

THÈSE

Pour obtenir le grade de

DOCTEUR DE LA COMMUNAUTE UNIVERSITE
GRENOBLE ALPES

Spécialité : Informatique

Arrêté ministériel : 25 mai 2016

Présentée par

Umar OZEER

Thèse dirigée par M. Gwen SALAÜN, et
Co-encadrée par M. Loïc LETONDEUR, M. François-Gaël
OTTOGALLI et M. Jean-Marc VINCENT

préparée au sein d’Orange Labs et de l’INRIA
dans l'École Doctorale Mathématiques, Sciences et
technologies de l'information, Informatique

Gestion Autonome de la Résilience des Applications IoT
Distribuées en Bordure de Réseau (Fog)

Autonomic Resilience of
Distributed IoT Applications in
the Fog

Thèse soutenue publiquement le 11 décembre 2019,
devant le jury composé de :

Monsieur Thomas LEDOUX
Enseignant-chercheur, IMT Atlantique, Rapporteur

Monsieur Pierre SENS
Professeur, Sorbonne Université, Rapporteur

Madame Sara BOUCHENAK
Professeur, INSA Lyon, Président

Monsieur Charles CONSEL
Professeur, Bordeaux INP, Examinateur

Monsieur Gwen SALAÜN
Professeur, Université Grenoble Alpes, Directeur de thèse

Monsieur Loïc LETONDEUR
Ingénieur de recherche, Orange Labs, Co-encadrant de thèse

Monsieur François Gaël OTTOGALLI
Ingénieur de recherche, Orange Labs, Co-encadrant de thèse

Monsieur Jean-Marc VINCENT
Maître de conférences, Université Grenoble Alpes, Co-encadrant de thèse

Acknowledgements

Here I am, at the beginning of this manuscript and paradoxically at the end of my Ph.D.
This journey would not have been possible without the support, guidance, and feedbacks
from numerous people around me.

First and foremost, I would like extend my sincere gratitude to my supervisors for their
continuous advice and feedbacks, for giving me the freedom to explore areas which align
with my research interests, and for trusting my decisions. I am grateful to Gwen Salaün
and Xavier Etchevers for (en)trusting me with this Thesis subject. I am thankful to Löıc
Letondeur for taking interest in this project, for being present to advise me, and also for his
(sometimes nerdy) humour. I am also thankful to François-Gaël Ottogalli and Jean-Marc
Vincent for their support and for trusting that I can always aim higher.

I would like to thank Pierre Sens and Thomas Ledoux for accepting to review this Thesis
as well as for their valuable insights. I would also like to express my sincere gratitude to
the Jury members Sara Bouchenak and Charles Consel for their challenging questions and
appreciations during my Thesis defense.

I have to thank all the members of the COPS and Polaris teams for their welcome. I am
thankful to my office mate, Franck Roudet, for the long discussions on development and
technological aspects. I would like to thank Sabbir Hasan for the geeky discussions and
for sharing useful tips during lunch. I have also been blessed to be part of the Convecs
team. I am grateful to Radu Mateescu for welcoming me in the team, to Ajay Krishna,
Pierre Bouvier, and Philippe Ledent for the thoughtful discussions during lunch and coffee
breaks. A special thank to Lina Marsso for being lively, reliable, and always ready to listen
and help. It has been a pleasure to be part of such an amazing team and I believe we are
family. I sincerely hope that our paths will cross again.

Merci to Antonin Chazalet for encouraging me to do a Ph.D, Mersi to my travel buddies
Nikhill and Youssouf for accompanying me in my last minute travel plans, Danke schön
to Samira for being an inspiration of hard work. My appreciation also goes to all the
wonderful and amazing people I met in Grenoble that made this journey nicer and more
adventurous.

Last but not the least, I want to wholeheartedly thank my parents for their support which
made this journey easier. Thank you for teaching me patience, for believing in me, and
encouraging me to follow my dreams. I rejoice in knowing that your prayers have been
answered.

i

To my parents

"The oak fought the wind and was broken, the willow bent when it must and

survived."

– Robert Jordan

iii

Abstract

Recent computing trends have been advocating for more distributed paradigms, namely
Fog computing, which extends the capacities of the Cloud at the edge of the network, that
is close to end devices and end users in the physical world. The Fog is a key enabler of the
Internet of Things (IoT) applications as it resolves some of the needs that the Cloud fails
to provide such as low network latencies, privacy, QoS, and geographical requirements. For
this reason, the Fog has become increasingly popular and finds application in many fields
such as smart homes and cities, agriculture, healthcare, transportation, etc.

The Fog, however, is unstable because it is constituted of billions of heterogeneous devices
in a dynamic ecosystem. IoT devices may regularly fail because of bulk production and
cheap design. Moreover, the Fog-IoT ecosystem is cyber-physical and thus devices are
subjected to external physical world conditions which increase the occurrence of failures.
When failures occur in such an ecosystem, the resulting inconsistencies in the application
affect the physical world by inducing hazardous and costly situations.

In this Thesis, we propose an end-to-end autonomic failure management approach for IoT
applications deployed in the Fog. The approach manages IoT applications and is com-
posed of four functional steps: (i) state saving, (ii) monitoring, (iii) failure notification,
and (iv) recovery. Each step is a collection of similar roles and is implemented, taking into
account the specificities of the ecosystem (e.g., heterogeneity, resource limitations). State
saving aims at saving data concerning the state of the managed application. These include
runtime parameters and the data in the volatile memory, as well as messages exchanged
and functions executed by the application. Monitoring aims at observing and reporting
information on the lifecycle of the application. When a failure is detected, failure notifica-
tions are propagated to the part of the application which is affected by that failure. The
propagation of failure notifications aims at limiting the impact of the failure and providing
a partial service. In order to recover from a failure, the application is reconfigured and the
data saved during the state saving step are used to restore a cyber-physical consistent state
of the application. Cyber-physical consistency aims at maintaining a consistent behaviour
of the application with respect to the physical world, as well as avoiding dangerous and
costly circumstances.

The approach was validated using model checking techniques to verify important correct-
ness properties. It was then implemented as a framework called F3ARIoT. This framework
was evaluated on a smart home application. The results showed the feasibility of deploying
F3ARIoT on real Fog-IoT applications as well as its good performances in regards to end
user experience.

iv

Résumé
Les dernières tendances de l’informatique distribuées préconisent le Fog computing qui
étend les capacités du Cloud en bordure du réseau, à proximité des objets terminaux et
des utilisateurs finaux localisé dans le monde physique. Le Fog est un catalyseur clé des
applications de l’Internet des Objets (IoT), car il résout certains des besoins que le Cloud ne
parvient à satisfaire, tels que les faibles latences, la confidentialité des données sensibles, la
qualité de service ainsi que les contraintes géographiques. Pour cette raison, le Fog devient
de plus en plus populaire et trouve des cas d’utilisations dans de nombreux domaines tels
que la domotique, l’agriculture, la e-santé, les voitures autonomes, etc.

Le Fog, cependant, est instable car il est constitué de milliards d’objets hétérogènes au
sein d’un écosystème dynamique. Les objets de l’IoT tombent en pannes régulièrement
parce qu’ils sont produits en masse à des couts très bas. De plus, l’écosystème Fog-IoT
est cyber-physique et les objets IoT sont donc affectés par les conditions météorologiques
du monde physique. Ceci accrôıt la probabilité et la fréquence des défaillances. Dans
un tel écosystème, les défaillances produisent des comportements incohérents qui peuvent
provoquer des situations dangereuses et coûteuses dans le monde physique. La gestion de
la résilience dans un tel écosystème est donc primordiale.

Cette Thèse propose une approche autonome de gestion de la résilience des applications
IoT déployées en environnement Fog. L’approche proposée comprend quatre tâches fonc-
tionnelles: (i) sauvegarde d’état, (ii) surveillance, (iii) notification des défaillances, et
(iv) reprise sur panne. Chaque tâche est un regroupement de rôles similaires et est mise
en oeuvre en tenant compte les spécificités de l’écosystème (e.g., hétérogénéité, ressources
limitées). La sauvegarde d’état vise à sauvegarder les informations sur l’état de l’application.
Ces informations sont constituées des données d’exécution et de la mémoire volatile, ainsi
que des messages échangés et fonctions exécutées par l’application. La surveillance vise à
observer et à communiquer des informations sur le cycle de vie de l’application. Il est parti-
culièrement utile pour la détection des défaillances. Lors d’une défaillance, des notifications
sont propagées à la partie de l’application affectée par cette défaillance. La propagation
des notifications vise à limiter la portée de l’impact de la défaillance et à fournir un service
partiel ou dégradé. Pour établir une reprise sur panne, l’application est reconfigurée et les
données enregistrées lors de la tâche de sauvegarde d’état sont utilisées afin de restaurer un
état cohérent de l’application par rapport au monde physique. Cette réconciliation entre
l’état de l’application et celui du monde physique est appelé cohérence cyber-physique. La
procédure de reprise sur panne en assurant la cohérence cyber-physique évite les impacts
dangereux et coûteux de la défaillance sur le monde physique.

L’approche proposée a été validée à l’aide de techniques de vérification par modèle afin de
vérifier que certaines propriétés importantes sont satisfaites. Cette approche de résilience a
été mise en oeuvre sous la forme d’une bôıte à outils, F3ARIoT, destiné aux développeurs.
F3ARIoT a été évalué sur une application domotique. Les résultats montrent la fais-
abilité de son utilisation sur des déploiements réels d’applications Fog-IoT, ainsi que des
performances satisfaisantes par rapport aux utilisateurs.

Contents

1 Introduction 1
1.1 The Cloud and the Internet of Things . 2
1.2 The Fog and the Internet of Things . 4

1.2.1 The Fog Infrastructure . 4
1.2.2 Specificities of the Fog-IoT Ecosystem 5

1.3 Motivations and Scope of this Thesis . 7
1.4 Failure Management Approach . 9
1.5 Contributions . 11
1.6 Thesis Structure . 12

I Failure Management in Distributed Applications 15

2 Failure Management Concepts 17
2.1 Terminology . 18
2.2 Automating Failure Management . 19
2.3 Failures . 21

2.3.1 Failure Models . 21
2.3.2 Consequences of Failures . 22
2.3.3 Detection of Failures . 23

2.4 Fault Tolerance based on Redundancy . 25
2.4.1 Types of Redundancy . 25
2.4.2 Replication . 26
2.4.3 Maintaining a Consistent Behaviour of the Application 27

2.5 Reconfiguration . 28
2.5.1 Types of Reconfiguration . 29
2.5.2 Challenges of Implementing Dynamic Reconfiguration 31

2.6 Summary . 31

3 Existing Fault Tolerance Approaches 33
3.1 Comparison and Evaluation Criteria . 34
3.2 Fault Tolerance based on Replication . 35

v

vi CONTENTS

3.3 Fault Tolerance based on State Restoration 37
3.3.1 Checkpoint . 37
3.3.2 Event logging . 39
3.3.3 Tools For Fault Tolerance based on State Restoration 44

3.4 Fault Tolerance based on Dynamic Reconfiguration 45
3.4.1 Solutions based on Dynamic Reconfiguration 45
3.4.2 Dynamic Reconfiguration in the Fog-IoT Ecosystem 48

3.5 Fault Tolerance in the Fog-IoT Ecosystem 49
3.5.1 Smart Home / City . 49
3.5.2 Healthcare . 51
3.5.3 Miscellaneous IoT Application Domains 52

3.6 Summary . 53

II Autonomic Failure Management Approach For IoT Appli-
cations in the Fog 55

4 Fog-IoT Model 57
4.1 Behavioural Model . 57
4.2 Physical World Model . 60
4.3 Application Model . 62
4.4 Infrastructure Model . 64
4.5 Failure Model . 65
4.6 Running Example . 66
4.7 Summary . 68

5 Resilience Approach Overview 69
5.1 Application Lifecycle . 70
5.2 Infrastructure Lifecycle . 71
5.3 Autonomic Failure Management . 71
5.4 Failure Management Architecture . 74

5.4.1 Local Failure Managers . 75
5.4.2 Global Failure Managers . 78

5.5 Summary . 79

6 State Saving Approach 81
6.1 Motivation . 82
6.2 State Saving Policy . 83

6.2.1 State Saving Approach . 86
6.2.2 Frequency of Checkpoint . 88
6.2.3 Optimistic and Pessimistic Logging Strategies 89
6.2.4 Uncoordinated Checkpoint Combined with Logging 90
6.2.5 Validity Time . 92

CONTENTS vii

6.3 Summary . 92

7 Failure Detection and Notification Propagation 93
7.1 Monitoring . 94

7.1.1 Software Elements . 94
7.1.2 Appliance . 95
7.1.3 Physical Node and Fog Node . 96
7.1.4 Summary . 97

7.2 Failure Notification Propagation . 98
7.2.1 Failure Decision . 98
7.2.2 Propagation of Failure Notifications 100
7.2.3 Recovery Notifications . 104

7.3 Summary . 105

8 Recovery Approach 107
8.1 Recovery Policy . 108
8.2 Reconfiguration . 109
8.3 Cyber-Physical Consistency . 112

8.3.1 Issues in CP-Inconsistency . 113
8.3.2 State Restoration and CP-Consistent Recovery 115

8.4 Ensuring Service Continuity of Replacement Appliances 118
8.4.1 Motivation . 118
8.4.2 Adaptation of State Data . 119
8.4.3 Adaptation and Redirection of Events 119

8.5 Summary . 121

III Validation of the Failure Management Approach 123

9 Model Checking 125
9.1 Specification . 126

9.1.1 LNT . 126
9.1.2 Specification of the Failure Management Approach 126

9.2 Properties to Verify . 128
9.3 Evaluation . 131
9.4 Detected Issues . 132
9.5 Summary . 133

10 F3ARIoT - Implementation and Evaluation 135
10.1 Implementation of F3ARIoT . 136
10.2 Experimental Environment . 140

10.2.1 Smart Home Testbed . 140
10.2.2 Use Case Application . 142

viii CONTENTS

10.2.3 Deployment of F3ARIoT . 143
10.3 Evaluation Methodology . 144
10.4 Evaluation Tools . 147
10.5 Functional Evaluation . 149
10.6 Performance Evaluation . 151
10.7 Conclusion . 153

11 Conclusion 155
11.1 Summary of Contributions . 155
11.2 Future Work . 157

11.2.1 Full Autonomicity . 157
11.2.2 Inferring Parameters . 157
11.2.3 Predictive Maintenance . 158
11.2.4 Scalability . 158
11.2.5 Extension to Other IoT Application Domains 159

Chapter 1

Introduction

Contents
1.1 The Cloud and the Internet of Things 2

1.2 The Fog and the Internet of Things 4

1.2.1 The Fog Infrastructure . 4

1.2.2 Specificities of the Fog-IoT Ecosystem 5

1.3 Motivations and Scope of this Thesis 7

1.4 Failure Management Approach 9

1.5 Contributions . 11

1.6 Thesis Structure . 12

The idea behind connecting devices to the internet originates in the 1980’s where a coke
machine at the Carnegie Mellon University was connected to the ARPANET [102] by a
group of students. This allowed them to remotely check the machine’s status and the
availability of sodas before going for a refreshment [13]. It is not until later in 1999 that
the term Internet of Things (IoT) was coined, which at the time, aimed at promoting
the newly developed RFID technology [12]. Since then, with the increased interest in the
capabilities of the IoT and progress in technology as well as the evolution of requirements
and human needs, the concepts and ideas behind the IoT have evolved.

There is no standard or official definition for the IoT. Some of the various descriptions
proposed can be found in [55]. It is sometimes described with respect to the internet and
the Internet Protocol (IP). For instance, in a special report on the Internet of Things [55],
IEEE describes the IoT as “A network of items - each embedded with sensors - which
are connected to the Internet”. However, the word internet in IoT is misleading since
it indulges an incorrect perception that devices should necessarily be connected to the
internet and that the latter is a requirement in order to deploy IoT applications. The
IoT should rather be described as a network of devices or objects having a cyber-physical
presence as they lie at the frontier between the digital and the physical world. The physical
world refers to spaces which have the presence and interaction of living things as opposed to

1

2 Chapter 1. Introduction

data-centers and software elements which are located in the digital space. The IoT is thus
composed of devices which have a presence both in the physical and digital world, having
processing and communicating capabilities, and interact with both spaces: sensors report
information on the physical world and actuators act on the physical world by automating
physical actions. This network of devices may be of varying spread (e.g., a personal, local
or wide area network and potentially the internet).

The capabilities offered by the IoT have been defining how we perceive and interact with our
surroundings. These unprecedented possibilities have given rise to a plethora of application
domains aimed at improving daily consumer life and increasing productivity in industry
through the automation of tasks. As a consequence, the IoT has been influencing both
business and economic models. For instance, Amazon Go has revolutionise the way we shop
by introducing grab-and-go supermarkets that do not require any checkouts [128]. Likewise,
the IoT has been gaining momentum in other application domains including smart homes
and cities [126], agriculture [89], mining [100], healthcare [51], transportation [136] and
many more [81]. It is estimated that the IoT will have a total potential economic impact
of up to $11.1 trillion a year by 2025 which is around 11% of the total economy of the
world [19].

One of the major drawbacks of IoT devices, however, is that they suffer from constrained
capabilities. These limitations imply that the functions of these devices cannot be extended
(e.g., firmware, APIs), their processing units are not accessible to carry out unintended
computations and their storage capacities are limited or not accessible. Therefore, in order
to store and analyse data sensed as well as make decisions and push them to actuators, a
more capable infrastructure is needed. The Cloud and the Fog have been proposed to play
this role by providing the necessary resources for the execution of IoT applications.

This chapter introduces this Thesis and consists of the following sections. Section 1.1
discusses the limitations of the Cloud with respect to the IoT. Section 1.2 presents the
concepts behind Fog computing and the specificities of the Fog-IoT ecosystem. Section 1.3
describes the motivations and scope of this work in terms of resilience and failure manage-
ment. Section 1.4 summarises our approach to handle failures. The contributions of this
Thesis and the associated publications are summarised in Section 1.5. Finally, Section 1.6
concludes this chapter by presenting the organisation of this Thesis.

1.1 The Cloud and the Internet of Things

Cloud computing [62, 160] has been prolific for more than a decade now. It advocates
for a new paradigm to access on-demand resources (such as storage, computing power,
development environments, or web services) located within the core network, accessible via
the internet. The Cloud environment is usually considered to have infinite resources [73].
This allows the construction of highly available IoT applications. However, by being located
far from end devices in terms of network and geo-location, the Cloud fails to resolve some

1.1. The Cloud and the Internet of Things 3

of the requirements of IoT applications.

Internet Connectivity. IoT applications that rely on the Cloud are dependent on an
internet connection. This is typically the case of vocal assistant devices, such as Amazon
Alexa and Google Home Assistant, which rely on resources provided by the Cloud for
voice recognition, natural language processing (NLP), and actuation of other IoT devices
in a smart home. These devices therefore need the internet to function properly and are
crippled when the internet connection is lost.

Time Sentivity. The Cloud is unsuitable for time-sensitive IoT applications because the
delays in communication are not bounded over the internet. The communication latencies
between IoT devices and the Cloud are relatively high and can be up to several hundreds
of milliseconds [166]. Even a good internet connection may have unpredictable variations.
In application domains such as remote surgery or virtual and augmented reality (VAR),
a variation of a few milliseconds matters. These types of applications may not afford to
access services in the Cloud since the high response time and variations induced by the
internet network cannot be tolerated.

Privacy. Cloud providers still do not guarantee strict privacy and security policies [56, 147]
even though IoT applications collect privacy-sensitive information. Personal data sent to
the Cloud may potentially be, legitimately or illicitly, shared to third parties for political
or advertising purposes. One recent example is the Facebook-Cambridge Analytica data
scandal [84] where millions of users’ personal information were harvested from Facekook
accounts because of weak enforcement of privacy rights. Moreover, personal data stored in
the Cloud can be exposed due to mediocre security policies. In these cases, a breach has a
substantial impact since it exposes massive amount of data at once. In June 2019, a team
of researchers found a leak that exposed two billion smart home records in Orvibo’s IoT
management platform. The breach was not patched until several days after the alert [9].

Data Volume. There will be around 26 billion IoT devices by 2020 and this number is set
to explode in the coming years [112]. This upward trend is not unexpected since the number
of connected objects easily exceeds the world’s human population: one person can carry
multiple mobile phones (for personal and professional use), wearables (e.g., earphones,
VR headsets, smart watch, pacemakers, fitness trackers) in addition to connected devices
at home (e.g., connected lamps, door locks, motion / temperature / humidity sensors,
cameras). If the large volumes of data generated by these devices are sent to the Cloud
without any pre-processing and filtering, the internet core network would be congested.

Location Awareness. Finally, IoT applications have geographical constraints because
devices such as sensors and actuators are tied to their geo-location. They have to be
deployed in the physical world in order to ensure their services. Unlike other application
domains where devices can be outsourced to the Cloud and the deployment of services in
the data-centers may be enough, it is impossible to relocate such IoT devices to the Cloud.

In order to mitigate the limitations of the Cloud, we are now witnessing the advent of more
distributed paradigms to extend the capabilities of the Cloud for IoT applications.

4 Chapter 1. Introduction

1.2 The Fog and the Internet of Things

Recent computing trends are promoting more distributed paradigms, namely Fog comput-
ing [35, 36, 134, 154] which extends the capacities of the Cloud at the edge of the network,
that is close to end devices and end users in the physical world. The Fog offers the possi-
bility of having real-time processing and decision making due to geographical proximity to
end devices and subsequent low latencies. Moreover, the Fog relieves the core network by
providing the means for storing, analysing, filtering and performing other pre-processing
of data at the edge of the network before sending them to the Cloud. Fog devices can be
placed within one’s private physical environment so that end users can have full control
over their data, avoiding privacy exposures by the Cloud. In this way, the geographical
requirements of IoT applications can also be met.

The Fog infrastructure is therefore a key enabler of IoT applications. In the next subsec-
tions, the structure and specificities of the Fog-IoT ecosystem are detailed.

