includes many
tools for formal analyzing and bug detection like model checking, equivalence
checking, simulation, performance evaluation, etc.

We consider CADP like a black-box. Yet, we should provide all inputs: our
translation generates LNT file, additional inputs must be presented depending on
the concerned tool. For example, model-checker tool verifies if LNT specification
satisfies a property expressed in temporal logic. In this case, we also specify a set
of properties as a second input. After analyzing, CADP gives useful results for
the correction of the initial model. For example, model-checker gives a false/true
response for every checked property.

5 Case Study

In this section, we test our contribution with the ”Flight Control System” case
study. We apply our transformation rules on the given AADL model to obtain
an LNT specification which can be compiled and checked with CADP toolbox.

5.1 Flight control system

This system allows the control of the altitude, the speed and the trajectory of
an airplane. It consists of seven periodic threads grouped in one process binding
to a processor. Threads, shown in figure 1, communicate directly and exchange
data. FL thread acquires the state of the system (angles, position, acceleration)
and computes the feedback law of the system. The order is then sent to the
flight control surfaces. PLL and PF threads determine the acceleration to apply.
NL and NF determine the position to reach.

Flight control system in LNT. After transformation, we obtain an LNT
specification which is formed of 19 composite processes. In this example, threads
communicate without bus and exchange data. So the obtained specification uses
DataPort_* for inputs and Processor_CPU for RMS scheduling.

Fig. 1. Flight control system

120 ms 40 ms 10 ms
Gmmmmmm e e > §mmmmmmmmmm it P fmmmmmmmio e >
]]]]
1 1 1 1
Reduired Required, Requirdd ,
Pogition Navigation Law Accelerafion | Piloting Law Angle } | Fei(;k:jck order !
(pbsc) (NL) (accch i (Pr) (angle_¢) i (Fp) !
1 5 1 5 1 1
. . i Observed A<' le.0) .
. . 1 Angle angle-o .
' 1Observed ' '
1 1 1 1
' 1Acceleration ' Feedback '
. angle
. Ob§e1Tved 1(acc_0) . filter £ .
1 Position 1 ' (F) 1
' ' ') '
' (pos_o) ' ' '
1 1 1 1
))))
E E Piloting Filter |, . position E
. . (Pr) N (acc_i) Acceleration i
' . . position :
: Navigation Filter |, ; ; acquisition accelerati :
1 (Nr) ¢ ; — ; (Ap) acceleration
E ! (pos.i) ! (acc) '

The listing 1.7 contains an extract from the Process_FCS specification, show-
ing the instantiation of Thread NL and Thread NF (without parameters) in syn-
chronization with Processor_CPU (Rule 6). For example, Thread NL has three
connections (Rule 5.1): output with acc_c gate; input 1 through synchronization
with DataPort _Posc; and input 2 through synchronization with DataPort_Poso.
Also it is in synchronization with Thread NF for pos_o input (Rule 5.1IT).

Listing 1.7. Flight control system in LNT

0 NG A W N =

N R el e e e
B W NP O ©®Ne U W= O ©

n

¥
o

process Process_.FCS [Rq : Response, Rs : Request,

pos_c : Channelpos_c, order : Channelorder, acc : Channelacc,
position : Channelposition, angle : Channelangle
] is

— code

par Rs in
acc-c, pos_-o —>
par
Syncl;, Syncl; —> Tread_NL [Rq,Rs,Syncl;,Syncl;j,acc_c](..)
[l
Syncl; —> DataPort_Posc [pos_c, Syncl;]
I
pos_o, Syncl; —> DataPort_Poso [pos_o, Syncl;]
end par
I
pos_o, pos_i —>
par Syncly in
NF [Rq, Rs, Syncly,pos_o](..)
I
pos_i —> DataPortAADL [pos_i, Syncl]
end par
[
—— code
end par
end process

5.2 Verification with CADP

The generated LNT specification can be analyzed with different tools in CADP.
CADP transforms the obtained LNT specification into an LTS (Labeled tran-
sition system). In addition, CADP offers an automated reduction which allows
a strong reduction in the state space. We include, in table 6, the state space
statistics of the generated LTS for our case study.

Table 6. ”Flight Control System” LTS

‘LTS ‘Reduced LTS ‘
states 569 740 59 648
transitions 4 140 014 506 791

We can simulate LNT specification with CADP simulators like OCIS (Open/-
Caesar Interactive Simulator). We can check various constraints with CADP
model-checkers. In our case study, we use the Evaluator 3 model-checker [12]
and we express properties in Rafmc (Regular Alternation-Free Mu-Calculus)
language. For example, we verify the deadlock freedom:

[true*] <true> true

We can check the reachability of any state, for example, the following property
verifies if the order is finally sent by FL thread:

< truex . "ORDER !FL 7 > true
To check the schedulability of the AADL system, we add a specific LNT gate
Is_Schedulable. If the execution ends successfully, the <Thread_*> writes TRUE
in Is_Schedulable gate. Else, it writes FALSE when it detects an exceeding of
deadline. Then, the model-checker verifies if this gate has the value FALSE. In
our case study, this property is expressed in Rafmc as following;:

[truex . 7ISSSCHEDULABLE !Thread_-NL !FALSE”] false and

[trues . 7ISSCHEDULABLE !Thread_* !FALSE”] false and

[truex . 7ISSCHEDULABLE !Thread AP !FALSE”] false

We model-checked the ”Flight Control System” case study, and ensure that it is
well scheduled and has no deadlocks.