1.2.1 The Fog Infrastructure

As illustrated in Figure 1.1, the Fog is hierarchically organised [134]. As a general rule, as
Fog devices get closer to the physical world, the communication latencies to reach IoT end
devices decrease at the price of lower computing and storage capabilities. IoT end devices
are composed of sensors and actuators. These are connected to Fog devices which host
software elements and services for (i) configuring the devices, (ii) collecting and storing
data reported by sensors, (iii) computing data including pattern analysis, filtering and
auditing, (iv) decision making, and, (v) controlling actuators.

(Fog Node)

Figure 1.1: The Hierarchical Structure of the Fog [134]

1.2. The Fog and the Internet of Things 5

The Fog infrastructure at the edge makes use of devices from the telecommunication and
network infrastructures as well as devices deliberately deployed to provide computation
and storage resources. For instance, in [99] the authors showed the feasibility of deploying
IoT applications on an Orange home internet gateway. The gateway can also be equipped
with a 1TB hard disk for storage purposes. In this case, the device enforces data privacy
since the users have full ownership of their data and are the only one to have access to
them. This service also limits the coverage of potential attacks since the user’s data remain
in the local network and do not transit to the core network. For more intensive computing,
for instance within a corporation or across a neighbourhood, a RuggedPod [135] can be
used. It is a vicinity micro-datacenter, composed of four 8 cores Xeon CPU, which can be
deployed for example near mobile base stations. Raspberry Pis [33, 65, 124], a single board
computer, have also extensively been used to populate the Fog infrastructure. Raspberry
Pis are very attractive because they are readily available at low prices and have good online
support and documentation. They can easily run software on a linux operating system and
have various modes of connection: cable (USB, GPIO, DPI), wireless (Wi-Fi, Bluetooth
and can be extended to support Z-wave and Zigbee). For instance, the University of Malaga
has deployed Raspberry Pis to build a smart campus [70]. Other devices such as the Onion
Omega [5] or Arduino [1, 45] have also been used to create a Fog infrastructure.

The Fog presents enormous advantages for the deployment of IoT applications since it
addresses the issues that are not resolved by the Cloud. It therefore has business and
commercial stakes for industries such as Telcos.

1.2.2 Specificities of the Fog-IoT Ecosystem

The Fog-IoT ecosystem is highly distributed and is composed of billions of devices which
exhibit the following challenging specificities: cyber-physical interactions, heterogeneity
and constraint diversity, as well as dynamicity.

a . Cyber-Physical Interactions

The IoT is cyber-physical: it is an ecosystem located at the frontier between the digital
and physical worlds. Sensors enable the digitalisation of physical world by collecting in-
formation about its properties and how they evolve. These data are sent to the Fog for
storage and analysis so as to build a dynamic model of the physical world. The actuating
capabilities of the IoT rely on this dynamic model created to transform logical decisions
into physical actions that we perceive.

The cyber-physical property of the IoT leads to additional challenges since decisions re-
garding physical actuations may have a direct impact on the physical world. A wrong
assumption or an incorrect interpretation of sensed data can have dangerous repercus-
sions. For instance, in a patient monitoring application, the incorrect measurements of the
blood sugar level reported by sensors may trigger an insulin injection which can be fatal
for the patient. Cyber-physical interactions also introduce non-deterministic events that

6 Chapter 1. Introduction

may be tied to context such as physical world time, temperature and geo-location. These
events result from the unpredictable nature of the physical world and the arbitrary ways
in which humans interact with the application.

b . Heterogeneity and Constraint Diversity

The Fog-IoT ecosystem is highly heterogeneous in terms of hardware, software, functions,
administrability, network and communication models.

The processing architectures and their capacities are diverse. For instance, a Raspberry
Pi has a an ARM architecture whereas most modern desktop computers, laptops and
servers have a x86 based hardware. The Onion Omega is based on a MIPS architecture [5].
Moreover, mirco-controllers such as Arduino, ARM Cortex M, or ESP32 have constraints
also on the programming languages and code instructions. These fundamental differences
imply that a software element running on a device may not be compatible to run on another
device. In addition, these devices come with different computing powers as well as storage
capacities. This means that the design of a software and the choice of the device on which
the software will run should take into account the underlying resources of the device. For
example, a Raspberry Pi might be able to store data and perform some CPU intensive
computations that an Arduino might fail to perform. On the contrary to the Raspberry
Pi, the Arduino may be able to control some embedded sensors and actuators.

Devices in the Fog have different degrees of observation and administration. Some pro-
prietary devices have deliberately hidden and obfuscated APIs. The functions of such
constrained devices are non-extensible and they cannot be used to perform unintended
operations. They usually provide sensing and actuating services and have dedicated com-
puting and storage resources solely for their function. On the other hand, some devices
may provide physical resources as well as offer a full range of operations for their lifecy-
cle administration such as hosting and deployment of software elements, reconfiguration,
updates, resource management, etc.

The type of network in the Fog-IoT environment varies from wired to wireless. The net-
work connection of IoT devices is generally dominated by wireless protocols which differ
in coverage, bandwidth and stability. Some of these protocols are Wi-Fi, Bluetooth, Blue-
tooth Low Energy (BLE) [148], Zigbee [151], Z-wave [164], Sigfox [111], 6LoWPAN [92],
NarrowBand IoT Protocol (NB-IoT) [133], LoRa [156] and more [106]. These numerous
protocols are incompatible with each other and the Fog should therefore provide inter-
pretability between these heterogeneous protocols [121]. Regardless of the network pro-
tocol, the communication model implemented at the application layer also varies. It can
be based on multiple implementations of synchronous or asynchronous message exchange
and function calls such as MQTT, websocket and RESTFUL APIs [90] which use different
communication paradigms and data formats.

c . Dynamicity

Devices in the Fog-IoT ecosystem may appear and disappear with or without synchronisa-

1.3. Motivations and Scope of this Thesis 7

tion. This may be due to various reasons such as reconfiguration, updates, (unannounced)
mobility, instability of wireless network links and failure occurrences.

Since the concepts behind the IoT are fairly new and keep evolving, there is a multitude
of projects in IoT. Creating interoperable software and stable architectures are thus hard.
The application also evolves with respect to new requirements, human needs and technol-
ogy changes. This creates a dynamic environment where part of the application may be
temporarily brought down for performing updates during which a partial service may be
provided.

The dynamic nature of the Fog-IoT ecosystem implies that applications’ topology, size and
available resources evolve with time. IoT applications are thus designed taking into account
these characteristics of the environment allowing support for on-the-fly (re)placement,
(re)deployment and reconfiguration so as to adapt to the changing environment.

1.3 Motivations and Scope of this Thesis

Recent research trends have seen many endeavours towards the development of IoT appli-
cations in urban environment by industrial, academic and political stakeholders [17]. Smart
urban environment is getting more and more attention because it responds to important
societal needs and trends [165] including smart home, smart lightning, crime prevention, air
quality, noise monitoring, waste management and traffic congestion. Major corporations
such as IBM, Google and Cisco have been investing in smart cities in the USA, Europe
and Asia [63]. SmartSantander [18] is a European project in which more than 15,000 sen-
sors have been deployed in the city of Santander in Spain in order to make a smart city
testbed. Songdo in South Korea is another smart city project in which Cisco invested $47
million [144, 105]. To achieve smart urban environments, a wide range of sensors and ac-
tuators are deployed in indoor and outdoor environments. The sensors report data on the
physical world such as temperature, humidity, motion, light and air quality. Computing
and storage devices retrieve, analyse and store these data and turn them into relevant and
actionable insights. Actuators are then used to transform logical decisions into physical
actions. For example, in a smart home, the IoT allows the automation of lightning with
respect to ambient light intensity and presence in the rooms. It can prevent intrusions in
the home by the means of devices like connected door lock, alarms and motion detectors.
Similarly, the activities of patients and elderly persons can be monitored inside the home
and their tasks can be automated so as to improve their quality of life. The data collected
within a home can be shared to have a broader view into the actionable insights which give
rise to services like neighbourhood security.

The Fog-IoT ecosystem gives rise to many important applications in smart homes and
smart buildings. However, this ecosystem suffers from a low stability and is prone to failures
because of bulk production of devices and cheap design. Bugs and non-interoperability of
software also make applications unstable. IoT devices are commonly connected by wireless

8 Chapter 1. Introduction

network links because it brings convenience and flexibility to end users. Such networks
are however volatile because the propagation of radio signals are easily obstructed and the
reflection of the signals on obstacles (e.g., door, wall, furniture) causes interference [159].
Motion of wireless devices causes fluctuations and attenuations in the level of received
signals [161]. Moreover, cyber-physical devices suffer from environmental conditions of the
physical world which cause wear-out and increase the occurrence of failures. IoT devices
may also suffer from accidental damages from human interactions and even vandalism.

The management of failures of IoT applications in the Fog remains a key challenge because
of the specificities of the environment. Heterogeneity implies that one uniform mechanism
for dealing with failures is impossible. Since devices are resource-constrained, the failure
management protocol should consume a minimum of resources to avoid disrupting the
application. The recovery procedure in cyber-physical IoT should take into account the
impacts of failures and subsequent repairs on the physical world. Moreover, failure manage-
ment should be done in an autonomous way because the Fog-IoT ecosystem is increasingly
complex and manual intervention is prone to errors or may be impossible. Handling fail-
ures autonomously saves time and avoid the cost associated with the intervention of a
technician. On the end user side, it gives a smoother user experience as failures of the
application is handled in a transparent way.

In classical large-scale internet systems, a significant portion of software failures are cured
by rebooting [46]. Even today, in applications that do not handle failures autonomously,
end users are inclined to adopt this approach to attempt to cure failures. Such a solution is
not feasible in the Fog-IoT ecosystem. The non-containment of failures or merely rebooting
the application may result in costly and hazardous situations:

• When a software fails, it loses its volatile memory. By rebooting the software, its
state of execution becomes inconsistent with the rest of the application because the
software processes events differently and has consequently an unexpected behaviour.
This causes disruptions within the application that can induce more failures and
potentially cause the failure of the whole application. The resulting service downtime
can be very costly for large corporations.

• Since the Fog-IoT ecosystem is cyber-physical, failures may have impacts on the
physical world by inducing life-threatening situations. For instance, if the failure
of the autopilot software in an autonomous car or the failure of a connected drug
injection device of a patient is not repaired, it may be fatal. Even failures which are
a priori insignificant, such as the failure of a lamp, may prove to be hazardous in the
context of a smart home for elderly and medicated people. Merely rebooting is also
not enough to repair such applications. For example, in a crop irrigation application,
the reboot of the application may deliver additional pesticides to the crops since the
information on the amount of pesticide already delivered may be lost. In this case,
additional cost is incurred and the impact on the physical world includes the damage
and contamination of the crops. We refer to these types of impact on the physical
world as a cyber-physical inconsistency.

1.4. Failure Management Approach 9

This Thesis deals with the management of failures of IoT applications in the Fog. Fail-
ures in such an ecosystem cause service disruptions as well as induce hazardous and costly
situations. Rebooting as a means of curing failures is not feasible as it may cause an
inconsistent behaviour of the application. Therefore, in this work, we propose an auto-
nomic failure management approach for IoT applications that deals with cyber-physical
inconsistencies. The design of the failure management approach takes into account the
specificities of the ecosystem such as cyber-physical interactions, heterogeneity, constraint
diversity, and dynamicity. The approach focuses on Smart Home / Building environments.
The following section gives a succinct presentation of our approach.

1.4 Failure Management Approach

This research work aims at providing an autonomic end-to-end failure management ap-
proach for IoT applications in the Fog.

IoT applications are modelled as a set of applicative entities composed of software elements
and appliances which communicate to ensure the functions and services of the application.
Software elements are hosted on fog nodes. They give access to the execution resources and
provide the runtime environment to run software elements. Appliances are cyber-physical
IoT end devices which provide sensing and actuating services. When software elements
and appliances interact with each other, their state changes upon processing of events.
This change in state can be characterised by their respective behavioural models. The
Fog infrastructure is composed of devices and network links that provide the resources for
applicative entities to execute their behaviour.

In order to provide failure management, the infrastructure and application should be mon-
itored for failure detection. When an entity fails, it can no longer provide its services. This
failure can also propagate to failure-free entities that makes use of (i.e., have functional
dependencies on) the service provided by the failed entity. A failure can thus impact the
overall service provided by the application. A failure can also have harmful consequences
on the physical world because of the cyber-physical nature of the Fog-IoT ecosystem. Fail-
ures should therefore be contained in order to limit their impacts on the application and
on the physical world. Finally, a recovery procedure has to be implemented so that the
application becomes functional again. The recovery procedure should restore the state of
execution of the application so that a correct behaviour is re-established. Hence, our pro-
posed failure management approach is composed of four functional steps: (i) state saving,
(ii) monitoring, (iii) failure notification, and (iv) recovery. Note that these steps are not
successive. Each functional step corresponds to a set of similar roles ensured by the failure
management approach.

In the first step, the state of the application is saved in an uncoordinated way. It aims
at saving data from which the state of the application can be restored after a failure.
State saving policy is proposed in order to cope with the heterogeneous nature of the

10 Chapter 1. Introduction

ecosystem. A state saving policy defines, for each entity participating in the application,
the data that have to be saved (i.e., the state data) as well as the technique, frequency
and storage location of these data. The state data include checkpoints and events (e.g.,
events emitted/received, function calls, and internal computations). The techniques for
state saving are based on uncoordinated checkpoint, message logging and function call
logging. The frequency of checkpoints depends on the time of execution as well as the
number and types of events processed. State data can be stored locally and/or on a stable
storage.

In the second step, devices and applicative entities are monitored for failure detection.
This is a continuous process. It is achieved through various techniques such as heartbeat,
ping-acks, applicative message observation and local system observation. A monitoring
technique is chosen so as to induce a minimal disruption in the execution of the applica-
tion. For instance, sensors that communicate at regular intervals are monitored through
applicative message observation to avoid additional overhead on the network.

When a failure is detected, the state saving step of the failed entity stops. The third
and fourth steps are subsequently triggered. In the third step, failure notifications are
propagated so that the part of the application that is impacted by the failure is notified.
Upon the reception of a failure notification, an entity adapts it behaviour (e.g., pause
or filter incoming/outgoing events) with respect to the failure. This procedure aims at
limiting the impact of the failure and providing a partial service.

The recovery step is the final step which is composed of a reconfiguration of the application
and state restoration where the state data saved in the first step are used to restore a
consistent state of the application. Reconfiguration depends on the type of entity that has
failed. It consists of performing operations on the architecture of the application such as
placement, redeployment and restart of software elements. For instance, the failure of a
hosting device induces the failure of the hosted software elements. A new hosting device
has to be found in order to redeploy the failed software elements so that the architecture of
the application can be repaired. If an appliance fails, a functionally equivalent appliance
should take over the failed one. If there is no functionally equivalent appliance available,
the application has to continue its execution with less features in a degraded mode. When
reconfiguration is completed, the state of the repaired entity has to be restored in order to
re-establish a consistent behaviour of the application.

State restoration makes use of the data saved during the state saving step as well as the
behavioural model of the application. The behavioural model allows the computation of a
target consistent state from the state data saved. The application is then set to this target
state to ensure consistency within the application and also with respect to the physical
world. When the failed entity is recovered, notifications are propagated to the dependent
entities (i.e., previously notified entities) so that they can resume their execution and the
application can be fully operational again.

1.5. Contributions 11

1.5 Contributions

This work deals with the management of failures of IoT applications in the Fog taking into
account the specificities of the environment as discussed in Section 1.2.2. In order to do
so, it makes the following contributions:

• A model of the Fog-IoT ecosystem is proposed. More specifically, the model defines
the devices constituting the Fog infrastructure and the applicative entities that run on
this infrastructure. The behaviour of the different entities involved in an application
as well as how they interact with each other and with the physical world are defined.

• The design of an autonomic end-to-end failure management approach. It is com-
posed of the following four functional steps: (i) state saving where the state of the
application is saved, (ii) monitoring for detection of failures, (iii) failure notifica-
tions which are propagated to limit the impact of failures, and (iv) recovery which
involves the reconfiguration and restoration of a consistent state of the application.
The mechanisms to implement these steps are defined based on the proposed model.
An architecture for implementing these steps is also proposed.

• State saving policies which describe various combinations of state saving techniques
in order to cope with the specificities of the Fog-IoT ecosystem. A state saving policy
defines the following parameters for each entity participating in the application: the
state data that have to be saved as well as the technique, frequency and storage
location of these data. A state saving policy is designed and chosen with respect to
properties such as the local constraints, resources available and the communication
model implemented.

• A recovery procedure that is consistent within the application and with respect to
the physical world (i.e., cyber-physical consistency). The part of the application
impacted by the failure is notified by failure notification propagation. The recovery
procedure repairs the failed entity and restores the state of the application. State
restoration makes use of the behavioural models and recovery policies which define
the rules for a safe recovery, that is, a consistent state is restored with respect to the
physical world. A degraded mode is also allowed where a partial service is provided
if recovery is not possible.

• A formal specification of the recovery procedure of the proposed failure management
approach using a modern specification language called LNT. The specification of the
approach allows the verification and validation of properties of interest using model
checking techniques. It was also useful for the clarification of several questions as
well as the identification and correction of some issues in the approach.

• An evaluation of the proposed failure management approach on a smart home testbed.
To this end, the failure management approach was implemented as a framework called
F3ARIoT (Framework For Autonomic Resilience of the Fog and IoT, pronounced far-
i-o-t) and deployed on a smart home testbed composed of IoT devices that exhibits

12 Chapter 1. Introduction

the specificities of the Fog-IoT ecosystem. A functional and a performance evaluation
showed that F3ARIoT works well in practice and is able to repair failures of devices and
of the application without introducing a significant additional overhead. Moreover,
a consistent state of the application with respect to the physical world is restored in
a reasonable user time.

The present research work was carried out in the COPS1 team of Orange Labs Meylan in
collaboration with the CONVECS2 research team of Inria Grenoble and the POLARIS3

research team of LIG4. It led to the following publications in international conferences:

• Umar Ozeer, Löıc Letondeur, François-Gaël Ottogalli, Gwen Salaün, and Jean-Marc
Vincent. Designing and Implementing Resilient IoT Applications in the Fog: A
Smart Home Use Case. In Proceedings of the 22nd Conference on Innovation in
Clouds, Internet and Networks and Workshops (ICIN), pages 230-232. IEEE, 2019.

• Umar Ozeer, Xavier Etchevers, Löıc Letondeur, François-Gaël Ottogalli, Gwen
Salaün, and Jean-Marc Vincent. Resilience of Stateful IoT Applications in a Dy-
namic Fog Environment. In Proceedings of the 15th EAI International Conference
on Mobile and Ubiquitous Systems: Computing, Networking and Services (MobiQ-
uitous), pages 332-341. ACM, 2018.

1.6 Thesis Structure

The rest of this Thesis is organised into three successive parts:

(i) Part I is composed of Chapter 2 which presents the basic concepts around failure man-
agement in distributed applications. Chapter 3 describes the existing approaches for
managing failures in distributed applications, including the IoT domain application.
The limitations of the proposed approaches are discussed and the requirements to
manage failures in the Fog-IoT ecosystem are defined.

(ii) Part II details our proposed failure management approach for IoT applications de-
ployed in the Fog. It is composed of five chapters.

Chapter 4 defines a model for the Fog-IoT ecosystem. It characterises the Fog in-
frastructure, IoT applications and their behaviour, the physical world, and describes
the failure model considered. It also presents a running example of IoT application
in order to illustrate the model as well as the concepts introduced in the following
chapters.

Chapter 5 gives an overview of the different steps involved in the proposed failure

1Connected Objects Platforms and Services
2Construction of Verified Concurrent Systems
3Performance analysis and Optimization of LARge Infrastructures and Systems
4Laboratoire d’Informatique de Grenoble

1.6. Thesis Structure 13

management approach as well as its architecture. It presents the failure managers,
their roles and how they interact with each other and with the application.

Chapter 6 focuses on the proposition of various techniques for saving the state of
the application and how they are chosen to cope with the specificities of the Fog-IoT
ecosystem.

Chapter 7 reports how failure detection is achieved and the subsequent failure noti-
fication propagation in order to limit the impact of failures.

Chapter 8 describes the recovery procedure. It proposes the rules for repairing and
restoring the state of the application. It shows how the data retrieved during the
state saving procedure are used to restore a consistent state of the application and
how consistency with respect to the physical world (i.e., cyber-physical consistency)
is maintained.

(iii) Part III presents the evaluation and validation of the proposed failure management
approach. It is composed of the following two chapters.

Chapter 9 proposes a formal specification of the recovery approach and the verifica-
tion of properties of interest using model checking techniques. It aims at validating
the functional properties of the approach.

Chapter 10 presents the implementation of the failure management approach through
a developed framework called F3ARIoT and its deployment on a smart home applica-
tion. A performance evaluation of F3ARIoT is given.

Finally, Chapter 11 concludes this work by summarising our main contributions, and dis-
cusses future work.

14 Chapter 1. Introduction

Part I

Failure Management in Distributed
Applications

15

Chapter 2

Failure Management Concepts

Contents
2.1 Terminology . 18

2.2 Automating Failure Management 19

2.3 Failures . 21

2.3.1 Failure Models . 21

2.3.2 Consequences of Failures . 22

2.3.3 Detection of Failures . 23

2.4 Fault Tolerance based on Redundancy 25

2.4.1 Types of Redundancy . 25

2.4.2 Replication . 26

2.4.3 Maintaining a Consistent Behaviour of the Application 27

2.5 Reconfiguration . 28

2.5.1 Types of Reconfiguration . 29

2.5.2 Challenges of Implementing Dynamic Reconfiguration 31

2.6 Summary . 31

A distributed IoT application in the Fog consists of a collection of applicative entities
that collaborate by exchanging messages with each other and with the physical world
(PW) in order to ensure the application’s functions. Applicative entities can take the
form of processes, software elements or services which communicate with each other via
communication channels. They also communicate with cyber-physical devices, such as
sensors and actuators, which interact with the PW.

Figure 2.1 illustrates an instance of a distributed IoT application composed of three ap-
plicative entities (e1, e2, and e3) where the horizontal lines represent the progress of their
executions and the arrows show the exchange of messages. The message received from the
PW, minput pw, constitutes an input into the application from the PW whereas the message
moutput pw is an output from the application to the PW. In this case, e1 and e3 interact with
the PW and hence act as an interface between the application and the PW. mapp 1 and

17

18 Chapter 2. Failure Management Concepts

mapp 2 are applicative messages. Note that infrastructure entities, that is devices which
provide execution resources to the application, are not depicted here.

e2

e1

e3

PW
minput_pw

mapp_1

mapp_2

moutput_pw

Figure 2.1: An Example of Exchanged Messages in a Distributed Application

This chapter aims at introducing the basic concepts involved in failure management in
distributed applications, and more specifically for IoT applications in the Fog. Section 2.1
introduces the terminology used in this Thesis. Section 2.2 describes a general approach to
manage failures in distributed applications. Section 2.3 details the characteristics of fail-
ures, their consequences, and how they are detected. Section 2.4 summarises the different
redundancy techniques for achieving fault tolerance. Section 2.5 reports the reconfigura-
tion operations implemented to recover from failures. Finally, Section 2.6 concludes this
chapter.

2.1 Terminology

This section defines the terminology used in the rest of this Thesis. The terminology is
taken from [29, 96] on dependability.

A functional specification defines what the application is intended to achieve. The behaviour
of the application describes what the application is doing. A correct service is provided if
the behaviour of the application is in conformity to its functional specification. A failure
occurs when the service deviates from its specification. An error is an incorrect internal
state that may potentially lead to a failure. The cause of the error is called a fault.

Dependability is defined as the trustworthiness of an application such that reliance can
justifiably be placed on the service it delivers (the service corresponds to the application’s
behaviour) [48]. The management of failures is related to the following dependability
attributes. The reliability attribute refers to the ability to continuously provide a correct
service. The availability attribute corresponds to the readiness to provide a correct service.
Finally, safety refers to the absence of (unintended) catastrophic consequences on the
physical world (i.e., on human lives, animals, and plants).

2.2. Automating Failure Management 19

There are four means of achieving dependability:

• Fault prevention: methods for preventing the occurrence or introduction of faults.

• Fault tolerance: methods for providing a service conforming to its specification de-
spite the occurrence of faults.

• Fault removal: methods for reducing the number and impacts of faults.

• Fault forecasting: methods for assessing the presence of faults, their frequency, future
occurrence and their consequences.

Resilience is the persistence of dependability when facing changes of different nature. In
this Thesis, we focus on resilience in the context of failures and fault tolerance as a means
to provide dependability. In other words, we devise mechanisms for the application to
continue to provide its services despite the presence of failures. Note that we do not
consider or diagnose the origin of failures, but we focus on providing the mechanisms to
recover from an identified failure and to re-establish the application’s correct behaviour.

2.2 Automating Failure Management

The automation of failure management in the Fog-IoT ecosystem is very important in
order to cope with its complexity. The ecosystem is complex because of its heterogeneity,
high-scale, and geographical distribution.

Figure 2.2 depicts the general approach to automate the management of failures in dis-
tributed applications. It consists of a simple automation loop with three steps. The
application is observed so that information about the application during its runtime is
reported. The information reported allows decisions to be made on how to repair the
application in case of failures. The subsequent repair actions are then performed on the
application. This general approach can also be addressed in a finer granularity with the
MAPE-K autonomic control loop which is presented in Chapter 5.

Actions

Decision

Application

Observation

Figure 2.2: Failure Management Automation Loop

20 Chapter 2. Failure Management Concepts

In the failure management automation loop depicted in Figure 2.2, the aim of Observation
is to continuously collect and report information during the runtime of the application.
Three types of information are retrieved:

• Failures: The information on failures can be a failure detection or a failure suspicion.
A failure detection indicates that a failure has occurred without any uncertainty
whereas a failure suspicion indicates that an entity is suspected to have failed. For
instance, an entity can be suspected of failure if its response time is higher than
usual.

• Recovery: The information on recovery indicates that a previously failed entity has
now recovered and is functional.

• Redundant Information: Observation also collects redundant information such as
events, messages exchanged, and functions executed which can be used to recover
the application and maintain its correct behaviour.

The Decision step decides how the data reported during the observation of the application
are interpreted and how to react to them. For instance, a decision has to be made when
to consider a suspected entity as failed. The decision making step also plans the steps to
recover the application based on the entity that has failed and on the type of failure. The
Actions part of the loop performs these steps which correspond to (i) a reconfiguration, that
is, a set of operations to be performed on the application, and (ii) the use of the redundant
information collected during the observation of the application in order to maintain its
correct behaviour. When a recovery is observed, a decision is also needed to determine if
any further changes have to be performed on the application (e.g., reconfiguration).

In order to implement such an automation of failure management, the type of failures that
affects the infrastructure and the application has to be identified. As illustrated in Fig-
ure 2.3, the failure model determines the techniques for failure detection. More specifically,
it determines the information from which failures can be inferred or detected during the
observation of the application. The definition of the failure model also gives information
on the impacts and consequences (e.g., service unavailability, impacts on other parts of the
application, loss of data) of the failures. Hence, a redundancy technique to tolerate failures
is chosen based on the impacts and consequences of the failures affecting the application.
Finally, the recovery procedure implemented by a failure management approach is based
on the consequences of the failures and makes use of the chosen redundancy techniques to
recover the application.Note that the failure detection mechanisms are independent of the
redundancy and recovery techniques implemented.

In the following sections, we first introduce the concepts of failures in distributed applica-
tions, and then the different types of redundancy and recovery techniques are described.

2.3. Failures 21

Failure	
Model

Consequences

Recovery
Techniques

Redundancy
Techniques

Failure	Detection
Mechanisms

Figure 2.3: Determination of Information for Failure Management

2.3 Failures

The probability of failures in distributed applications increases with respect to the time of
execution [140] and the distribution of resources [149]. Thus, large-scale IoT applications
have a very low mean time between failures (MTBF) and the probability of failures in such
applications is also high because they have long or infinite execution time. As discussed
in Chapter 1, the additional specificities of the Fog-IoT ecosystem further increase the
probability of failures. In order to address the challenges of managing these failures, it is
first necessary to identify the types and properties of the failures that affect the application.
In the following, we classify failures according to their characteristics. The impacts and
consequences of failures are also described.

2.3.1 Failure Models

The failure model describes the characteristics of failures that affect the different entities
of the infrastructure and application, as well as their consequences on the application and
on the PW. Several classifications of failures can be found in the literature.

Failures can be classified according to their severity [29]:

• Omission failures are used to model communication failures where message exchanges
can be lost.

• Timing failures occur when a response lies outside the specified time interval.

• Crash failures occur when an application, which was behaving correctly, halts its
activities and does not execute any further operations. It does not send nor receive
any messages.

• Arbitrary or Byzantine failures are characterised by the absence of any assumption
on how the application can behave. It includes malicious behaviours such as falsifying
messages.

Failures can also be classified according to their duration [29]:

22 Chapter 2. Failure Management Concepts

• Transient failures are temporary and do not persist (finite duration). They occur
once and then disappear.

• Intermittent failures appear and disappear on their own accord. They are recovered
without any external repair actions.

• Permanent failures have an infinite duration (until they are explicitly repaired).

In the approach of this Thesis, we are interested in the crash failure model. This type of
failure is permanent. It affects both applicative and infrastructure entities that compose
a distributed application. This failure model is motivated by real case of failures that
can be observed in the Fog-IoT ecosystem. Crash failures occur when there is a power
failure due to a temporary outage, accidental unplugging, or battery drain. IoT devices
are usually deployed in the PW. This implies that they are subjected to environmental
conditions that causes wear out as well as vandalism. Software elements can crash due to
a lack of resources for their execution, unhandled exceptions, design/development errors
or poor memory management. Therefore, in the rest of this Thesis, we limit our discussion
to crash failures.

2.3.2 Consequences of Failures

When an entity of a distributed application fails, there are several consequences within the
application as well as on the PW.

(i) The failure of an infrastructure entity (e.g., Raspberry Pi or ISP gateway) is transi-
tive: it causes the failure of the applicative entities hosted on the device.

(ii) The failure of an entity causes the unavailability of the services and resources provided
by the affected entity.

(iii) A failed applicative entity loses its volatile memory and thus all the data stored in
this memory since the beginning of its execution are lost. These data characterise
the state of execution of the entity and determine its behaviour.

(iv) A failure can propagate to other failure-free entities of the application. As Leslie
Lamport puts it, “a distributed system is one in which the failure of a computer
you didn’t even know existed can render your own computer unusable.” [94]. The
propagation of failures can occur because of dependencies between the entities of
a distributed application where the correct behaviour of an entity depends on the
correct behaviour of another one.

(v) A failure can have an impact on the PW: it can make the PW unsafe for living things
including humans, animals and plants. For instance, the failure of a smoke detector
in a smart home can make the PW unsafe for the house tenants. The failure of
devices which deliver water to crops in a smart irrigation application can affect the
crops.

2.3. Failures 23

The consequences mentioned above should be taken into account in the management of
failures. Both applicative and infrastructure failures should be handled. When a failure
is detected, the failure management approach should assess and limit the impact of the
failure within the application and on the PW. The application should be repaired to limit
the service or resource unavailability, as well as to limit the data lost. In the approach of
this Thesis, we aim at recovering from failures of the infrastructure and application so as
to limit service unavailability. Information about the application during its runtime (e.g.,
messages exchanged, the data in the volatile memory of the application) are saved. They
are used to limit data lost and to implement a safe recovery.

2.3.3 Detection of Failures

The detection of failures in distributed applications is fundamental because fault tolerance
techniques rely on it to react to failures. The primary role of the failure detector is to
monitor the application by collecting information from which the occurrence of a failure can
be deduced. The mechanisms implemented by the failure detector are usually determined
by the type of failures to detect but are independent of the fault tolerance techniques.

Failure detection is hard because of the asynchronous nature of distributed applications.
There are no bounds on execution speed nor communication delays. As a consequence, it is
impossible to determine precisely if a remote entity has failed or is merely slow or busy. In
this case, the failure detector can only suspect a failure and the suspicion may be erroneous.
A failure detector can thus be unreliable in the sense that it can make mistakes [53].

The main approach to detect crash failures in distributed applications is based on timeouts.
A timeout bounds the response time of an entity. Upon expiration of the timeout, the
failure of the entity can be inferred. This gives rise to two failure detection techniques based
on a push approach such as heartbeat [58] and a pull approach such as ping-ack [125].

a . Heartbeat

As illustrated in Figure 2.4, an entity e sends a heartbeat message mhb at a regular interval
tr to a failure detector fd. Each reception of mhb aims at indicating to the failure detector
that e is failure-free. The failure detector configures a timeout to based on the time interval
tr and the network latency between e and fd. The timeout to is reset at each reception
of the heartbeat message mhb before its expiration. That is, if thb < to where thb is the
elapsed time between the reset of the timeout and the reception of mhb, then fd deduces
that e is alive. If the timeout expires before the reception of mhb (i.e., thb = to), then fd
suspects the failure of e.

24 Chapter 2. Failure Management Concepts

tr
e

fd
thb	<	to thb	<	to thb	=	to

mhb

tr

mhb mhb

reset	to reset	to to	expires	
failure	suspicion

Figure 2.4: Heartbeat Failure Detection

b . Ping-ack

In this approach, as illustrated in Figure 2.5, the failure detector fd requests the status of
an entity e by sending a message mp and starts a timeout to. The failure detector waits
for an acknowledgement message to infer whether e is failure-free. If an acknowledgement
message ma is received by fd before the expiration of to (i.e., tpa < to where tpa is the
elapsed time between sending mp and receiving ma), then the timeout is stopped. A new
message mp is sent after tr and the timeout to is started again. On the other hand, if ma

is not received before the expiration of to, then the failure detector suspects the failure of
e.

tr

e

fd
tpa	<	to tpa	=	to

mp ma

stop	tostart	to start	to

tpa	<	to

stop	to

tr
start	to

mp ma mp

to	expires	
failure	suspicion

Figure 2.5: Ping-ack Failure Detection

The heartbeat approach only needs half of the messages required by the ping-ack. It is also
harder to configure the timeout in ping-ack since the two messages can be subjected to
network delays. The advantage of the ping-ack, however, is that both timeouts to and tr are
configured by the failure detector. Thus, the observed entity acknowledges the reception
of the ping messages and does not have to configure any timeouts.

2.4. Fault Tolerance based on Redundancy 25

The configuration of timeouts for failure detection is hard because it determines how much
resources are consumed by the failure detector, the level of interference with the execution
of the application, and the reliability of the information that it provides. The desired
properties of a failure detector are (i) minimal interference with the execution of the
application in terms of overhead and resource consumption, (ii) high reliability such that
the failure detector does not make mistakes frequently, and (iii) high reactivity such that a
failure detector reports a failure as soon as it happens. However, these properties cannot
all be achieved simultaneously since they contradict each other. The timeout of the failure
detector should be configured with a compromise between these properties. Let us consider
a failure detector based on the heartbeat mechanism. In order to ensure reactivity, a short
period should be configured for the heartbeat. This means more messages are exchanged
on the network and thus more bandwidth and processing power are consumed by the
failure detector violating the minimal interference property. Moreover, since the timeout
is short, the failure detector is more likely to wrongly report a failure violating the high
reliability property. In this Thesis, we choose to provide failure detection with a minimal
interference because of the limited resources and capabilities of the Fog-IoT ecosystem.
Failure detection is however not part of our core contributions. For more information on
this subject, we refer the reader to the seminal work of Chandra and Toueg [53] as well
as the work of A. Schiper [138], P. Sens [107, 34], M. Hurfin and M. Raynal [82], and R.
Guerraoui and P. Kuznetsov [71].

2.4 Fault Tolerance based on Redundancy

The previous section defined the characteristics of failures, their consequences as well as
the need for their detection and how it is achieved. This section focuses on redundancy
techniques as a means of achieving fault tolerance. Fault tolerance techniques rely on
redundancy which consists in introducing additional resources, aside from those required
by the application to behave correctly. In case of a failure, the redundant resources are
used to maintain or re-establish the correct behaviour of the application.

2.4.1 Types of Redundancy

Redundancy techniques can take the following forms [87].

(i) Hardware redundancy: This consists in adding extra hardware to tolerate failures.
This type of redundancy can be found in different types of systems, from biological
to engineering systems. For instance most mammals have two eyes, lungs and kid-
neys even if they can function with only one of each. Aircraft engineering also uses
hardware redundancy: a 4-engine aircraft can fly with only three engines and may
have redundant power generators.

(ii) Information redundancy: This consists in adding redundant information to data in
order to provide fault tolerance. For instance, extra information can be added when

26 Chapter 2. Failure Management Concepts

transmitting data to allow recovery from corrupted data.

(iii) Time redundancy: This type of redundancy involves the repetition of operations. For
instance, multiple copies of a message can be sent to make sure that it is delivered.
Operations can also be repeated after a failure to restore the volatile memory of
a software element. Time redundancy aims at reducing the amount of additional
hardware at the expense of using extra time.

(iv) Software redundancy: This can take the form of multiple instances of the same
software elements that participate in the application. It can also be programs and
data which are not part of the business core of the application such as additional
lines of codes to check for errors.

These forms of redundancy are rarely employed separately. Rather, failure management
involves the implementation of multiple types of redundancy in order to tolerate failures.
The resulting mechanisms implemented from these forms of redundancy give rise to several
forms of fault tolerance concepts which are presented in the rest of this section.

2.4.2 Replication

Replication uses hardware, software and time redundancy. It consists in creating multiple
replicas of applicative and infrastructure entities to tolerate failures. For instance, in order
to tolerate n failures, n+1 replicas are introduced. This guarantees that at least one
replica is always available. Replication is primarily used to ensure high availability, so that
a failure does not cause a service interruption. In order to keep the multiple instances of
the same entity consistent, the different replicas should be synchronised. Replication can
be classified into three categories with respect to the level of synchronisation between the
replicas.

• Active replication: All the replicas have the same deterministic behaviour and execute
the same operations. They receive and process the same events in the same order.

• Passive replication: A primary replica executes all the operations and sends update
to the backup replicas. When the primary replica fails, one of the backup becomes
the primary.

• Semi-active replication: This is a hybrid approach. It extends active replication with
the notion of leader and follower such that non-deterministic decisions are performed
by the leader and then sent to the followers.

Due to the high cost of hardware and software redundancy, other approaches have focused
on information and time redundancy as described in the next subsection.

2.4. Fault Tolerance based on Redundancy 27

2.4.3 Maintaining a Consistent Behaviour of the Application

The loss of the volatile memory upon the failure of an entity implies the loss of its state of
execution. The state of execution is characterised by the operations the entity has executed
during its runtime. These operations correspond to the emitted/received events/messages
as well as functions executed. If an entity is recovered without taking into account its pre-
failure state of execution, its behaviour (i.e., the way it will process forthcoming events)
upon recovery will be different from its expected behaviour. Thus, during the runtime of
an application, the observation process should collect information on the state of execution
of the application. This state has to be restored as part of the recovery procedure in order
to maintain the correct behaviour of the application after recovery.

State restoration is based on information and time redundancy. It consists in saving the
state of the application regularly on a stable storage and whenever there is a failure,
the data saved are retrieved and used to restore the state of the application. The main
difficulties of this approach is to determine the data to save and which technique to adopt
so that a globally consistent state of the distributed application can be restored.

a . Stable Storage

The stable storage ensures that the stored data persists despite the occurrence of the
tolerated failures [66]. It is not affected by the failures of the application and thus the data
needed for recovery can always be retrieved. The implementation of the stable storage
can take various forms according to the assumptions that can be made and the type of
failures to tolerate. For instance, to be able to tolerate a single software element failure,
the stable storage can correspond to the volatile memory of another software element [37].
In order to tolerate only software element failures, the stable storage can correspond to the
persistent local storage of physical devices. Finally, to tolerate multiple failures occurring
on both applicative and infrastructure entities, the stable storage can be implemented on
a dedicated storage medium external to the infrastructure on which the application runs.
In this case, the reliability of the storage medium can be ensured through techniques such
as RAID (Redundant Array of Inexpensive Disks) file systems [57].

b . Consistent Global State

The global state of a distributed application is composed of the set of local states of
all the applicative entities participating in the application as well as the states of the
communication channels through which the applicative entities exchange messages.

Intuitively, a global state of a distributed application is said to be consistent if, for a failure-
free execution, for any message m whose receive event is recorded in the global state then
the corresponding send event is also recorded in the global state [54]. Figure 2.6 gives an
example of a consistent and an inconsistent global state [66]. The distributed application
is composed of three software elements (or processes). The horizontal lines represent their
execution with time and the arrows illustrate the messages exchanged between them. The
hashed diamond represents the state of the software element at a particular instant in its

28 Chapter 2. Failure Management Concepts

execution. Figure 2.6(a) shows a global consistent state since the message m1 which is sent
but not yet received represents a message travelling across the network. In Figure 2.6(b),
the message m2 is received by P2 whereas it is not recorded in the local state of P1. This
situation cannot happen in a correct behaviour of the application. Therefore, the global
state composed of the local states of the three software elements is inconsistent. It is worth
noting that the collection of the initial local states of the distributed application forms a
global consistent state and so does the collection of the current states.

Figure 2.6: An Example of a Consistent and Inconsistent Global State [66]

2.5 Reconfiguration

As discussed in Section 1.2.2, the Fog-IoT ecosystem is dynamic due to multiple reasons
such as failure occurrences, mobility, instability of wireless networks and evolution in the
architecture of applications. As a result, distributed applications intended to be deployed in
the Fog are designed so that entities are loosely coupled. This allows part of the distributed
application to be modified while the unaffected part maintains its services. This process
of modifying the structure or configuration of the application during runtime is called
dynamic reconfiguration. It prevents a total shut down in order to make changes to the
application.

A dynamic reconfiguration of a distributed application may have different objectives such
as incremental updates for extending the services of the application, for security or mainte-
nance purposes, for optimisation and performance objectives, or for reacting and adapting
the behaviour application when failures occur. Note that the computation of the new
configuration may be done with various optimisation criteria which is out of the scope of
this Thesis. We refer the reader to the following works in this domain [120, 152, 153, 157].
In the following, we are interested in methods for determining a new configuration of the
distributed application when a failure occurs.

2.5. Reconfiguration 29

2.5.1 Types of Reconfiguration

A configuration models a distributed application in terms of a set of software elements 1 and
bindings between them which are mapped onto physical hosts [78]. The software elements
are composed of data and program units whereas the bindings connect the interfaces of
the software elements via which they communicate. Bindings can be incoming, outgoing
or bi-directional. Dynamic reconfiguration concerns the modification of this configuration
at runtime and may take various forms including the addition, removal, replacement, and
modification of the behaviour and interactions of entities participating in the distributed
application [39, 79, 116].

We identify four types of possible reconfiguration in the context of failures: architecture,
placement, functional, and implementation.

a . Architectural Reconfiguration

The architecture of the distributed application describes its logical structure or topology.
An architectural reconfiguration involves a change in this structure such as adding or
removing software elements as well as modifying the bindings between them. For instance
in Figure 2.7, the change in architecture is a modification in the bindings between the
software elements se1 and se2 because se2 has failed. In this case, se1 is connected to se3

and thus the events from se1 to se2 are redirected towards se3.

se1

Before	Failure Failure After	Reconfiguration

device1

se2

se3
device2

se1
device1

se2

se3
device2

se1
device1

se3
device2

Figure 2.7: Architectural Reconfiguration

b . Placement Reconfiguration

A placement describes how software elements and bindings are mapped onto physical de-
vices. A placement reconfiguration changes only this mapping, that is, it relocates a
software element without changing the architectural configuration of the application. An
example of placement reconfiguration is given in Figure 2.8 where the software element se3

originally placed on the device3 is moved onto the device2 because of the failure of device3.
In this case, the configuration of the application has to be changed because the failure of

1The term software components or modules are usually used in this context. We keep the term software
element in order to be consistent with the rest of this document.