6 Related Work

Several work in formal verification of AADL models have been made by trans-
lating AADL with or without its annex into several specification languages:
(i)transformation into Petri nets for example the symmetric net in [9] for model-
checking; (ii) transformation into automata for example the use of timed au-
tomata in [8] and [10] to connect to the model-checker UPPAAL and the use of

the linear hybrid automata in [7] for schedulability analysis; and (iii) transfor-
mation into different process algebras.

Our work is included in group (iii) with others approach, such as, the trans-
lation into Bip [13] to connect with Bip framework. This translation generates
timed Bip models which should be transformed into non-timed models to be
analyzed.

[4] transforms AADL model into Fiacre model for behavioral verification with
Tina tool set or CADP toolbox. For the second alternative, AADL model is firstly
converted into a Fiacre model and then transformed into a Lotos specification
with the need of manual improvements. This work ignores hardware components
and it is restricted on no preempted thread without scheduling execution.

[14] uses the Real-Time Maude language for transformation and the Maude
framework for verification. However, this work focuses only on the software
AADL components and ignores scheduling information.

Authors in [15] present a verified transformation of AADL model to TASM
language using TASM Toolset, Coq and UPPAAL. This work considers only a
synchronous subset of AADL (periodic threads with data port communication).

In our approach, we provide an automated model transformation of AADL
models. We consider a subset of AADL language implicating software and hard-
ware components with a significant property set. We focus on thread scheduling
execution and port communication mechanism with the definition of an explicit
scheduler. We use directly LNT input language of the formal tool without addi-
tional transformation. For verification, our work allows the connection with the
CADP toolbox which offers a various verification methods and avoids the state
explosion problem with a compositional verification.

7 Conclusion and future work

We presented our approach in the context of the verification of distributed real-
time systems. We proposed a solution that allows the verification of AADL mod-
els using formal methods known by their rigorous checking results. We trans-
lated an interesting subset of AADL model to an LNT specification to exploit
the CADP toolbox. Our mapping abstracts AADL model as a set of scheduled
threads in communication enriched with connection and timing properties.

This paper introduced a first step of our contribution and validated its fea-
sibility. Currently, we are focusing on communication problems. We plan to de-
scribe specific properties for communication consistency verification. Also we aim
to exploit the compositional verification offered by CADP. And we are working
continuously in our implementations in Ocarina.

Acknowledgments The idea of translating AADL to LNT was first explored
by Hubert Garavel from the CADP group. We would like to thank him and
Wendelin Serwe and Frédéric Lang for their help in using LNT and CADP.

References

10.

11.

12.

13.

14.

15.

ISO/IEC. LOTOS a formal description technique based on the temporal ordering of
observational behaviour. International Standard 8807, International Organization
for Standardization Information Processing Systems Open Systems Interconnec-
tion, Geneve. 1989.

ISO/IEC. Enhancements to LOTOS (E-LOTOS). International Standard
15437:2001, International Organization for Standardization Information Technol-
ogy, Geneve. 2001.

AS5506A: Architecture Analysis and Design Language (AADL) Version 2.0. 2009.
B. Berthomieu, J.-P. Bodeveix, S. Dal Zilio, P. Dissaux, M. Filali, P. Gaufillet,
S. Heim, and F. Vernadat. Formal Verification of AADL models with Fiacre and
Tina. In FERTSS 2010 - Embedded Real-Time Software and Systems, pages 1-9,
TOULOUSE (31000), France, May 2010. 9 pages DGE Topcased.

D. Champelovier, X. Clerc, H. Garavel, Y. Guerte, F. Lang, C. McKinty,
V. Powazny, W. Serwe, and G. Smeding. Reference manual of the Int to lotos
translator. 2014.

H. Garavel, F. Lang, R. Mateescu, and W. Serwe. Cadp 2011: a toolbox for the con-
struction and analysis of distributed processes. International Journal on Software
Tools for Technology Transfer, 15(2):89-107, 2013.

S. Gui, L. Luo, Y. Li, and L. Wang. Formal Schedulability Analysis and Simulation
for AADL. In ICESS, pages 429-435, 2008.

M. E.-K. Hamdane, A. Chaoui, and M. Strecker. Toolchain Based on MDE for the
Transformation of AADL Models to Timed Automata Models. 2013.

M. Hecht, A. Lam, and C. Vogl. A Tool Set for Integrated Software and Hard-
ware Dependability Analysis Using the Architecture Analysis and Design Language
(AADL) and Error Model Annex. In ICECCS, pages 361-366, 2011.

A. Johnsen, K. Lundqvist, P. Pettersson, and O. Jaradat. Automated Verification
of AADL-Specifications Using UPPAAL. In HASE, pages 130-138, 2012.

G. Lasnier, B. Zalila, L. Pautet, and J. Hugues. Ocarina: An environment for aadl
models analysis and automatic code generation for high integrity applications. In
Reliable Software Technologies—Ada-FEurope 2009, pages 237—250. Springer, 2009.
R. Mateescu and M. Sighireanu. Efficient on-the-fly model-checking for regular
alternation-free mu-calculus. Science of Computer Programming, 46(3):255-281,
2003.

A. R. M. B. Mohamed Yassin Chkouri and J. Sifakis. Translating AADL into BIP
- Application to the Verification of Real-Time Systems. In MoDELS Workshops,
pages 5-19, 2008.

P. C. Olveczky, A. Boronat, and J. Meseguer. Formal Semantics and Analysis
of Behavioral AADL Models in Real-Time Maude. In FMOODS/FORTE, pages
47-62, 2010.

Z. Yang, K. Hu, D. Ma, J.-P. Bodeveix, L. Pi, and J.-P. Talpin. From aadl to
timed abstract state machines: A verified model transformation. volume 93, pages
42-68. Elsevier, 2014.