30 Chapter 2. Failure Management Concepts

the device also implies the failure of se3 and the latter cannot be placed again on the same
device. However, the bindings between the entities have not changed.

device1 device2

se1 se2 se3

device1 device2

se1 se2
device3

se3

device1 device2

se1 se2
device3

se3Before	
Failure

Failure

After
Reconfiguration

Figure 2.8: Placement Reconfiguration

c . Functional Reconfiguration

Functional reconfiguration (or interface reconfiguration) consists in modifying the access
to the functions or services provided by an entity. It consists in restricting the access to
part or all of the interfaces an entity exposes. For instance, in Figure 2.9, the software
element se3 originally exposes two interfaces ItfA and ItfB. The software elements se1 and
se2 are connected to se3. se1 uses the services provided through ItfA whereas se2 uses the
services provided through ItfA and ItfB. se3 is connected to se4 and the service provided
through ItfB depends on the correct behaviour of se4. In this case, when se4 fails, se3

restricts the access to the interface ItfB. This type of behaviour is referred to as a degraded
mode.

se3

se1

se2

se4

ItfA()

se3

se1

se2

se4

ItfA()

ItfA(),
ItfB()

se3

se1

se2

ItfA()

ItfA()

Before	Failure Failure After	Reconfiguration

device1

device2 device3

device1

device2ItfA(),
ItfB()

device1

device2

Figure 2.9: Functional Reconfiguration

d . Implementation Reconfiguration

In implementation reconfiguration an entity’s internal code instructions are modified with-
out changing the architecture and placement of the application. This may be done in order
to correct a bug that provokes failures. For instance, in industrial applications, hot patches
are applied during the runtime of the application without downtime.

2.6. Summary 31

2.5.2 Challenges of Implementing Dynamic Reconfiguration

The implementation of dynamic reconfiguration is hard because it poses the following
challenges [98, 123]:

• The reconfiguration should keep the architecture and structure consistent with the
intended behaviour of the application. This means that the reconfiguration should
not invalidate the architectural invariants of the application such as absence of cycles
or disconnected entities.

• The implementation of dynamic reconfiguration should take into consideration the
execution of other entities which are not under reconfiguration. For instance, since
the services provided by a software element are unavailable during its reconfigura-
tion other entities should not request its services. This can be done by temporarily
stopping the impacted entities or replying with a notification of the unavailability of
the requested services.

• Upon reconfiguration, if the entity is re-initialised, its state of execution has to be
restored so that its state and behaviour is consistent with the rest of the application.

• Dynamic reconfiguration may involve the combination of different types of reconfig-
urations as well as different entities. This should be performed in a coordinated way
to avoid inconsistent or incorrect execution of the reconfiguration procedure [129].
In this case, architectural changes should be propagated so that the rest of the ap-
plication has an updated view of the architecture of the application.

Several approaches to implement dynamic reconfiguration have been proposed to address
these challenges. They are presented in the next chapter.

2.6 Summary

This section introduced the basic concepts involved in failure management of distributed
applications. The automation of failure management is achieved by continuously observing
the application during its runtime. The information reported during observation allows
a decision making process to determine the operations to perform on the application for
recovery. The information collected during observation is also used to maintain a consistent
behaviour of the application after recovery. The next chapter presents the fault tolerance
approaches based on the concepts presented in this chapter.

32 Chapter 2. Failure Management Concepts

Chapter 3

Existing Fault Tolerance Approaches

Contents

3.1 Comparison and Evaluation Criteria 34

3.2 Fault Tolerance based on Replication 35

3.3 Fault Tolerance based on State Restoration 37

3.3.1 Checkpoint . 37

3.3.2 Event logging . 39

3.3.3 Tools For Fault Tolerance based on State Restoration 44

3.4 Fault Tolerance based on Dynamic Reconfiguration 45

3.4.1 Solutions based on Dynamic Reconfiguration 45

3.4.2 Dynamic Reconfiguration in the Fog-IoT Ecosystem 48

3.5 Fault Tolerance in the Fog-IoT Ecosystem 49

3.5.1 Smart Home / City . 49

3.5.2 Healthcare . 51

3.5.3 Miscellaneous IoT Application Domains 52

3.6 Summary . 53

The concepts presented in the previous chapter lead to several failure management ap-
proaches with respect to the application domain considered and its related constraints.
This chapter presents and compares the solutions that are closest to our approach. In
order to do so, Section 3.1 of this chapter discusses the desirable properties and evalua-
tion criteria for a fault tolerance approach in the Fog-IoT ecosystem. Then, the following
sections presents the existing solutions based on replication (Section 3.2), state restoration
(Section 3.3), and dynamic reconfiguration (Section 3.4). Section 3.5 details the existing
fault tolerance solutions in the Fog-IoT ecosystem. We discuss and assess each of these
solutions with respect to the evaluation criteria. Section 3.6 summarises the related work.

33

34 Chapter 3. Existing Fault Tolerance Approaches

3.1 Comparison and Evaluation Criteria

In order to compare the existing fault tolerance solutions in distributed applications, we
propose four global evaluation criteria which are chosen with respect to the properties of the
Fog-IoT ecosystem as discussed in Section 1.2.2: cyber-physical consistency, disruptions,
heterogeneity, and cost.

• Cyber-Physical Consistency: Since the Fog-IoT ecosystem is cyber-physical, a fault
tolerance approach for this ecosystem should recover the application in a consistent
state with respect to the PW. This means that the approach should take into account
the changes in the state of the PW upon implementing a recovery procedure. For
instance, when a thermostat in a smart home is recovered, the changes in temperature
of the rooms should be taken into account before restoring the state of the device.
The consequences of a failure on the PW (see Section 2.3.2) should also be assessed
so that a recovery procedure which is safe for the PW is implemented and costly
situations in the PW are avoided. For instance, in a patient’s drug injection device,
a failure may be fatal for the patient. The recovery procedure implemented can have
the same consequence (e.g., more drug doses may injected because of operations
performed on the device during the recovery procedure) if the procedure does not
restore a state of the device that is consistent with its pre-failure state and with
respect to the PW.

• Disruptions: A fault tolerance approach should limit the disruptions caused by the
approach itself during the observation of the application and during the actions im-
plemented for recovery (see Figure 2.2). Observation should limit the interference
with the execution of the application. For instance, a synchronisation of all the en-
tities participating in the application in order to compute a globally consistent state
interferes with the nominal behaviour of the whole application. Also, the application
may have to be paused to compute the global checkpoint. The approach should also
limit the disruptions caused by a failure. In order to do so, the recovery procedure
implemented should not impact the failure-free part of the application. For instance,
rebooting all the software elements or performing a global rollback of an application
because of a single failure disrupts the whole application.

• Heterogeneity: The Fog-IoT ecosystem is highly heterogeneous. Thus, relying on a
uniform technique for fault tolerance is not feasible because of the diverse properties
and constraints (e.g., functional, geographical) of the different entities of an appli-
cation. A fault tolerance approach should therefore cope with this heterogeneity by
integrating multiple techniques that are suited to the properties of the infrastructure
and applicative entities participating in the application. For instance, one way of
recovering from software element failures is to perform a placement reconfiguration.
However, since the software element deployed on a smart refrigerator is tied to the
device, a placement reconfiguration may not be possible. Devices may also expose
different types of APIs for their monitoring (e.g., heartbeat/ping-acks). The mecha-

3.2. Fault Tolerance based on Replication 35

nisms provided for fault tolerance should therefore be adapted to the constraints and
properties of the entities.

• Cost: The Fog-IoT ecosystem is limited in terms of processing, storage, and com-
munication capabilities. Therefore, a fault tolerance approach should consume a
minimum of resources and introduce a minimum overhead. This is because these re-
sources should rather be dedicated to the execution of the application. For example
implementing a ping-ack mechanism at a very high frequency for failure detection
may consume too much bandwidth. The cost of the approach can also be computed
based on the additional resources that are added solely for tolerating failures. For
instance, this is the case of approaches based on replication. If an application is
replicated once, then half of the resources consumed are exclusively dedicated for
fault tolerance.

These properties are important in order to design a fault tolerance solution that is suited for
the Fog-IoT ecosystem. In the following, we discuss the existing fault tolerance approaches
with respect to these criteria.

3.2 Fault Tolerance based on Replication

The Triple Modular Redundancy (TMR) and voting technique [103] is a well known active
replication technique where computations are performed three times on three instances of
an entity (for example on three software elements hosted on separate devices) and a voting
mechanism is called if their outputs differ. This type of fault tolerant technique is usually
adopted in critical and embedded applications. Replication is also commonly used in the
aviation industry.

Fault tolerance in Delta-4 [60] is achieved by replication of software components on distinct
host computers interconnected by a local area network. The activities of the replicas are
coordinated in order to process errors and give the illusion of a single failure-free software
component. Delta-4 implements active, semi-active and passive replication. In the active
replication strategy, all replicas process concurrently all input messages so that their states
are closely synchronised. In the absence of failures, the replicas produce the same output
messages in the same order, and outputs can be taken from any replica. Delta-4 uses
a special protocol called inter replica protocol for detecting failures of replicas and host
processors. This technique can achieve a quasi-instantaneous recovery if all the correct
replicas produce the same output messages in the same order. In the semi-active strategy,
the leader replica processes all the input messages and provides output messages. In the
absence of failures, the other replicas do not produce output messages. Their states are
updated either by direct processing of messages of by means of notifications from the
leader replica. In the passive strategy, a primary replica processes the input messages and
provides output messages. In the absence of failures, the states of the other replicas are
regularly updated by means of checkpoints from the primary replica.

36 Chapter 3. Existing Fault Tolerance Approaches

The cost induced by replication is very high since to tolerate k failures, k/(k + 1) of
the available resources are used exclusively to ensure fault tolerance. These resources are
wasted during failure-free executions since they could be used for other purposes such as
increasing performances.

In the Fog-IoT ecosystem, the main drawbacks of fault tolerance techniques based on
replication are the following.

• Cyber-Physical Consistency: Replication of some IoT devices may violate cyber-
physical consistency. For instance, active replication of actuators is not always fea-
sible because the actions performed by the device on the PW would be performed
multiple times.

• Disruptions: Fault tolerance techniques based on replication cause a minimum disrup-
tion in the application when a failure occurs. This is because the recovery procedure
is simple as the application can switch to a failure-free replica when one replica fails.
Such a recovery procedure does not affect the failure-free entities of the application.

• Heterogeneity and Diversity of Constraints: Replication may not be possible because
of the space that devices occupy in the PW. For instance, a patient cannot carry
multiple pacemakers. Another amusing but illustrative example is the following.
Having two connected freezers in a smart home to tolerate failures of one of them
is not realistic, not only because of the room it occupies but also because the goods
inside one replica are tied to it and cannot be automatically transferred to the another
replica when failures occur. Some devices and software elements cannot be replicated
because their behaviour does not allow it. For instance, some devices can only connect
to one gateway (e.g., due to the use of certificates for authentication) and thus the
gateway cannot be replicated.

• Cost: The cost associated with replication can be excessive since at least half of the
available resources would be dedicated to fault tolerance. Additional overhead is also
introduced to synchronise the replicas.

Replication has the advantage of minimising the disruptions in the application when a fail-
ure occurs. However, in most cases, replication is not a suitable means for tolerating fail-
ures in the Fog-IoT ecosystem. Replication does not guarantee cyber-physical consistency.
Replication has a very high cost and the limited resources in terms of processing, storage,
and communication makes it an unsuitable fault tolerance technique. Replication may also
be unsuitable because of the heterogeneous constraints of the ecosystem. Our proposed
approach therefore avoids hardware and software redundancy because of these reasons. In
order to reduce the cost, cope with heterogeneity, and overcome the cyber-physical incon-
sistencies, we focus more on techniques based on information and time redundancy. This
is discussed in the next section.

3.3. Fault Tolerance based on State Restoration 37

3.3 Fault Tolerance based on State Restoration

There are two main approaches for saving information from which the state of an ap-
plication can be restored: checkpoint, and event log. They are detailed in the following
sections.

3.3.1 Checkpoint

Checkpoint techniques consist in saving regularly, for each entity participating in the dis-
tributed application, a set of data that represents its execution state. A checkpoint of an
entity can be composed of data in its volatile memory, runtime variables, input parameters,
and configuration files. Following a failure, a set of stored checkpoints is used to restore
the most recent global consistent state of the application.

Checkpoint strategies can be classified into 3 categories with respect to how the global
consistent state is created: coordinated checkpoint, uncoordinated checkpoint and commu-
nication induced checkpoint.

a . Coordinated Checkpoint

Coordinated checkpoint, also called global or synchronised checkpoint, as it name suggests,
is done by synchronising all the entities participating in the distributed application so
that the set of states saved is globally consistent. The first algorithm to record a global
consistent state was devised by Chandy and Lamport [54]. The algorithm uses a control
message called a marker. Assuming that the messages on the communication channels are
delivered using a FIFO (First In First Out) strategy, the marker is able to separate the
messages that constitute the state of the communication channel and those which should be
recorded in the local checkpoint of an entity. Other algorithms of coordinated checkpoint
have been proposed by T. Lai [93], F. Mattern [110, 109] and C. J. Fidge [69].

Cost. In the Fog-IoT ecosystem, the cost of synchronisation to implement coordinated
checkpoint becomes too large because all the entities participating in the application have
to synchronise to save the state of the application. Coordinated checkpoint thus has a
high cost in order to guarantee a globally consistent checkpoint. Disruptions. The whole
distributed application is impacted by a single failure since potentially all entities have to
rollback to a previous state to ensure global consistency. Thus, the whole application is
disrupted for a single failure. Also, if the mean time between failures (MTBF) is lower
than the mean time to repair (MTBR), the application cannot recover. Such an outcome
is predictable in the Fog-IoT ecosystem because of the high scale of applications and high
frequency of failures. This suggests that a state saving scheme in which only the failed
entities are impacted by the repair and state restoration procedures should be adopted.
Heterogeneity. Coordinated checkpoint, similarly to the other checkpoint techniques,
does not support highly heterogeneous IoT applications since some devices (e.g., sensors
and actuators) are functionally constrained and cannot be expected to perform a check-
point. CP-Consistency. Coordinated checkpoint does not capture the events emitted

38 Chapter 3. Existing Fault Tolerance Approaches

and received after a checkpoint is performed. These can include events coming from the
PW. Thus, the recovery implemented in this case is not consistent with respect to the
PW since the changes in the PW is not taken into account when restoring the state of the
application.

In order to overcome the synchronisation cost and global disruptions upon recovery induced
by coordinated checkpoint, our approach integrates uncoordinated checkpoint.

b . Uncoordinated Checkpoint

Uncoordinated checkpoint [66, 162], on the other hand, removes the synchronisation over-
head by letting applicative entities save their state individually.

Cost. One of the main advantages of uncoordinated checkpoint is that each applicative
entity can save its state at will, for instance when the size of the checkpoint is minimal and
thus reducing the synchronisation and storage overhead [158]. Uncoordinated checkpoint
thus has a lower cost than coordinated checkpoint. Disruptions. However, the elimination
of the synchronisation comes at the expense of global consistency. Upon recovery, the
individual checkpoints have to be analysed in order to compute the latest global consistent
state and this may lead to a domino effect [131] where a global consistent checkpoint cannot
be extracted from the set of available checkpoints (see Figure 2.6). This result in the whole
application restarting in its initial state because the stored checkpoint cannot be used for
state restoration. Since, in this case, uncoordinated checkpoint needs a global rollback
which can potentially lead to a domino effect, it is not suited for the Fog-IoT ecosystem. A
global rollback or a domino effect disrupts the whole application. CP-Consistency. Both
a global rollback and a domino effect restore a state that may be inconsistent with respect
to the PW. If a domino effect occurs, the whole application restarts in its initial state
without taking into account the changes in the state of the application and the changes
in the PW. In the case of a global rollback, the PW events generated after the checkpoint
are not computed in the global state restored. Thus, CP-consistency is violated during
recovery.

However, uncoordinated checkpoint can be coupled with logging techniques to prevent a
global rollback as well as the domino effect. In this case, the PW events after a checkpoint
can be recorded. Our approach thus makes use of the combination of these two techniques
as discussed in Section 3.3.2.

c . Communication Induced Checkpoint

Communication induced checkpoint (CIC) [22, 31] is a compromise between coordinated
and uncoordinated checkpoint. It avoids the synchronisation overhead between applicative
entities by piggybacking1 control information on applicative messages. The applicative
entities take two types of checkpoints called local and forced checkpoints. Local checkpoints

1That is incorporating additional information on applicative messages

3.3. Fault Tolerance based on State Restoration 39

are taken independently of each other and forced checkpoint may be triggered by the
information piggybacked upon reception of a message.

Cost. The properties of CIC are interesting because of the lower cost compared to coordi-
nated checkpoint in synchronisation between entities participating in the application. The
size of exchanged messages can however become large depending on the amount of informa-
tion piggybacked. Disruptions. CIC bounds the rollback propagation during recovery in
order to avoid the domino effect. However, it does not avoid a rollback to the last globally
consistent checkpoint. The global rollback disrupts the whole application since it involves
the whole application. CP-Consistency. CIC, similarly to the previous checkpoint tech-
niques, does not capture the PW events generated after a checkpoint is performed. Thus,
the recovery implemented in this case is not consistent with respect to the PW.

Checkpoint techniques based on rollback recovery are not suitable for the Fog-IoT ecosys-
tem. This is because the recovery procedure disrupts the whole application for a single
failure. Moreover, PW events that occur after a checkpoint are not taken into account in
the recovery procedure. Thus, consistent with respect to the PW is violated. Uncoordi-
nated checkpoint shows some good properties in terms of cost because it does not require
any synchronisation scheme. Checkpoint techniques may also be unsuitable because some
IoT devices are functionally constrained and cannot be checkpointed. Thus, state saving
cannot rely on solely checkpoint techniques. Uncoordinated checkpoint can be coupled
with event logging techniques in order to avoid a global rollback recovery as well as the
domino effect. Moreover, event logging can be carried out without checkpoint for entities
that cannot be checkpointed. This is discussed in the next subsection.

3.3.2 Event logging

Event logging (also called message logging) consists in recording events such as messages
emitted and received as well as function calls2 on a stable storage.

Event logging relies on a piece-wise deterministic (PWD) assumption [145]. This assump-
tion states that all non-deterministic events (such as reception of an event or events coming
from the PW) can be identified and are used for replaying during state restoration such
that the applicative entity can deterministically reach its pre-failure state [66]. When an
entity fails, the replaying of the event logs recreates its pre-failure state. Event logging
can also be mixed with checkpoint techniques so that only the events following the last
checkpoint are replayed.

The techniques used for event logging can be classified into three categories, with respect to
the type of synchronisation and how the events are recorded, namely pessimistic, optimistic,
and causal message logging.

a . Pessimistic Message Logging

2That is local or remote functions that are executed

40 Chapter 3. Existing Fault Tolerance Approaches

Pessimistic message logging [24] records each message synchronously. It makes a “pes-
simistic” assumption: it assumes that a failure can occur at any given time and thus
records an event on the stable storage before the event is processed. This guarantees that
all the messages that have been processed are recorded on the stable storage.

Cost. Checkpoints combined with pessimistic logging can be done in an uncoordinated
way. Thus, there is no need for synchronisation between the entities of the application
for performing checkpoints. When a checkpoint is performed, the set of logged messages
prior to the checkpoint can be purged. This can be used to control and limit the amount
of information stored. A drawback of this technique is performance degradation during
failure-free execution in applications that communicate a lot. In this case, this technique
consumes the bandwidth that should be dedicated to the execution of the application.
Disruptions. Pessimistic message logging has the advantage of being able to restore
the state of the application after a failure without affecting failure-free entities. Hence,
it causes a minimum disruption in the application during recovery. CP-Consistency.
Pessimistic message logging has also the advantage of being able to capture the events
received and sent to the PW after a checkpoint is performed. However, replaying messages
on IoT devices for state restoration may have undesirable or dangerous consequences on
the PW. This is because the device goes through an intermediary state for each message
replayed before reaching the target state. For instance, in a drug injection device, replaying
messages would mean that the already administered doses of a drug will be injected again.
Even if a global state within the application is reached after restoring the target state,
the state with respect to the physical world may be inconsistent because the restoration
procedure has an impact on the physical world and has made it unsafe. We refer to this
phenomenon as cyber-physical inconsistency. This is further discussed in Chapter 8.

Uncoordinated checkpoint combined with pessimistic logging presents some interesting
properties in terms of cost and in limiting the disruptions of failure-free entities during the
recovery procedure. Moreover, if an entity cannot be checkpointed because of its functional
constraints, pessimistic logging can be used without performing checkpoints. Our approach
thus makes use of the concepts of uncoordinated checkpoint and pessimistic logging.

b . Optimistic Message Logging

In contrast to the pessimistic technique, optimistic message logging [145] operates asyn-
chronously. In this case, events are grouped and flushed onto the stable storage in a single
operation. The recovery procedure is similar to the pessimistic technique if the “optimistic
assumption” is met, that is, a failure does not occur before the events stored locally are
sent to the stable storage.

Cost. The advantage of this technique is that it reduces the synchronisation delays and
overhead drastically compared to pessimistic logging. Thus, it consumes less resources
than the pessimistic approach. It is a good technique to adopt in applications where the
frequency of failures is not high and failure-free performance is of concern. Disruptions.
If the optimistic assumption is met, the state of the application can be restored without

3.3. Fault Tolerance based on State Restoration 41

affecting failure-free entities. However, if this assumption does not hold, then the recovery
of a failed applicative entity is more costly and impacts other entities of the distributed
application. A global rollback that disrupts the whole application may be needed. Hetero-
geneity. Optimistic logging, similarly to pessimistic logging, is also interesting because it
can be implemented without checkpoint if an entity cannot be checkpointed. Thus, entities
that cannot be checkpointed because of their functional constraints (e.g., blackboxes) can
be restored using the messages logged. CP-Consistency. Optimistic logging, similarly to
the pessimistic approach, can also capture PW events and requires the replay of messages
during the recovery procedure. Therefore, both pessimistic and optimistic logging induce
cyber-physical inconsistencies because of the replay of messages.

Uncoordinated checkpoint combined with optimistic logging also presents some interesting
properties. It has a lower cost than pessimistic logging if the optimistic assumption is met.
The recovery procedure can be implemented on a failed entity without affecting other
failure-free entities if the optimistic assumption is met. Thus, our approach also makes use
of the concepts of optimistic logging to save events.

c . Causal Message Logging

Causal logging [23] combines the advantages of pessimistic and optimistic logging. In this
technique, the causal relationships between the exchanged messages are tracked and piggy-
backed on applicative messages. In this way the applicative messages carry the information
to reconstruct the state of a failed entity.

Cost. Causal logging limits the synchronous access to the stable storage but is costly in
bandwidth because the amount of causal information piggybacked on applicative messages
can become large. Its cost in bandwidth can be larger than the optimistic and pessimistic
approaches. Thus, causal logging can be costly in resource consumption. Disruptions.
Causal logging only limits the rollback of any failed entity to the most recent checkpoint
on stable storage [66]. This means that it may cause disruptions of failure-free entities
during the recovery procedure. CP-Consistency. This global rollback can thus cause
inconsistencies with respect to the PW as discussed in the previous sections.

Table 3.1 recaps the existing state saving techniques and indicates whether each technique is
adapted with respect to the identified properties of the Fog-IoT ecosystem. Green coloured
cells indicate that the state saving technique is suitable with respect to a property of the
ecosystem whereas red coloured cells indicate the contrary. Yellow coloured cells indicate
that the state saving technique is partially suitable. The Fog-IoT ecosystem requires state
saving strategies that have a low consumption of resources, limit the disruption of the
application, support high heterogeneity, and take into account the cyber-physical nature of
IoT applications in order to recover in a state which consistent with the PW. Approaches
based on a global rollback for recovery are unsuitable because the recovery procedure
impacts all the failure-free entities of the application. Since the Fog-IoT ecosystem includes
cyber-physical interactions, after a rollback to a previous state there is no guarantee that
the pre-failure execution will be regenerated. The action that generated an input may not

42 Chapter 3. Existing Fault Tolerance Approaches

be repeated again in the physical world. In addition, some devices cannot rollback to a
previous state because they act on the physical world in a definitive way. Uncoordinated
checkpoint can be coupled with logging techniques so as to eliminate the synchronisation
overhead of coordinated checkpoint. This combination also allows the recovery from failures
without impacting failure-free entities. Moreover, PW events can be captured. These
events, however, should not be replayed during the recovery procedure because it creates
intermediary state which may have undesirable or dangerous consequences on the physical
world. In order to support heterogeneity, a uniform technique for the whole distributed
application is not suitable. Instead, multiple techniques should be implemented within an
application with respect to the properties of the individual entities.

3.3.
F

au
lt

T
oleran

ce
b
ased

on
S
tate

R
estoration

43

State Saving
Technique

Cost
Disruptions

Heterogeneity Cyber-Physical
Interaction (CPI)

Synchronisation
Overhead

Resource
Consumption

Recovery Impact Heterogeneous
applicative and
infrastructure

entities

Functional
Constraints

Capture
CPI

Avoid
Intermediary

State

Cyber-Physical
Inconsistency

Coordinated
Checkpoint

Synchronisation
overhead

becomes too large

Additional resources
consumed by the

state saving technique are
not significant

if the data to save is well
defined and the

frequency of checkpoint
is

well parametrised

All failure-free entities are
impacted

Computations are lost
(global rollback)

Multiple
techniques are

needed
in order to cope

with
heterogeneity

Not all entities
can

implement a
checkpoint

strategy.
For instance,
sensors and

actuators with
restricted API

cannot be
checkpointed

Checkpoint
strategies cannot

capture cyber-
physical events
when they occur

A target state
can be

set without
going through
intermediary

states

Global rollback
implies that the

restored state
is consistent

within the application.
However,

consistency with
respect

to the PW is not
maintained.

Uncoordinated
Checkpoint

No synchronisation
between entities

Domino effect possible,
affecting all entities

Communication
Induced

Checkpoint

Synchronisation
overhead minimal

Global rollback affecting
all entities

UC +
Pessimistic

Logging

Absence of
synchronisation

for UC
Synchronisation for

logging can
become large if frequent

communication
Events

from the physical
world

can be captured

Events have to
be replayed,
thus creating
intermediary

states during the
state

restoration
procedure

Intermediary states
violate CP-consistency

UC +
Optimistic

Logging

Absence of
synchronisation for UC
Minimal synchronisation

for logging

Only failed entity is
recovered

if optimistic assumption
is maintained

UC + Causal
Logging

Absence of
synchronisation for UC

Overhead of
piggyback increases

rapidly

Bandwidth consumption
becomes high

Failure-free entities may
have to rollback

after a checkpoint

Global rollback necessary

 State saved is
 globally consistent
 Only failed entity is
 impacted
 by the recovery procedure

State saving can
rely only

on logging
without

uncoordinated
checkpoint
if an entity
cannot be

checkpointed

Table 3.1: Comparison Between Existing State Saving Techniques

44 Chapter 3. Existing Fault Tolerance Approaches

3.3.3 Tools For Fault Tolerance based on State Restoration

From an implementation point of view, checkpointing can be done at the system or appli-
cation level.

System level checkpoint [127] consists in saving the state of an application in a completely
transparent way with respect to the application. This approach is commonly used in high
performance computing (HPC) where a system or core dump (register values, program,
counters, execution parameters, address space, etc.) of the computational state of an
applicative entity is done. Coordinated checkpoint implemented at the system level for
HPC applications has received the most attention because it is based on concepts that are
simple to implement and do not require any change in the source code of software elements.
Such implementations include Condor [101], CoCheck [142], KAAPI [86], LAM-MPI [137],
and OPEN-MPI [83]. Coordinated checkpoint is also available on production machine such
as the supercomputer IBM Blue Gene/P [141]. Such tools are usually operating system
specific. Thus, they cannot be used to checkpoint IoT devices that do not run Linux
based operating systems. Distributed Multi-Threaded CheckPointing (DMTCP) [26] was
studied in the IoT domain and showed good performances [28]. It provides a transparent
system level checkpoint mechanism which does not require modification of the original
application code or of the operating system. DMTCP implements a coordinator which
accepts checkpoint command and notifies the managed processes. The DMTCP library
then performs a checkpoint of each process to save its state. The checkpoint operation
freezes the processes in their current computation and saves the checkpoint in a file. The
inverse operation is done to restart the processes in their checkpointed state. However, one
of the main drawbacks of DMCTP is that it can only run on some Linux distributions.
Therefore, it can only be used to checkpoint processes running on the operating system
and cannot be used to checkpoint IoT end devices.

Application level checkpoint [43] consists in saving only a few data structures that can
be enough to recover the state of the application. An administrator (i.e., operator or
developer) of the distributed application defines the data that should be included in the
checkpoint as well as the frequency at which these data are saved. This approach is
interesting because it limits the size of the checkpoint to only the data from which a state
can be recovered. It is thus less costly than system level checkpoint. Moreover it eliminates
the dependence of the checkpoint on the device or operating system. Application level
checkpoint can also be used to perform a checkpoint of sensors and actuators by requesting
the data that make up the state of the device. Likewise, this type of implementation
of checkpoints can be used to determine the state of firmwares for which system level
checkpoint cannot be performed. Application level checkpoint thus has a low cost in terms
of resource consumption and can cope with the functional constraints of IoT devices. For
these reasons, our approach makes use of application level checkpoint which is more suited
for the Fog-IoT ecosystem.

3.4. Fault Tolerance based on Dynamic Reconfiguration 45

3.4 Fault Tolerance based on Dynamic Reconfigura-

tion

We focus in this section on some existing dynamic reconfiguration frameworks for achieving
fault tolerance in distributed applications which are the closest to our proposed solution.
We evaluate these approaches with respect to the criteria discussed in Section 3.1. Note
that in this case, the disruption criteria is not applicable.

3.4.1 Solutions based on Dynamic Reconfiguration

In [50, 129] a lightweight infrastructure for reconfiguring applications based on Lira is
proposed. The framework provides fault tolerance of component-based applications by
detecting failures and recovering through dynamic reconfiguration at component and ap-
plication level. A suitable new configuration is decided at runtime following a set of pre-
specified reconfiguration policies. The Lira architecture is composed of a set of agents
which acts on the managed components of the application, implements the reconfiguration
logic and communicates asynchronously with other agents using a management protocol.
The component parameters that can be reconfigured are exported by an agent as variables
or functions. A management information base contains the list of variables and functions
exported by the agents. Lira implements different types of agents. The component agents
are associated to software components and they monitor their states, manage their lifecy-
cles and execute the reconfiguration procedure. Host agents provide the runtime support
for installation and activation of agents and components. They allow the reconfiguration
of the environment where the application is deployed. The application agent is a higher
level agent that controls a set of components and hosts. Cost. The approach is designed
to be lightweight. To this end, it makes use of the resources already available and uses
a simple communication protocol based on SNMP [49]. Heterogeneity. The approach
takes into account heterogeneity by establishing a reconfiguration strategy which decides
the most rewarding new reconfiguration for the managed application, according to some
predefined optimisation criteria. Thus, the agents are programmed on a component-by-
component basis to respond to reconfiguration requests appropriate for that component.
Our approach for reconfiguration is similar because we deploy managers that have a knowl-
edge of the software elements (components) of the application. However, in this approach
based on Lira, the host agent must run on the device where components and agents are
deployed. In our approach, we also consider devices such as sensors and actuators that have
no hosting capabilities. In this case, the agents are capable of managing remote entities.
CP-Consistency. This approach does not focus on cyber-physical applications. Thus, it
does not save the state of the application and does not record events received from or sent
to the PW. Consistency with respect to the PW is not considered upon recovery.

Jade [38] is a middleware for repair management of distributed software environments and
more specifically J2EE application clusters. The approach is based on wrapping legacy
applications with Java objects in order to provide a uniform management interface to ab-

46 Chapter 3. Existing Fault Tolerance Approaches

stract the heterogeneity of the legacy management capabilities. Thus it does not require
the modification of the application it manages. It allows the autonomous management
and reconfiguration of the managed system. Jade is based on a FRACTAL [44] compo-
nent model which is a general component model implementing introspection capabilities
to monitor the managed application as well as explicitly controlling the execution of com-
ponents including their lifecycle (e.g., start and stop). It also implements reconfiguration
capabilities at runtime. Jade is based on autonomic managers that implement control
loops which capture information on the managed distributed application (such as QoS
violations, CPU/memory usage, failure occurrences). It implements reactors that receive
notifications for analysis and decision (repairing, resizing clusters). It also uses actuating
managers to implement the necessary reconfiguration operations (adding and removing
replicated components, updating connections). Active replication is used so that Jade pro-
vides a fault-tolerant repair service. Jade is interesting because, similarly to our approach,
it implements an autonomous repair management based on the principles of autonomic
computing. Cost. Jade targets repair management of J2EE application servers. Such
applications usually run on cloud platforms which do not suffer from a lack of resources
and capabilities. In order to run Java virtual machines in the Fog-IoT ecosystem, pow-
erful machines are needed. This implies a high cost in terms of resource consumption.
In our approach, we take into account the available resources of the environment in or-
der to deploy managers that implement dynamic reconfiguration. Heterogeneity. The
J2EE environment does not exhibit the level of heterogeneity of IoT applications as well
as the diversity in functional constraints of devices. For instance, in IoT applications,
architectural reconfiguration may involve not only software elements but also appliances
such as sensors and actuators. Placement reconfiguration is not feasible for all devices,
since some of them do not have accessible hosting capabilities. Jade does not take into
account these heterogeneous constraints since the J2EE environment is different from the
Fog-IoT ecosystem. In order to support heterogeneity, our approach implements multiple
mechanisms that fit the properties and characteristics of the entities of the application.
CP-Consistency. Since Jade was designed for the J2EE environment which does not
include cyber-physical interaction, it does not recover a cyber-physical consistent state of
the application. In order to guarantee CP-consistency, our approach restores the state of
the application so that global consistency is preserved as well as a consistent behaviour
with respect to the PW is maintained.

VAMP [68] is a self-deployment protocol that was designed to automatically configure
cloud applications consisting of a set of software elements to be deployed on different vir-
tual machines (VM). In addition to the deployment of VMs, the protocol starts the hosted
software elements in a precise order according to their functional dependencies so that
important architectural invariants are respected. This protocol works in a decentralised
way and does not require a centralised server. To do so, each VM is embedded with a
local configurator which interacts with configurators on remote VMs to solve dependencies
and to determine when all the dependent entities of a software element are satisfied so
that the latter can be started. The protocol implements a heartbeat mechanism for failure

3.4. Fault Tolerance based on Dynamic Reconfiguration 47

detection of virtual machines. When a failure is detected, a notification is sent to the
remaining virtual machines and a new VM instance is created. The protocol succeeds in
deploying an application when faced with a finite number of failures. VAMP is also based
on autonomic computing to automate repair management. Cost. VAMP was designed
for virtual machines that run on cloud platforms and was implemented in Java. Thus, the
lack of resources for the execution of configurators was not a priority in its design. Het-
erogeneity. VAMP focuses on the reconfiguration of virtual machines and does not take
into account the heterogeneity of the underlying infrastructure. This is because it targets
homogeneous applications running on cloud platforms. Thus, it does not take implement
reconfiguration mechanisms that take into account the heterogeneous characteristics of en-
tities. CP-Consistency. VAMP targets stateless applications that run in the cloud. Such
applications do not involve cyber-physical interactions. VAMP, therefore, does not save
the state of the application and does not provide mechanisms for maintaining a consistent
behaviour of the application by restoring a CP-consistent state.

In [40], the authors present a reconfiguration protocol which applies changes to a set of con-
nected components for transforming a current component assembly to a target one given as
input. Reconfiguration steps aim at (dis)connecting ports and changing component states
(started/stopped). The protocol is robust since it preserves consistency of the architecture
of the application and is able to resist multiple number of failures that occur during the
reconfiguration procedure. This assembly of components can be safely introspected and
further reconfigured. Two recovery policies are proposed: a roll-backward policy that rolls
back a failed reconfiguration and a roll-forward policy which pursue the reconfiguration as
far as possible towards a desired target. Heterogeneity. This work focuses on the re-
configuration of web applications. These applications are not highly heterogeneous as the
Fog-IoT ecosystem. Moreover, the protocol assumes that the components of an application
are hosted on the same VM and a unique centralised manager is in charge of the reconfig-
uration steps. However, the Fog-IoT ecosystem is geographically distributed with software
elements hosted on multiple devices. In this case, a distributed repair management pro-
tocol is needed. CP-Consistency. This work does not take into account cyber-physical
interactions because its application domain is different from that of the Fog-IoT. Therefore,
cyber-physical consistency upon recovery was not a concern in the design of the protocol.

In the context of wireless sensor networks (WSN), [113] presents the use of MinTax, a
high-level language which is independent from the underlying hardware node. It is de-
signed for energy-aware applications, to perform reconfiguration in WSN which have very
strong constraints in terms of energy, processing, memory, and communication capabili-
ties. The code is compiled dynamically on the node after its deployment. It takes into
consideration the strong constraints in terms of energy as well as the size of code to per-
form the reconfiguration because of hardware and memory constraints. [32] proposes a
reconfiguration mechanism to tolerate node and link failures. It establishes an alternate
path to the root node in a hierarchical aggregation tree when a node or a link fails. The
approach exploits the inherent node and link redundancy in WSN for reconnection and
establishing new paths. Cost. One of the major concerns of reconfiguration in WSN is

48 Chapter 3. Existing Fault Tolerance Approaches

the cost of the operations performed in terms of energy consumed. This is because devices
usually run on batteries having limited capacities. In our approach, we focus on the cost
in terms of overhead and resources (e.g., processing and storage). Heterogeneity. WSN,
as its name suggests, is composed of sensors. In our Fog-IoT context, we consider various
devices including sensors, actuators, and nodes having hosting capabilities (e.g., Raspberry
Pi). Hence, the Fog-IoT ecosystem is much more heterogeneous in terms of physical ar-
chitecture, functions, and network protocols. Our approach focus on the recovery of these
different types of devices and software elements. CP-Consistency. WSN reports infor-
mation about the state of the PW. They do not include actuators (e.g., lamps, heaters)
which are capable of changing the state of the PW. Moreover, these sensors are usually
stateless, that is they can be recovered by simply rebooting or replacing a failed sensor.
Consequently, they do not take into account the restoration of the state of the application
with respect to the PW.

3.4.2 Dynamic Reconfiguration in the Fog-IoT Ecosystem

Dynamic reconfiguration which aims at adapting distributed applications to specific condi-
tions of the runtime environment have been studied for more than a couple of decades and
resulted in many techniques and tools. Many other dynamic reconfiguration approaches
have been proposed such as [157, 120, 72, 59]. These approaches focus on other application
domains that present different constraints such as energy cost, throughput, and real-time
constraints. Most of these solutions focus on preserving architectural invariants as well as
ensuring functional and non-functional aspects of the application under reconfiguration.
However, the Fog-IoT ecosystem presents additional specificities that should be taken into
account for implementing dynamic reconfiguration.

• Cost: Most of the dynamic reconfiguration approaches have been proposed for ap-
plications that run in Cloud platforms. Since the Cloud is considered to abundant
resources, these approaches do not focus on minimising the overhead and the re-
sources consumed by the managers deployed. However, the Fog-IoT ecosystem is
constrained in terms of capabilities. The resources available should be dedicated to
the execution of the application rather than to the managers involved in reconfiguring
the application.

• Heterogeneity and Diversity of Constraints: The existing techniques for dynamic
reconfiguration do not support applications that exhibit the level of heterogeneity
of IoT applications as well as the diversity in functional constraints of devices and
applicative entities. For instance, in IoT applications, architectural reconfiguration
may involve not only software elements but also sensors and actuators. The recon-
figuration of sensors and actuators should take into consideration the geographical
requirements as well as the APIs exposed by these devices. For instance, an architec-
tural reconfiguration of a temperature sensor cannot involve another sensor located
in a different room since the data reported would be incorrect. Placement recon-
figuration is not feasible for all devices, since some of them do not have accessible

3.5. Fault Tolerance in the Fog-IoT Ecosystem 49

hosting capabilities. Moreover, failures of devices which provide specific services such
as sensors may not always be repaired. These cases should be considered so that the
application is reconfigured to provide a partial service.

• Cyber-Physical Consistency: Performing a reconfiguration is not enough to ensure a
consistent behaviour of the application. This is because the state of a reconfigured
entity has to be restored so that it can resume its behaviour in its pre-failure state.
Reconfiguration should therefore be accompanied by state restoration so that global
consistency in the application is maintained. State restoration also aims at ensuring
CP-consistency such that the application has a consistent behaviour with respect to
the PW. In this way, unsafe situations in the PW are avoided.

Our approach proposes reconfiguration operations that take into account the properties of
devices upon reconfiguration. In order to limit the consumption of resources dedicated to
the application, the managers performing reconfigurations are deployed only on nodes that
have hosting capabilities and have enough resources to run the manager. Properties such
as geographical constraints are taken into account when performing an architectural recon-
figuration of an actuator such that the replacement actuator has the same scope of action
as a failed one in the PW. Our approach also makes use of state restoration techniques, as
discussed in the previous sections, to guarantee CP-consistency. In the following sections,
we focus more on existing fault tolerance approaches for IoT applications.

3.5 Fault Tolerance in the Fog-IoT Ecosystem

This section discusses some existing approaches for tolerating failures of IoT applications
and of the Fog. We first present the failure management solutions for Smart Home and
Smart City applications because it is the target domain application of this Thesis. Then,
we present existing solutions in healthcare since tolerating failures is critical in such an
application domain and some recent research works have addressed this issue. Next, we
briefly present solutions in miscellaneous IoT application domains before concluding.

3.5.1 Smart Home / City

Rivulet [27] is a fault-tolerant distributed platform for running smart home applications.
It focuses on delivery of events and tolerates failures such as link losses, network partitions,
and sensor failures. It relies on a model where software elements are executed on heteroge-
neous smart consumer devices within the home. Delivery of data is ensured by a delivery
service with two types of guarantees: a best-effort guarantee for delivery of sensor events
where a few values can be missed and a stronger delivery guarantee that ensures delivery
despite failures for cases that cannot afford to miss delivery of events because it would be
undesirable and potentially catastrophic. The latter comes with a more costly bandwidth
and battery life. Rivulet is focused on delivery of events and targets stateless smart home
applications. It does not provide any mechanisms for restoring the state of the application

50 Chapter 3. Existing Fault Tolerance Approaches

upon recovery. Thus, cyber-physical consistency is not taken into account.

The authors in [117] discuss the different building blocks to provide resilient services for IoT
applications in the Fog for smart city applications. They propose that IoT devices should
be connected to redundant fog nodes so as to survive fog node failures. They suggest that
better fault tolerance can be achieved if the communication coverage of fog nodes overlap
across multiple IoT distribution areas and fog nodes should monitor each other based on
proximity for faster failure recovery. The authors also identify the need for maintaining
state data of stateful fog services in smart city applications. The discussed solution to
tackle failures in this context is based on replication of stateful fog services such that
the replicas of a fog service are updated with each service invocation and each change in
state data so that a replica can replace a failed service. Replication of services in a Fog-IoT
environment, however, is not always feasible because a service can be tied to the IoT device
and thus cannot be replicated without replicating the device too. Replication of stateful
IoT devices is also not realistic or sometime even infeasible. For instance, updating the
state of the replica of actuators violates consistency with respect to the PW since actions
would be performed multiple times in the PW. Geographical constraints may prevent the
use of replication: some IoT devices such as smart window blinds can only operate in a
unique space and thus cannot support physical replicas. Replication, when possible, may
also be too costly.

[143] discusses the challenges, modelling, and research opportunities for achieving resilience
of IoT in the context of smart cities. The authors discuss an architecture based on the
concept of islands and corridors of resilience. The idea is to group clusters of connectiv-
ity corresponding to individual smart cities containing IoT devices and infrastructures for
mobile telephone, internet as well as cloud and data-centers. This grouping is done so that
the clusters (or islands) can continue to operate when the links to the core infrastructure
are disconnected. In order to tolerate this kind of failure, network services such as web
caches, DNS servers, edge infrastructure as well as 4G and 5G services should be replicated
within each island. These islands should be connected to the core network and thus to
one another through corridors capable of surviving large-scale disasters and attacks by
implementing multipath routing and transport as well as path optimisations. A similar
approach is discussed in [20]. The authors propose a resilient IoT architecture for smart
cities composed of multiple layers. A first layer of the architecture is composed of IoT is-
lands which the authors define as a group of physical devices such as sensors and actuators
deployed in the city. An IoT island sends data to IoT services where they are processed.
For the purpose of data transmission, an IoT gateway provides access to multiple IoT is-
lands and acts as a bridge to the upper layer of the architecture called IoT middleware.
The IoT gateway is responsible for guaranteeing data delivery. The routing protocol for
lossy networks (RPL) is proposed to this end because it supports dynamic networks and
allow the use of multipath techniques which enhance resilience of data transmission. The
IoT middleware layer handles the following functions: heterogeneity by acting as an inter-
preter between the communication protocols used in the IoT islands, routing of data, and
discovery of devices and services in the IoT infrastructure layer. A resilience manager in

3.5. Fault Tolerance in the Fog-IoT Ecosystem 51

the same layer has the role of supervision and defines the recovery actions that have to
be applied in case of failures. These studies focus on very high level constructs. Albeit
interesting, the proposed approaches are very difficult to test or implement. At this stage
in the development of the IoT, failure management should rather focus on more practical
aspects. Also, a unifying fault-tolerant architecture for IoT application could be an infea-
sible approach because the concepts and technologies in IoT continues to evolve rapidly.
It imposes too many constraints in the design and development of the application. In
addition, such an approach is not supported by legacy applications. On the contrary, there
should be a clear decoupling between the architecture of the application and that of the
proposed fault tolerance solution. Therefore, a failure management solution should adapt
to the architecture and requirements of the application rather than vice versa.

3.5.2 Healthcare

[76] proposes an architecture for supporting network fault tolerance for the healthcare
environment. It is based on the wireless protocol 6LoWPAN for an energy efficient com-
munication infrastructure. The architecture consists of a customised star-based 6LoWPAN
sensor nodes, which retrieve patients bio-signals, connected to a gateway composed of mul-
tiple sink nodes with backup routing and access to the internet. In order to provide fault
tolerance, the inactivity of a sensor node over a predefined period of time triggers a dis-
covery protocol which initiates actions to determine if a failure has occurred. The protocol
begins by requesting the status of the sensor node. If the latter fails to reply, a warning
message is broadcasted through another sink node to eliminate the possibility of a faulty
sink node. The set of sensor nodes reacts to the warning message such that the failure can
be identified. The use of backup routing between sink nodes allow one to maintain con-
nectivity in case of failing connections and prevent traffic bottleneck due to high receiving
data rate. The proposed architecture also implements a notification mechanism for care-
givers/doctors. This approach makes use of star-based architecture as well as customised
hardware. This type of approach is use case specific and cannot be extended to more
generic IoT domain applications. Moreover, the approach relies heavily on notification and
intervention of care-givers/doctors to confirm and correct a failure. In our approach we
aspire at having a complete automation of detection of failures and recovery.

[77] proposes a fault tolerance mechanism in smart homes dedicated to people with disabil-
ities. In this work, the authors focus on fault tolerance as a safety property and provide
methodologies for the design and control of such smart homes. To do so, a smart home is
modelled as a hierarchy of hardware and software elements, sensors, and actuators that are
distributed in the rooms in order to help a person with impairment to perform activities of
daily living. The components of the smart home and their properties are specified by the
means of a synchronous framework. Formal synthesis techniques are then used to create a
controller designed to keep the smart home in a correct state taking into account dynamic-
ity, controllability, and temporal constraints. Security constraints are defined to guarantee
a safe behaviour and improve security of the smart home environment under different ex-

52 Chapter 3. Existing Fault Tolerance Approaches

ecution conditions. This approach focuses on security properties and more particularly on
how to provide protection and adequate assistance with respect to the person’s disabilities
when a failure occurs. These security properties are verified for different execution modes
of the application. Our approach is different because we aim at recovering the application
and limiting service unavailability. Our recovery procedure implements mechanisms that
avoid unsafe situations in the PW by (i) restoring a consistent state of the application by
taking into account the changes in the PW during the recovery procedure, (ii) ensuring a
consistent behaviour of the application after the recovery procedure is implemented, thus
avoiding harmful impacts on the PW.

[75] discusses the technical requirements for reliable mobile health services. The authors
identify a set of reliability requirements including monitoring of operations of hardware
and software elements as well as provision for redundant hardware so that in case of out-
age a stand-by device with replicated application and service takes over. Power-fallback
is proposed so that in the case of the failure of the main power supply there is an auto-
matic handover to the alternative power source (e.g., battery). The authors recommend
the implementation of techniques to allow reconnection to alternative cellular or WLAN
networks. This ensures transmission of data when patients are moving as well as automatic
adaptation of processing and storage capacities of centralised infrastructures according to
load of mobile health users (patients and care experts). This approach relying on replica-
tion can become very costly, may not be suited because of geographical constraints. It may
also be infeasible because it violates CP-consistency in the case of actuators that perform
physical actions on the PW. Reconnection to alternative networks is interesting in some
cases. However, many IoT devices implement only one network interface and they cannot
switch to other types of network. In our approach, in order to solve this issue, if the failure
of a network equipment that cannot be repaired implies that an IoT device can no longer
communicate, then the IoT device is considered as failed. A recovery procedure is then
performed to replace the IoT device. Our approach thus focuses on replacing a failed IoT
device with another one which have similar features.

3.5.3 Miscellaneous IoT Application Domains

[163] studies fault prediction which provides the means to ensure safe operations of IoT
applications as well as to anticipate maintenance. [146] proposes replicated services for fault
recovery in IoT. This approach requires multiple devices that have identical services. On
the other hand, [167] introduces virtual service composition in which data from multiple
sensors of different modalities are used as fault tolerant backups for each other. [168]
proposes fault tolerance techniques for IoT in the military domain. Fault Diagnosis is done
at the sensor level by sending the same input to pairs of processing nodes and comparing
their response, and at system level by distributed agents based on the simple network
management protocol (SNMP). Cryptographic mechanisms are used for authentication and
data transmission protection. The recovery phase involves the removal of the faulty node
from the architecture. Other works have focused on reliability of the delivery of events from

3.6. Summary 53

IoT devices. Particularly, these works propose mechanisms based on the communication
infrastructure to provide alternative and simultaneous routing paths [150, 97, 115, 61,
30, 132, 139, 104]. Wireless sensor networks (WSN) is also a very active research area.
This application field usually consists in the deployment of low power sensors with limited
transmission range for data collection and task monitoring. Various mechanisms have been
proposed based on replication (e.g., hardware, paths), data aggregation, and the adaptation
of the network topology in order to tolerate failures [88]. Even if fault-tolerant WSN has
received much attention, this application domain exhibits a lower heterogeneity than the
Fog-IoT ecosystem and has other characteristics (e.g., energy awareness) that should be
addressed for failure management. Hence, the fault tolerance solution proposed in WSN
does not address the issues inherent to Fog-IoT ecosystem.

3.6 Summary

This section has presented the existing approaches to tolerate failures in distributed appli-
cation, including in the IoT domain application.

In the first part of this related work we discussed the desired properties of a fault tolerance
approach for the Fog-IoT ecosystem. Such an approach to tolerate failures should take into
account the cost in terms of overhead and resource consumption because the ecosystem is
limited in capabilities. The proposed approach should also cause a minimum disruption in
the application during the recovery procedures. For instance, it should not impact failure-
free entities. The approach to tolerate failures should also integrate multiple mechanisms in
order to cope with the diverse constraints and properties of different part of the application.
The restoration of the state of the application after a failure is very important to ensure
a consistent state of the application with respect to the PW and a consistent behaviour
after recovery. This avoid any harmful impacts on the PW.

In a second part we discussed replication techniques for tolerating failures. This approach
is very costly because at least half of the resources are dedicated for fault tolerance. More-
over, due to functional and geographical constraints, replication of some entities may not
be feasible. Replication of IoT end devices may not always be feasible because actions
performed by actuators may be executed multiple times in the PW.

Then, we discussed fault tolerance techniques based on state restoration. Table 3.1 re-
caps the properties of interest of each technique and indicate whether they are suited for
the Fog-IoT ecosystem. Approaches based on global rollback for recovery are unsuitable
because they disrupt the whole application for a single failure. Some devices (such as
actuators) cannot rollback to a previous state because they act on the PW in a definitive
way. Moreover, in order to support heterogeneity, a uniform state saving technique is not
suitable. Multiple techniques should be integrated so as to fit the properties of individ-
ual entities within the application. Cyber-physical consistency is not guaranteed by these
approaches because the replay of events may have harmful impacts on the PW.

54 Chapter 3. Existing Fault Tolerance Approaches

Next, we presented existing approaches for dynamic reconfiguration. The existing ap-
proaches do not support hight level of heterogeneity. Thus, they do not take into account
the diverse constraints in the Fog-IoT ecosystem. Moreover, the implementation of recon-
figuration is not enough to ensure a consistent behaviour of the application. The existing
approaches do not recover the application in a CP-consistent state.

The existing fault tolerance approaches in the IoT domain application were then presented.
These approaches are usually use case specific and cannot be extended to more generic IoT
domain applications. Other propositions are based on very high level constructs and are
difficult to asses or implement at this current immature stage of the IoT. Also, these
approaches do not assess the impact of failures and of the recovery procedures with respect
to the physical world so as to maintain its safety.

Our approach addresses the issue of cyber-physical consistency by saving the state of
the application and capturing a state of the PW during the runtime of the application.
During the recovery procedure, a target state which is consistent within the application and
also consistent with respect to the PW is computed using the saved data. Our approach
causes a minimum disruption in the execution of the application since only the failed
entity is recovered without rollback of failure-free entities. Heterogeneity is addressed
by providing multiple mechanisms (i.e., for saving the state of the application, failure
detection, reconfiguration, and recovery) based on the properties of the entities of the
application. The cost induced by the approach is minimised by taking into account the
available resources for the execution of the application as well as deploying managers only
on nodes that have hosting capabilities and an excess of resources.

In the following, Part II of this Thesis details our contribution in designing an autonomic
failure management approach that takes into account the specificities of the Fog-IoT ecosys-
tem.

Part II

Autonomic Failure Management
Approach For IoT Applications in

the Fog

55

Chapter 4

Fog-IoT Model

Contents
4.1 Behavioural Model . 57
4.2 Physical World Model . 60
4.3 Application Model . 62
4.4 Infrastructure Model . 64
4.5 Failure Model . 65
4.6 Running Example . 66
4.7 Summary . 68

This chapter aims at modelling IoT applications in the Fog. The model describes the char-
acteristics of the different entities involved in the Fog-IoT ecosystem. Our failure manage-
ment approach is based on this proposed model in order to manage the application. This
implies that the approach implements the different mechanisms for failure management
based on the characteristics of the managed entities. For instance, the monitoring mech-
anisms are determined by the type of entity (i.e., infrastructure or applicative) and the
behavioural model of an entity is used for consistent state restoration during the recovery
procedure. To this end, the application is defined by different types of applicative entities
hosted on infrastructure entities. Applicative entities participate in the execution of the
application through their functions and services which are described by their correspond-
ing behavioural models. The behavioural model describes how the state of an applicative
entity changes upon interaction with other entities and with the physical world. Infras-
tructure entities provide execution resources to run the application. In the following, we
give a formal definition of the Fog-IoT ecosystem.

4.1 Behavioural Model

The behavioural model describes the behaviour of an application as a set of states and how
these states change with respect to the operations that are executed by the entities of the

57

58 Chapter 4. Fog-IoT Model

application. The behavioural model is important in order to characterise the state of the
application at a given time instant. The information provided by the behavioural model
is used in failure management to compute a consistent target state in order to restore the
application during a recovery procedure (see Chapter 8). The information available to
construct the behavioural model of an entity may be given by the manufacturer of a device
or the developer of a service. For instance, a description of the behavioural model of the
Ambient Light Sensor (ALS) [6] device is given by its manufacturer Texas Instruments.
The behavioural model of the humidity and pressure sensor BME280 is also provided by
its manufacturer Bosch [2]. Figure 4.1 illustrates part of the behavioural model of the
BME280 device. The devices offers three sensor modes: sleep mode (default mode, no
measurements are performed), forced mode (perform one measurement, store results and
return to sleep mode), and normal mode (perpetual cycling of measurements and inactive
periods). These modes can be selected by setting the value of Mode[1 : 0].

Figure 4.1: Part of the Behvaioural Model of BME280 Device [2]

The behavioural model may also be extracted from runtime contextual observations of an
entity [122]. For instance the tool Learnlib [130] provides active automata learning [25]
algorithms which are used for inferring models from observations. To this end, it interacts
with a target application via queries (e.g., API calls) and analyses the output trace to con-
struct the behavioural model of the application. In the following, we define the behavioural
model of an application.

The execution state, or state for short, of an entity is characterised by a set of variables
such as input parameters, execution conditions, environment variables, and stored data.

Definition 1 (State) The State of an entity is defined as a set of couples (vari, valuei)
where vari is a variable identifier and valuei is its corresponding value.

The state of an entity changes upon reception and emission of events. The execution of
internal computations also changes the state of an entity. An internal computation is

4.1. Behavioural Model 59

independent of received or emitted events. For instance, an action executed periodically
such as a lamp switching on every day at 6 p.m. represents an internal computation.

The behavioural model (BM) of an entity describes how its state changes during its runtime.
It is described by a set of states and transitions connecting these states. A transition
represents the change of state upon reception/emission of events or the execution of an
internal computation. Two types of BM are defined according to the information available
on the behaviour of an entity: a Default Behavioural Model (DBM) and an Enriched
Behavioural Model (EBM).

The DBM characterises entities for which building a complete BM is not feasible because
the necessary information is lacking or impossible to retrieve (e.g., hidden APIs or obfus-
cated proprietary APIs). Therefore, a DBM defines the behaviour of an entity for which
only the incoming/outgoing events of the entity can be observed and therefore can be
defined. However, the subsequent changes in state induced by these events cannot be
characterised. In this case, we refer to the set of states as a single macro-state.

Definition 2 (DBM) A Default Behavioural Model is defined by the following tuple,
DBM = ({ms},ms,Σ, Tdbm) where the set of states is a singleton containing one macro-
state {ms}; Σ is a finite set of events; Tdbm ⊆ {ms} × Σ× Act× VΣ × InvV × {ms} is a
finite set of transitions such that:

• Act ∈ {?, !} where ? characterises the reception of an event and ! characterises the
emission of an event.

• VΣ corresponds to a set of expressions (e.g., a set of values) received or emitted.

• InvV defines the invariants associated to the values VΣ. The invariants characterise
the range of correct values of the variables in VΣ. A transition is executed if the
invariants are satisfied.

In this case, we denote {ms} e,act,ve,invv−−−−−−−→ {ms} ∈ Tdbm.

An EBM characterises applicative entities for which the behaviour specification is provided
by the administrator of the entity (e.g., manufacturer of a device, the developer or provider
of a service) or can be built from the observation of the entity. In this case, the set of state
can be made explicit, as well as the events that cause the changes of states.

Definition 3 (EBM) An Enriched Behavioural Model is defined by the following tuple,
EBM = (S, s0,Σ, Tebm) where S is a finite set of states; s0 ∈ S is the initial state; Σ is a
finite set of events; Tebm ⊆ S ×Σ×Act× VΣ × InvV × S is a finite set of transitions such
that:

• Act ∈ {?, !, σ} where ? characterises the reception of an event, ! characterises the
emission of an event, and σ characterises an internal computation.

• VΣ corresponds to a set of expressions (e.g., a set of values) emitted or a set of
variables allocated in the case of a received event.

60 Chapter 4. Fog-IoT Model

• InvV defines the invariants associated to the values VΣ.

In this case, we denote s
e,act,ve,invv−−−−−−−→ s′ ∈ Tebm.

The two types of BM are illustrated in Figure 4.2. Figure 4.2 (a) illustrates the DBM of
a face recognition software element. It is represented with a macro-state. In this case,
the inputs and outputs based on events received and emitted are known. However, the
variables describing the state of the software element and how these events affect its state
are unknown (for e.g., images stored and how they are processed). The software element
receives the event faceRecognition?recognised such that the variable recognised indicates
whether the person is recognised or not. Thus, the invariant of the parameter recognised
is as follows, recognised ∈ {true, false}. The software element emits the event status! to
indicate that a person is recognised. Therefore, the invariant defined for this transition is
recognised ∈ {true}.

Figure 4.2 (b) illustrates the EBM of a connected lamp. The lamp has two states that are
described by the variables on and intensity. The lamp receives events for its actuation.
The transition setOn?i represents the reception of an event to turn on the lamp at a given
brightness intensity i. The variable on takes the value true and the variable intensity
takes the value of the parameter i in the received event. The transition setI?i modifies the
intensity of the lamp. Both transitions define the invariants for the value of the parameter
i which can take the values in the set {1, 2, 3, 4, 5}. Thus, the lamp can be turned on with
five levels of intensity. Note that if the invariants are not satisfied, the transition is not
executed. Executing the transition setOff? turns off the lamp. In this case, the variable
intensity is set to 0 and the variable on to false.

4.2 Physical World Model

The PW plays an important role in cyber-physical IoT applications because devices such
as sensors and actuators interact with the PW. Thus, when a failure occurs in an IoT

on:	false
intensity:	0

on:	true
intensity:	i

setOn?i:	i	∈	ℕ,	1≤	i	≤	5
intensity	:=	i
on	:=	true

setI?i:	
i	∈	ℕ,	1≤	i	≤	5
intensity	:=	i

setOff?:
intensity	:=	0
on	:=	false

faceRecognition?recognised:
recognised	∈	{true,	false}

(b)	EBM	of	a	Lamp(a)	DBM	of	a	Face	Recognition
Software	Element

status!recognised:
recognised	∈	{true}

Figure 4.2: EBM and DBM Models

4.2. Physical World Model 61

application, the unavailability of the service provided by the failed entity may impact the
PW. For instance, the failure of a thermostat in a smart home will impact the ambient
temperature and will make the house tenants uncomfortable. In this case, the temperature
set by the thermostat can characterise the state of the smart home. Moreover, it is also
important to characterise the scope of action of devices which interact with the PW. For
example, the heater which is controlled by the thermostat may be located in a specific
room of the smart home and thus only this specific room may be impacted by the failure.
The state of the PW can be characterised by events given by sensors and actuators such
as humidity, light intensity, motion, noise, smoke/gas, soil moisture, etc. A model of the
PW which describes how the application interacts with PW and how it changes the state
of the PW is useful. This is because it allows the observation of the state of the PW and
thus a recovery procedure that is consistent with respect to the PW can be implemented.

The physical world is defined with respect to geographical spaces which are zones delimited
by physical boundaries and define the scope of action of sensors and actuators. For instance,
in a smart home, the geographical spaces represent the different rooms in the home and the
external spaces such as the porch or the garden. These geographical spaces can be given by
the BIM (Building Information Modelling) [155]. Each geographical space is characterised
by a state consisting of a set of sensor and actuator events.

Definition 4 (Geographical Space) A Geographical Space is defined as gs = (id,G, S)
where id identifies gs uniquely; G is an Euclidean space; the set S = {(e1, vt1), ..., (en, vtn)}
characterises the state of gs where ei is a sensed or actuated event and vti is the time
duration for which the event is maintained and valid.

Definition 5 (Physical World) The Physical World is modelled as a finite set of n geo-

graphical spaces such that PW =
n⋃

i=1

gsi where gsi is a geographical space.

Let us consider a smart home composed of three rooms. The physical world is given
by PW = {room1, room2, room3}. Each room is a geographical space. Consider that
room1 is equipped with a connected lamp, an air-conditioner, and a door opener sen-
sor. The lamp should always remain on, the air-conditioner is set to 18◦C, and the door
should be kept open no more than 20s. In this case, the state of the room is given by
these devices and is denoted room1(S) = ((lightOn,∞), (temp : 18◦,∞), (doorClose,∞)).
When the door is opened, the door opener sensor reports an event and thus room1(S) =
((lightOn,∞), (temp : 18◦,∞), (doorClose,∞), (doorOpen, 20s)). Note that the times-
tamps of the events are also included when they are saved. The validity time of the events
gives an indication of the context of the PW events. They are used to compute a consistent
state with respect to the PW when a failure occurs. This is further discussed in Chapter 8.

62 Chapter 4. Fog-IoT Model

4.3 Application Model

This section defines the entities involved in an IoT application. It is composed of the fol-
lowing applicative entities: appliances, software elements, fog nodes, and logical bindings.
Below are the definitions of these entities. In the following, all identifiers are unique.

An appliance is an entity that provides a fixed set of services that are only operable
through its exposed APIs. They have no accessible hosting capabilities and are usually
cyber-physical entities that provide sensing and actuating services over a geographical
space. An appliance has a behaviour and a corresponding current state at any given point
in its execution.

Definition 6 (Appliance) An appliance is defined by the tuple apl = (id, gs, I, bm, cs)
where id is an identifier; gs is a geographical space; I is a finite non-extensible set of
interfaces through which its services are accessible; bm is the behavioural model of the
appliance, and cs is its current state.

A software element is a unit of software to be executed. It participates in the execution of
the application through its corresponding functions and services. A software element has
a behaviour and a corresponding current state at any given point in its execution.

Definition 7 (Software Element) A Software Element is defined by se = (id, I, bm, cs)
where id is an identifier; I is a finite set of interfaces exposed by the software element
through which its services are accessible; bm is the behavioural model of the software ele-
ment, and cs is its current state.

Software elements can interact with each other and with appliances. These interactions
are done thanks to communications through logical bindings. Logical bindings are directed
according to the dependencies between interacting entities. An entity e1 is said to be
functionally dependent on another entity e2 (denoted e1 → e2) if e1 implements its services
by using other services that are implemented by e2. The dependency between e1 and e2 can
be mandatory or optional. A mandatory dependency means e1 requires e2 to be functionally
operable whereas e1 can be functionally operable even if an optional dependency is not
satisfied.

Definition 8 (Logical Binding) A Logical Binding is defined by lb = (id, se, e, dir, dep)
where id is an identifier; se is a software element; e is a software element or an appliance;
dir ∈ {→,←} gives the direction of the dependency, that is, se → e or se ← e, and dep
indicates whether the dependency is mandatory or optional.

Note that there are no bindings between appliances. An appliance, therefore, always has
at least one binding to a software element. If a logical binding exists between se and e,
they are said to be neighbours, that is, se ∈ neigh(e) and therefore e ∈ neigh(se). Also,
the number of neighbours of an applicative entity e is given by deg(e) = |neigh(e)|.

Software elements are hosted by fog nodes. The fog node provides access to the underlying
physical resources and the runtime environment for the execution of software elements.

4.3. Application Model 63

A fog node also hosts a special software element called Fog Agent which is responsible
for lifecycle management (setup, installing runtime, reconfigurations) of local software
elements and neighbouring appliances.

Definition 9 (Fog Node) A Fog Node is denoted by fgn = (id, SE, fga) where id is an
identifier; SE is a finite set of software elements hosted on the fog node, and fga is a fog
agent.

Definition 10 (Application) An IoT Application, or Application for short, is modelled as
a directed acyclic graph, Gapp = (Vapp, Eapp). Each vertex represents a software element
se ∈ SE or an appliance apl ∈ APL such that Vapp = SE

⋃
APL. Logical bindings are

represented by the set of edges Eapp. The application graph is connected, that is for an
application with more than one software element/appliance, ∀v ∈ Vapp, deg(v) 6= 0.

Figure 4.3 depicts the architecture of an IoT application. In this example, the application
is composed of two fog nodes fgn1 and fgn2. The fog node fgn1 hosts one software
element se1 and the fog agent fga1. Both software elements se2 and se3, and the fog
agent fga2 are hosted on fgn2. The behaviour of the respective software elements are
given by BM se1, BM se2 and BM se3. The software elements se2 and se3 depend on
se1. They communicate with se1 through the logical bindings lb21 and lb31, respectively.
The software element se3 is connected to and depends on the appliances appl1 and appl2.
This is illustrated by the bindings lba31 and lba32. se3 has an optional dependency on appl2
which is depicted by a dashed arrow. All the other dependencies are mandatory. The
behaviour of the two appliances are given by BM appl1 and BM appl2. The appliances
are located in two distinct geographical spaces gs1 and gs2.

se1

se2

se3
fga1

fga2

fgn1

fgn2

appl1 appl2

lb21

lb31

lba31 lba32

BM_se3

BM_se2

BM_se1

BM_appl1 BM_appl2

fgn:	fog	node
se:	software	element
fga:	fog	agent
appl:	appliance
BM:	behavioural	model
gs:	geographical	space

gs1 gs2

Figure 4.3: IoT Application Model Architecture

64 Chapter 4. Fog-IoT Model

4.4 Infrastructure Model

The Fog infrastructure is composed of the following three types of physical entities: physical
nodes, appliances, and network links. Since the services (software) provided by the appli-
ance are tied to the device (hardware), we refer to an appliance as both an infrastructure
and applicative entity. In the following, all identifiers are unique.

A physical node is a device that provides physical resources (computing, storage, and com-
munication) and is fully administrable (resource allocation, deployment, reconfiguration,
lifecycle management, etc.).

Definition 11 (Physical Node) A Physical Node is denoted by pn = (id, fgn) where id is
an identifier and fgn is a unique fog node hosted by the physical node.

A network link provides the transmission medium between a couple of physical nodes or a
physical node and an appliance.

Definition 12 (Network Link) A Network Link is denoted by nl = (id, pn, e) where id is
an identifier; pn is a physical node, and e is a physical node or an appliance.

If a network link exists between two infrastructure entities pn and e, they are said to be
neighbours, that is, pn ∈ neigh(e) and e ∈ neigh(pn). The number of neighbours of an
infrastructure entity e is given by deg(e) = |neigh(e)|.

Definition 13 (Infrastructure) A Fog Infrastructure, or Infrastructure for short, is mod-
elled as an undirected graph, Ginfra = (Vinfra, Einfra). Each vertex represents a physical
node pn ∈ PN or an appliance apl ∈ APL. Thus, Vinfra = PN

⋃
APL. Each edge rep-

resents a network link. The infrastructure graph is connected, that is for an infrastructure
with more than one physical node/appliance, ∀v ∈ Vinfra, deg(v) 6= 0.

In order to run an application, it has to be deployed on the infrastructure according
to a placement [42] that maps Gapp to Ginfra. Figure 4.4 illustrates the placement and
deployment of an application onto an infrastructure.

The infrastructure is composed of two physical nodes, two appliances, and three network
links. The physical nodes pn1 and pn2 host and provide the execution resources to the fog
nodes fgn1 and fgn2, respectively. The network link nl12 provide the transmission medium
between the two physical nodes. It provides the resources for the implementation of the
bindings between the remote software elements. nla21 is a wireless network link between
pn2 and appl1 whereas nla22 is a cabled network link between pn2 and appl2. These two
network links, nla21 and nla22, allow the interactions between the software element se3 and
the appliances appl1 and appl2, respectively.

4.5. Failure Model 65

gs1 gs2

se1

se2

se3
fga1

fga2

fgn1

fgn2

appl1
appl2

BM_se3

BM_se2

BM_se1

BM_appl1 BM_appl2

pn:	physical	node
appl:	appliance
nl:	network	link
fgn:	fog	node
se:	software	element
fga:	fog	agent
BM:	behavioural	model
gs:	geographical	space

pn1 pn2
nla21 nla22

nl12

Figure 4.4: Mapping of the Application on the Infrastructure

4.5 Failure Model

The crash failure model is considered at the application and infrastructure levels. A crash
failure occurs when an entity which was executing its correct behaviour deviates from its
expected behaviour by halting unexpectedly.

At the application level, when a software element fails, it halts and stops its behaviour.
It does not send or receive any messages and does not execute any further internal com-
putations. A fog node fails when it can no longer give access to the underlying physical
resources. The failure of a fog node induces the failure of all the hosted software elements
since the local physical resources are no longer exploitable. A logical binding fails when
the two entities connected by the binding can no longer interact via this binding because
it can no longer transmit any messages or events.

Infrastructure failures affect appliances, physical nodes, and network links. When an ap-
pliance fails, it stops executing its behaviour. A physical node fails when it can no longer
provide its resources to a fog node and will thus induce the failure of the hosted fog node
and of its software elements. A network link fails when it can no longer transmit data.
The failure of a network link can disconnect a physical node or an appliance from the
infrastructure. In this case the physical node or appliance is unreachable and is therefore
considered as failed. We, however, assume that failures do not create a network partition
which results in a decomposition of the infrastructure or application graph in sub-graphs.

Figure 4.5 shows the causality between infrastructure and applicative failures: the failure

66 Chapter 4. Fog-IoT Model

of a network link induces the failure of the binding(s) implemented over that network link.
The failure of a physical node results in the failure of the hosted fog node and software
element(s).

1 1..*
Network	Link

1
Physical	Node

Binding	

1..*
Fog	Node Hosted	Software

Elements

Infrastructure	Failures Applicative	Failures

1 1

1
0..*

1

0..* Appliance

Figure 4.5: Causality Between Failures

The proposed failure model is motivated by real case of failures that can be observed in the
Fog-IoT ecosystem. A physical node can fail because of a power failure (e.g., temporary
outage, accidental unplugging) or the overheating/malfunction of the hardware. The failure
of an appliance can occur due to hardware problems because sensors and actuators are
placed in the PW and are therefore subjected to wear out caused by the PW environmental
conditions. Appliances can also fail due to power failure because of a temporary outage,
an accidental unplugging, or a battery drain. Moreover, infrastructure entities may be
connected via wireless network links which are volatile. Infrastructure entities can, thus,
temporarily lose synchronisation. Software elements can crash due to a lack of resources
for their execution, unhandled exceptions, design/development errors, or poor memory
management.

4.6 Running Example

A Fog-IoT application based on the model defined above is presented in this section.
Figure 4.6 depicts an IoT application placed and deployed on a target Fog infrastructure
in a smart home context. This application is a simplified version of the smart home testbed
presented in Chapter 10 which automates the lights and detects intrusion in the house.

The smart home is composed of three geographical spaces where the appliances are located:
the bedroom, the living room, and the porch.

The infrastructure is composed of three physical nodes on which fog nodes are hosted:
pn1(fgn1), pn2(fgn2) and pn3(fgn3). The physical nodes are connected to each other
through a cabled network link. pn1 is connected to the Hue Lamp and Tap device via a
Zigbee network link. pn2 is connected to the Wemo Motion Sensor and Awox Striimlight
Lamp/Audio via a Wi-Fi network link.

4.6. Running Example 67

HueActuate

HueSense AwoxActuate

Orchestrator

pn1(fgn1)

Hue	Lamp

Hue	Tap
Awox	Striimlight
Lamp/Audio

pn2(fgn2)

pn3(fgn3)

bedroom porch

living	room

fogAgent3

fogAgent1 fogAgent2

WemotionSense

Wemo	
Motion	Sensor

Figure 4.6: Running Fog-IoT Application

Each fog node hosts software element(s) and a fog agent. Each appliance is connected to a
corresponding software element which retrieves events from the appliance concerning the
geographical space in which it is located or pushes events to the appliance to perform ac-
tions on its geographical space. The software element Orchestrator determines the actions
that should be triggered based on the sensed and actuated events. For instance, when one
of the buttons of the Hue Tap device is pressed, the event is retrieved by the HueSense
and forwarded to the Orchestrator. Depending on the button pressed and the number of
times it is pressed, the Orchestrator determines the colour/intensity of the lamp in the
bedroom or if it should be turned off. It then sends an event to the HueActuate to trigger
the chosen action on the Hue Lamp. The Wemo Motion Sensor senses motion in the porch.
If motion is sensed after bedtime, the integrated speaker in the awox device is triggered by
the Orchestrator to warn the house tenants.

Figure 4.7 depicts the EBM models of the appliance Wemo Motion Sensor and of the soft-
ware element WemotionSense. When a motion is detected, an event is sent by the motion
sensor and the variable motion that characterises its state takes the value started. The
variable motion is set to stopped when it detects that the motion has stopped. The Wemo-
tionSense retrieves the events from the motion sensor. It sets the variable motionStatus
to started or stopped with respect to the event reported by the motion sensor. It then
sends the corresponding event to the Orchestrator and updates the value of its lastStatus
as well as the value of the timestamp given by lastUpdated.

Figure 4.8 illustrates the DBM of the Orchestrator. This software element is considered
to be a black-box. Thus, the incoming and outgoing events are known (i.e., the events
received/sent from/to the other software elements) whereas its set of states and the way

68 Chapter 4. Fog-IoT Model

(a)	EBM	of	Wemo	Motion	Sensor (b)	EBM	of		WemotionSense

MotionEvent?m:
m	∈	{	started,	stopped}
motionStatus	:=	m

motion:	null motionStatus:	m

ToOrc!mStatus:
mStatus	∈	{	started,stopped}

lastStaus	:=	mStatus
lastUpdated	:=	curTime

MotionEvent?m:
m	∈	{	started,	stopped}
motionStatus	:=	m

	

		lastStatus:	mStatus
lastUpdated:	curTimemotion:	stopped motion:	started

MotionEvent!started:
motion	:=	started

MotionEvent!stopped:
motion	:=	stopped

Figure 4.7: EBM Behavioural Models

its states change with respect to these events are not known. It is thus represented by a
macro-state.

motionEvent?mStatus:	mStatus	∈	{	started,stopped},
buttonPressed?b:	b	∈	{b1,b2,b3,b4},
actuateHue!status,	colour,	intensity:
					status	∈	{on,	off},	colour	∈	{white,	yellow,	purple},	1	≤	intensity	≤	5,	
actuateAwox!status,	colour,	audio:
					status	∈	{on,	off},	colour	∈	{white,	yellow,	purple},	audio	∈	{doorbell,	alarm}

DBM	of		Orchestrator

Figure 4.8: DBM Behavioural Model

4.7 Summary

This chapter has defined a model of the Fog-IoT ecosystem which describes the infrastruc-
ture, the application and its behaviour as well as the relation between the application and
the physical world. This model is used by our failure management approach in order to
implement the different mechanisms for managing the infrastructure and the application
with respect to their characteristics. A failure model motivated by failures that can be
observed in the Fog-IoT ecosystem is proposed. Finally, a running example of an IoT
application deployed on a Fog infrastructure is presented.

Chapter 5

Resilience Approach Overview

Contents
5.1 Application Lifecycle . 70

5.2 Infrastructure Lifecycle . 71

5.3 Autonomic Failure Management 71

5.4 Failure Management Architecture 74

5.4.1 Local Failure Managers . 75

5.4.2 Global Failure Managers . 78

5.5 Summary . 79

The lifecycle of the application and of the infrastructure is presented in this chapter. It
describes the different phases of the application and infrastructure. When the infrastruc-
ture is in a running phase, it provides the execution resources to the application. The
infrastructure is continuously monitored so that the status of its lifecycle can be updated
when a failure occurs. When the application is in a running phase, it executes its nominal
behaviour. During its running phase two types of information are retrieved. First, the
application is monitored to retrieve information about its lifecycle status. This allows the
detection of failures. Second, information about the state of the application is retrieved.
This consists in saving the variables and corresponding values characterising the state of
the application as well as the transitions executed, according to the behavioural model of
the application. When an entity of the application fails, failure notifications are propa-
gated to entities impacted by the failure. The application is in a degraded mode where
only a partial service is provided. When the failed entity recovers, then the application
becomes fully operational again. This chapter presents the different steps (i.e., state sav-
ing, monitoring, failure notifications, and recovery) involved in our approach with respect
to the lifecycle of the application. An architecture composed of a set of failure managers
to realise these different steps and to provide autonomic failure management is proposed.

69

70 Chapter 5. Resilience Approach Overview

5.1 Application Lifecycle

The lifecycle of the application [67] includes all the phases 1 for building (design, devel-
opment, testing) and executing an application. We focus in here on the execution phases
which include initialisation, run, reconfiguration, and failures until the application is ter-
minated.

terminated

failed

running

degraded

initialise

terminate

recover

resume

fail

reinitialise

recover

degrade

reinit-
ialised

terminate

Figure 5.1: Lifecycle of an Applicative Entity

Figure 5.1 illustrates the different phases and transitions of the lifecyle of software elements
and appliances. The labels, except fail, represent an action or a set of actions performed
on a managed application.

The initialise transition includes all the initial lifecycle phases such as placement, deploy-
ment, download of all the necessary resources as well as setting up and configuring the
runtime (e.g., downloading and installing libraries and packages, configuring the services
provided by the operating system) until the applicative entity is in the running phase.
An applicative entity executes its nominal behaviour when it is in the running phase. In
this phase, it can emit messages, compute received messages, and execute internal com-
putations. The initialisation phase is supervised and ensured by the Application Lifecycle
Manager (ALM) which has a knowledge of the rules and constraints to be able to run an
applicative entity such as placement location, resources needed, dependencies that should
be satisfied, and runtime configuration.

When an applicative entity is in a running phase:

• It can move to the terminated phase where its behaviour is deliberately stopped
and it is permanently excluded from the application. An applicative entity can
be terminated upon the decision of the ALM because it has reach the end of its

1We use the term phase instead of state to differentiate between the lifecycle state and the state of
execution.

5.2. Infrastructure Lifecycle 71

execution. An entity can be terminated for failure management purposes, for example
if a dependent entity has failed and cannot be repaired.

• It can move to a degraded phase for failure management purposes. In this phase, the
entity temporarily provides none or only part of its behaviour. This is particularly
important in order to notify the dependent entities that a failure has occurred. It
allows a temporary pause to limit the failure from cascading to failure-free running
entities. From this phase, it can move back into the running phase to resume its
nominal behaviour or terminate.

• It can fail where its behaviour is unexpectedly stopped. When this happens, the
recover transition aims at repairing the failed entity. The entity moves in a degraded
phase after the recovery procedure. Its behaviour is only resumed when all its de-
pendent entities are in their running phase. When an entity fails, it can also be
initialised again (i.e., reinitialised) before recovery. This may happen when a new
placement is required or the runtime needs to be configured again.

5.2 Infrastructure Lifecycle

The lifecycle of the infrastructure describes the lifecycle phases of physical nodes. It is
simpler than the lifecycle of the application. These phases are illustrated in Figure 5.2.

failed

initialise fail

running

recover

Figure 5.2: Lifecycle of a Physical Node

A physical node has two phases in its lifecycle: running or failed. In the running phase, the
physical node provides its available resources for the execution of the application. When
it fails, these resources are no longer accessible. It can recover, for example by rebooting,
so that it moves back in its running phase. It is worth noting that the lifecycle of a fog
node is tied to that of its associated physical node.

The next section gives an overview of the steps in managing failures.

5.3 Autonomic Failure Management

This section gives a global overview of the different steps involved in the proposed approach
and how autonomic failure management is achieved.

72 Chapter 5. Resilience Approach Overview

The proposed failure management approach consists of four functional steps which are
triggered according to the lifecycle phases of the applicative and infrastructure entities:

(i) State saving : This step aims at saving the state of the application in an uncoordinated
way through techniques of checkpoint, message logging, and function call logging.
The current state of each applicative entity is continuously saved and stored during
the running phase of its lifecycle. A state of the physical world is also captured and
is given by sensors and actuators.

(ii) Monitoring : This step aims at observing and reporting information on infrastructure
and applicative entities relative to the different phases of their lifecycle. Monitoring
allows the detection of failures of both infrastructure and applicative entities. It also
gives information on the recovery of these entities.

(iii) Failure notification: When a failure is detected and confirmed, the state saving step
of the failed entity stops. Failure notifications are propagated to notify the failure to
dependent entities. Upon the reception of failure notifications, the dependent entities
move to the degraded phase of their lifecycle to adapt their behaviour with respect
to the failed entity.

(iv) Recovery : This is the final step which aims at repairing and restoring the state of
the application. It is based on reconfiguration and state restoration. Reconfiguration
aims at performing operations on the architecture of the application so as to change
or re-establish its structure with respect to the failed entity. Reconfiguration is
followed by state restoration where the pre-failure state of the application is restored
by retrieving the data stored during its state saving step. When recovery is achieved,
the dependent entities are notified through the propagation of recovery notifications
so that they can resume their nominal behaviour.

Figure 5.3 illustrates how these failure management steps are performed on an applica-
tive entity and how it affects the application over time. During the running phase of an
applicative entity, two failure management steps are performed: state saving and monitor-
ing. In this phase, the application is fully operational. When the applicative entity fails
at time t1, the monitoring step detects that failure. The state saving step of the entity
stops. When a failure occurs, the unavailability of the service provided by the failed entity
impacts the services provided by the application. Thus, the application is no longer fully
operational. The subsequent steps, failure notifications and recovery are engaged. Failure
notifications are propagated to the part of the application impacted by that failure. These
entities move into a degraded mode of their lifecycle so that a partial service is provided.
The recovery step, composed of a reconfiguration and state restoration of the application,
is then performed in order to recover the functions of the application. The monitoring step
detects that the recovery step is completed (i.e., at t2). The application is fully operational
again and the state saving step of the recovered entity can then be resumed.

A more detailed presentation of each step is given in the next chapters. These four fail-
ure management steps are complex and should be completely automated, that is, they

5.3. Autonomic Failure Management 73

state saving state saving

failure notification
Recoveryfailure

management
steps

application
status

time

application is
fully operational

application is
fully operational

application is in a degraded mode
(partial service provided)

t1 t2

m o n i t o r i n g

Figure 5.3: Failure Management Steps

should not require any manual intervention in order to eliminate any human errors and
increase efficiency in terms of time and cost. In order to do so, the failure management
approach is based on autonomic computing [80, 16] which advocates for self-healing [91] of
applications. In this case, information about the application is continuously retrieved to
automatically detect, diagnose, and repair problems so that humans are no longer relevant
to take decisions.

Autonomic computing can be modelled by the MAPE-K autonomic control loop that de-
fines a composition of Monitor-Analyse-Plan-Execute phases and a Knowledge Base which
represents the data shared by all the phases. This is illustrated in Figure 5.4.

• Monitor collects, aggregates and reports data about the managed entities of the
application through probes. In the context of our autonomic failure management
approach, this corresponds to the provision of mechanisms that retrieves information
on the application during the state saving and monitoring steps. The state saving
step saves and stores data about the state of the different entities involved in the
application. The monitoring step reports data about the lifecycle phases of these
entities. These data are then exposed to the Analyse phase.

• Analyse is in charge of interpreting the data exposed by the previous phase. For
instance, it should find out if there are any issues in the managed application by
analysing the data reported. This phase is especially used to infer the occurrences of
failures as well as to deduce the recovery of an entity.

• Plan defines the actions required to achieve a certain goal according to the defined
strategies and policies. In this case, it defines the actions in terms of reconfiguration
and state restoration that should be implemented based on the failure or recovery
reported.

• Execute receives the actions decided by the Plan phase. These actions are performed
by effectors that can act on the managed application in order to implement the

74 Chapter 5. Resilience Approach Overview

Monitor

Analyse Plan

Execute

Probe
Probe
Probe

EffectorEffectorEffectorManaged
Application

Knowledge	
Base

Probe	data
state	data	(checkpoint,
messages,	events,	...)
changes	in	lifecycle	phases

Repair	procedure
reconfiguration
state	restoration	

How	to	recover	
the	application	?

What	are	the	relevant
information	that	can
be	interpreted	?

Figure 5.4: MAPE-K Autonomic Loop for Failure Management

necessary reconfiguration and state restoration.

These steps of the autonomic control loop are executed continuously during which the
Knowledge Base is enriched with information on the different steps that are executed.
In our approach, the probes and effectors correspond to local failure managers that are
deployed on the fog nodes of the application. Global failure managers executes the Monitor-
Analyse-Plan-Execute phases. These failure managers and their roles are described in the
next section.

5.4 Failure Management Architecture

This section proposes an architecture of the failure managers (FMs) and an overview of
their roles.

The FMs are placed and interact with each other as illustrated in Figure 5.5. They are
composed of a set of local and global managers. The local managers are composed of Wrap-
pers and Fog Agents which are deployed on fog nodes. They correspond to the probes and
effectors that retrieve information and execute actions on the managed application. The
wrappers act as membranes [44]. A wrapper intercepts incoming/outgoing operations of
software elements and appliances, is able to control their behaviour, and perform recon-
figuration operations on them. Fog agents set up wrappers on the local fog nodes and
monitor neighbouring fog nodes. The Global Decision Manager (GDM) is a global man-
ager which analyses the information provided by the probes (i.e., wrappers and fog agents)
when failures occur and plans the recovery actions to perform. The failure management
approach also relies on the following global managers: the ALM for lifecycle management,

5.4. Failure Management Architecture 75

a Stable Storage (SSG) to store state data, and Thing’in which is an object registry.

fo
g	
no
de

software	element
wrapper

fog	agent

GDMALM

appliance

fo
g	
no
de software	element

wrapper

software	element
wrapper

fog	agent

SSG Thing'in

appliance appliance

ALM:	Application	Lifecycle	Manager;	GDM:	Global	Decision	Manager;
SSG:	Stable	Storage

Global		Managers

Figure 5.5: Failure Management Architecture

In the following, Section 5.4.1 and Section 5.4.2 detail the functions and roles of the local
and global FMs, respectively.

5.4.1 Local Failure Managers

The local FMs are deployed on each fog node. They have only a local or neighbouring view
of the entities to which they are associated.

a . Wrappers

A wrapper has multiple roles involving the four failure management steps described in
Section 5.3. In order to ensure these roles, a wrapper acts as a membrane [44] to software
elements and appliances, that is, it encapsulates software elements and appliances. Each
software element or appliance associated to a wrapper is referred to as an encapsulation.
A wrapper has the role of a probe to its encapsulations. It saves their states and monitors
them for failure detection. The wrapper has also the role an effector to its encapsulations.
It propagates failure notifications, control their behaviours (e.g., pause, terminate), and
perform recovery actions on them.

Definition 14 (Wrapper) A wrapper is defined by the tuple wrp =
(id, fgn, se, APL,Dep,Req, Policy) where id is the identifier of the wrapper; fgn
is the fog node on which the wrapper is deployed; se is the software element en-
capsulated by the wrapper; APL is a finite set of encapsulated appliances such that
∀apl ∈ APL, apl ∈ Neigh(se); Dep defines the set of dependencies of each encapsulation;
Req defines a set of entities which depends on each encapsulation of the wrapper;

76 Chapter 5. Resilience Approach Overview

Policy describes the failure management strategies for state saving, monitoring, failure
notification and recovery of each encapsulation in {se}

⋃
APL.

The wrapper associated to a software and/or appliance(s) can be deployed locally on the
same fog node or remotely. The local or remote deployment of the wrapper is determined
by the nature of the encapsulation and the local resources available. In the case of software
elements, the wrapper is deployed locally on the same fog node if the additional resources
consumed by the wrapper does not exceed the available unconsumed resources by the
application. Otherwise, the wrapper has to be deployed remotely on another fog node to
avoid the consumption of resources dedicated to the application. A wrapper cannot be
deployed on an appliance because it has no accessible hosting capabilities. Therefore, the
wrapper associated to an appliance is always deployed remotely. In this case, the wrapper
deployed for a software element is also associated to the set of neighbouring appliances
if there are any. When multiple wrappers encapsulate an appliance, one of the wrappers
is designated as primary. The primary wrapper of an appliance is the one chosen by the
GDM for performing the reconfiguration and state restoration procedures when required.
Table 5.1 recaps the deployment of the wrapper and its encapsulations with respect to the
discussed constraints.

Entity Excess resources available locally? Wrapper deployment

Appliance Remote

Software element
Yes Local
No Remote

Table 5.1: Association and Deployment of Wrappers

As a consequence of the rules for association and deployment of wrappers, each wrapper has
a one-to-one association with respect to software elements, that is, a wrapper encapsulates
exactly one software element. The association of wrappers to appliances can be many-to-
many since multiple software elements can interact with an appliance. Thus, the wrapper
of each software element that interact with an appliance also encapsulates the appliance.
Figure 5.6 depicts this relation between the wrapper and its encapsulations. A wrapper
encapsulates one software element and an appliance is encapsulated by one or multiple
wrappers depending on the number of neighbouring software element(s) of the appliance.

The roles of the wrapper with respect to its encapsulations are:

• State saving: The wrapper defines and applies the strategies for saving and stor-
ing the state of its encapsulations. These strategies are described by the means of
state saving policies which are discussed in Chapter 6. To this end, it intercepts
incoming/outgoing operations as well as piggybacks additional information on these
operations as part of its state saving role. It also requests and stores their checkpoints
according to the defined strategy.

5.4. Failure Management Architecture 77

Wrapper

Software
element

Appliance

encapsulates

encapsulates

1..*

1

1

0..*

Figure 5.6: Entities Encapsulated by a Wrapper

• Monitoring: The wrapper defines and applies the monitoring strategy for failure and
recovery detection of its encapsulations.

• Failure notification: The wrapper notifies the GDM of the failure of its encapsula-
tions. It also receives failure notifications concerning failures that impact the execu-
tion of its encapsulations. When it receives such notifications, it moves the impacted
encapsulations into a degraded phase. For instance, this can take the form of filtering
of events and restrictions to the access of the encapsulation’s APIs so it can operate
in a degraded mode. The wrapper also propagates the failure notifications to the
neighbours which have dependencies on the impacted encapsulations.

• Recovery: The wrapper defines and applies the local rules for recovery of its en-
capsulations. Recovery policies describe these rules and are detailed in Chapter 8.
The wrapper reconfigures (architectural and placement) its encapsulations during
the recovery procedure. It also retrieves the saved data for restoring the state of its
encapsulations.

The details of the different strategies for state saving, monitoring, failure notification, and
recovery are further discussed in Chapters 6, 7, and 8, respectively.

b . Fog Agents

Beside the lifecycle initialisation phase as discussed in Section 5.1, the fog agent has two
more roles in failure management.

(i) Monitoring: The fog agent is also responsible for the monitoring step of failure man-
agement. A fog agent monitors each of its neighbouring physical nodes for failure
detection by implementing a heartbeat mechanism. It detects the recovery of a phys-
ical node using the same mechanism.

(ii) Wrapper management: The fog agent manages local wrappers, that is, it sets up the
wrappers and assigns the software elements and appliances to be encapsulated by the
wrappers.

The local failure managers, therefore, report information about the application to the
global failure managers, and subsequently receive instructions to perform operations on

78 Chapter 5. Resilience Approach Overview

the managed application. The global managers also provide the necessary information in
order to perform these operations correctly.

5.4.2 Global Failure Managers

The global FMs have a global view of a subset of applicative and infrastructure entities,
and subsequently participate in their failure management. This subset of entities is gen-
erally grouped with respect to geographical, functional, applicative, performance or other
constraints. In the following, it is assumed that the global FMs are involved in a single
application. Each global FM is subsequently treated as a single functional unit.

The most important global FM is the GDM which is a decision making manager which
determines the actions to perform when a failure occurs. To this end, the GDM relies on
the following global managers: the Stable Storage (SSG), Thing’in as well as the ALM.

a . Stable Storage (SSG)

The role of the SSG is to provide a reliable storage service that is unaffected by applicative
failures so that wrappers can store and retrieve state data of their encapsulations. During
the state saving step, the wrapper stores the state data on the SSG. When the encapsulation
fails, it retrieves these data to restore a pre-failure state of the entity. The implementation
of a stable storage may take various forms [95] such as a replicated file system on fog nodes
or a RAID storage system [57]. It can also be based on data placement strategies [119] which
exploit the Telco’s Fog infrastructure. The type of implementation of the stable storage
does not affect the proposed failure management approach. In this work, we assume a
reliable storage medium on the Telco’s Fog infrastructure which is dedicated to storage of
state data.

b . The Object Registry Thing’in

Thing’in [14, 15] is a registry of the entities involved in an IoT application. It is imple-
mented as a graph database. It defines ontologies that describe the properties of these enti-
ties as well as their relationships with each other and with the physical world. Thing’in also
integrates a building information model (BIM) [155] which gives a virtual representation
of geographical spaces (e.g., a home or building) with semantic and topologic information
such as appliances’ location and their scope of action on a geographical space. Thing’in
exposes a set of APIs for querying the database. It can be queried for appliances having
equivalent features to those of another appliance in a given geographical location. For
instance, it can be queried for sensors capable of detecting the same changes in the envi-
ronment (e.g., temperature, motion) and actuators capable of acting on the environment
in similar ways (e.g., lamps, heaters). Thing’in is therefore particularly useful to find the
replacement of a failed appliance.

c . Global Decision Manager (GDM)

5.5. Summary 79

The GDM is a decision making entity. It receives failure notification messages from fog
agents and wrappers. It keeps a record of the failed/recovered entities and updates Thing’in
accordingly. Upon the reception of a failure suspicion notification, the GDM decides when
to consider the suspected entity as failed. When a failure is confirmed, it retrieves the
dependent entities from the ALM and propagates failure notifications to them. It also
decides the strategy and steps for recovery. For instance, this usually involves deciding if
an entity is considered as failed based on the failure suspicion messages received, sending
requests to Thing’in to find replacement appliances, and sending requests to the ALM to
find a new placement for software elements. This is further discussed in Chapter 8.

5.5 Summary

This chapter presented a global overview of the autonomic failure management approach.
The lifecycle of the application and of the infrastructure are described. The approach
is composed of four functional steps: state saving, monitoring, failure notification and
recovery. These steps are triggered according to the lifecycle of the application.

These different steps are ensured by local and global FMs. The local FMs are composed
of wrappers and fog agents. A wrappers is involved in the four failure management steps
concerning its encapsulations. The fog agent is involved in application lifecycle manage-
ment, monitoring of neighbouring physical node, and the management of local wrappers.
The global FMs are composed of the ALM which gives instructions to the fog agent for
lifecycle management, a SSG where state data are stored, an object registry that keeps a
record of entities involved in an application, and a GDM which takes decisions to recover
from failures.

80 Chapter 5. Resilience Approach Overview

Chapter 6

State Saving Approach

Contents
6.1 Motivation . 82
6.2 State Saving Policy . 83

6.2.1 State Saving Approach . 86
6.2.2 Frequency of Checkpoint . 88
6.2.3 Optimistic and Pessimistic Logging Strategies 89
6.2.4 Uncoordinated Checkpoint Combined with Logging 90
6.2.5 Validity Time . 92

6.3 Summary . 92

The objective of the state saving step of the failure management approach is to save infor-
mation on the state of the running application. State saving is done in an uncoordinated
way. The state data are given by the behavioural models of the entities participating in the
application. The state data are composed of the variables and corresponding values charac-
terising the state of each applicative entity, as well as the transitions it executes. The state
data are important in order to restore the state of the application so that a consistent be-
haviour can be maintained after recovery. The Fog-IoT ecosystem is highly heterogeneous
in terms of communication model, functional constraints, resource capacities (e.g., storage,
processing). In order to cope with the heterogeneous nature of the Fog-IoT ecosystem, the
state saving approach cannot rely on a sole technique. For instance, the Fog-IoT imple-
ments multiple communication model based on messaging (e.g., MQTT, message buffers)
and function calls (REST and SOAP APIs). In this case, state saving should implement
techniques based on both message logging and function call logging. This chapter discusses
the state saving approach, the chosen techniques for saving the state of an application, and
how they are implemented in order cope with the specificities of the Fog-IoT ecosystem.

In the following, Section 6.1 motivates the state saving step of the failure management
approach. Section 6.2 defines the state saving policies which detail the techniques and
strategies for saving the state of the application. Section 6.3 concludes this chapter.

81

82 Chapter 6. State Saving Approach

6.1 Motivation

An application executes its behaviour during the running phase of its lifecycle. Thus, during
this phase, the state of the entities participating in the application changes upon reception
and emission of events, as well as when carrying out internal computations. As discussed
in Section 2.3.2, when a failure occurs, the failed entity loses the data which characterise
its current state. These data include the variables and their corresponding values in its
memory. They also include the events processed by the entity which determine its current
behaviour. This implies that if the failed entity is merely replaced or restarted/rebooted,
it restarts its behaviour in its initial state. In this state, the entity processes events in a
different way than in its pre-failure state. Its behaviour is thus inconsistent with the rest
of the application.

Figure 6.1 illustrates an example of inconsistent behaviour in a patient’s morphine injection
application. The application consists of a control button and a subcutaneous morphine
injection device connected to the patient. When the patient presses the control button, a
message minjectdose is sent to the injection device and a morphine dose is injected in the
patient’s bloodstream. Let us consider that a maximum of three doses can be administered
per day for the safety of the patient. To this end, the injection device keeps a record of
the number of doses administered and does not administer more than three doses even if
it receives more messages from the control button. However, if the injection device fails
and is rebooted (or is replaced with a new one), the device loses its current state. The
number of already injected doses of morphine becomes unknown. The replaced/rebooted
injection device executes its behaviour in its initial state in which the value of the variable
dose = 0. In this case, the injection device is in an inconsistent state. When the patient
presses the control button again, extra doses of morphine are injected. When this happens,
the PW becomes unsafe since it can be dangerous to the patient. Thus, cyber-physical
consistency is violated, that is, the application has an inconsistent behaviour with respect
to the physical world.

Control
Button

Morphine
Injection
Device

dose	=	1 dose	=	2 dose	=	3

dose	=	3
max	dose
reached

device
reboot

dose	=	0 dose	=	1dose	=	0

extra	dose
injected

inject
morphine
dose

inject
morphine
dose

inject
morphine
dose

minjectdose minjectdose minjectdose
minjectdose minjectdose

Figure 6.1: An Example of Inconsistent Behaviour

State saving aims at saving data from which a consistent pre-failure state of an entity can
be restored. The execution of the entity is then resumed in this state so that it maintains

6.2. State Saving Policy 83

a correct behaviour. In the example illustrated in Figure 6.1, these data correspond to the
the value of the variable dose of the injection device as well as the messages sent by the
control button device and received by the injection device. After reboot, these messages
can be used to deduce the number of morphine doses that have already been administered
to the patient. Thus, the variable dose can be set accordingly so that the injection device
does not have an inconsistent behaviour and the application is in a consistent state with
respect to the PW.

The state of an entity is characterised by the data in its volatile memory as well as the data
stored on the local storage (e.g., libraries, packages, configuration files). The identification
of the type of entity that has failed is important since it determines which data are lost and
should therefore be saved during failure-free execution. The failure of a software element
implies the loss of the data in its volatile memory whereas its stored data on the local
storage of the physical node may still be available. However, when a physical node fails, in
addition to the data in their volatile memory, the locally stored data by the hosted software
elements are also lost. This is because the local storage of the physical node is no longer
available. When an appliance fails, the data in its volatile memory and local storage are
lost.

Therefore, the state saving phase should save the data which characterise the current state
of the application. These data are then used to restore the state of the application when a
failure occurs. The state restoration procedure avoids the restart of the application in its
initial state in case of failures and maintains a consistent behaviour of the application.

6.2 State Saving Policy

The state saving phase of software elements and appliances is performed by wrappers. A
wrapper saves the data from which the current state of its encapsulations can be resumed
after a failure. These data are referred to as the state data of the encapsulation and is
composed of checkpoints, message logs, and function call logs.

Definition 15 (State Saving) State saving consists in saving a set of data during the
running phase of an application from which its current state can be resumed after a failure.

The composition of the state data saved of an applicative entity depends on the state saving
technique used. The state saving step is based on multiple techniques including checkpoint,
message logging, and function call logging. This is because the Fog-IoT ecosystem is highly
heterogeneous in nature and imposing one uniform technique for state saving is not feasible.
A checkpoint consists in saving and storing the set of couples of variables and corresponding
values, s =

⋃
(vari, valuei) that characterise the state of an encapsulation at a given time

in its execution. The data to save in a checkpoint is thus given by the corresponding EBM
model of the encapsulation. Message logging (resp. function call logging) consists in saving
the transitions that are executed by the entity upon emission and reception of events (resp.
execution of internal computations and remote function calls). The transitions are given

84 Chapter 6. State Saving Approach

by the EBM or DBM model of an encapsulation.

We propose state saving policy in order to choose a state saving strategy which is suitable
and adapted to the properties of an entity. A state saving policy describes all the details
associated to the state saving step of an applicative entity. To this end, a wrapper assigns
a state saving policy for each of its encapsulations. The state saving policy describes a
state saving strategy that is suited to the encapsulation with respect to its properties and
that of its runtime environment. In order to do so, the wrapper embeds a description file of
the state saving policy for each of its encapsulation which describes the locally stored data
to save on the stable storage, the state saving technique, the frequency of checkpoints, the
storage location of the state data, and the additional data to include when saving events.
This is illustrated in Figure 6.2. A description file is generated for each encapsulation of
a wrapper. Figure 6.2 gives an overview of the different parameters of the state saving
policy before describing them in more details in the following sections.

EncapsulationId gives the identifier of a software element or appliance encapsulated by
the wrapper. The state saving policy defined in this description file applies for the identified
encapsulation.

For appliances, LocalData indicates the data that are stored on the local storage as
well as the filesystem path to access these data. It corresponds to configuration files of

EncapsulationId:	<id>																									/*id	of	encapsulation*/

LocalData:		{(<name>,	<path>)}													/*set	of	couples	(name,	path)*/

StateSavingApproach:
													Technique:	Checkpoint	|	MsgLog	|	FctCallLog	
													ER:		Reception	⊕	Emission&Reception	
													OP:		Optimistic	⊕	Pessimistic
																					
CkptParams:	/*a	weight	of	0-2	is	associated	to	each	event	to	determine	the	ckpt	frequency*/	
										Weight:	{	(<evtType>,	(0	⊕	1	⊕	2))}
										Freq:	(Tckpt,	<ckptInterval>)	|	(<Nckpt>)
										Storage:	(stableStorage	⊕	stableStorage&Local)
															
Storage:
								Local:	<path>			/*local	filesystem	path	to	store	state	data*/
								StableStorage:	<path>			/*access	to	stable	storage*/

VT:	{(<evtType>,	<vtValue>)}	/*a	validity	time	is	associated	to	each	event*/

⊕	:	exclusive	or					|	:	inclusive	or				MsgLog:	message	logging			FctCallLog:	function	call	logging

Figure 6.2: Description of the State Saving Policy of an Encapsulation

6.2. State Saving Policy 85

appliances. For instance, for a temperature sensor it can be the configured frequency of
sending temperature data. It can also be local configuration files such as information on
passwords or ports so that the appliance can connect to a service or a network. For software
elements, localData indicates the files that are needed for the initialisation and running
phase of the software element, such as binaries, libraries and scripts. These are needed if
the software element has to be recovered on a different fog node.

StateSavingApproach details how the state of the encapsulation is saved. Technique
specifies the state saving technique adopted based on checkpoint, message logging, and
function call logging. The chosen technique for an entity can be one of these techniques
or a combination of multiple techniques. ER specifies whether logging is done at reception
only or both emission and reception. OP indicates whether an optimistic or pessimistic
approach is adopted for logging. Sections 6.2.3 and 6.2.4 detail the different techniques
and strategies for state saving.

The information defined in CkptParams are used to compute the frequency of check-
points. A maximum time elapsed between two checkpoints is defined by ckptInterval.
The checkpoint frequency is also based on the cost of processing events. To this end,
Weight gives information on the cost of processing an event (e.g., time to compute) by the
encapsulation. When the total cost exceeds Nckpt, a checkpoint is performed. A checkpoint
can be stored on the stable storage or both locally and on the stable storage. Section 6.2.2
describes in more details how the frequency of checkpoints are computed and how check-
points are stored.

Storage specifies the access to the local and stable storage. Local gives the local filesystem
path to temporarily store state data. StableStorage details how to access the stable storage.
For instance, state data can be pushed to the stable storage via REST API or by publishing
events on a communication bus. The choice for storing state data on the local or stable
storage depends on the state saving approach. This is further discussed in the following
subsections.

VT defines the validity time vtValue for each type of events evtType. It indicates the time
duration for which the event is valid and therefore should be used to compute a consistent
state of the application during recovery. Section 6.2.5 further describes the validity time
of events.

The state of an encapsulation is therefore saved and stored by the wrapper according
to its state saving policy. The parameter StateSavingApproach of the description file is
automatically assigned based on the characteristics of an encapsulation and of its runtime
environment as discussed in the following sections. The filesystem paths to access the local
storage as well as the access to the stable storage has to be input by the developer and/or
operator (DevOps) of the application. The Weights and VT of events have also to be
input by the DevOps of the application. Note that values for the weight (w = 1) and
VT (vtV alue = ∞) are automatically assigned by default. This avoids the DevOps to
manually report the values for each event. The Weights and VT can also be automatically

86 Chapter 6. State Saving Approach

inferred as discussed in the future work of this Thesis (see Chapter 11.2). The details of
the state saving policies and how they are chosen are further described in the following
sections.

6.2.1 State Saving Approach

The state saving approach is built upon three strategies: uncoordinated checkpoint, mes-
sage logging, and function call logging.

The wrapper performs uncoordinated checkpoint for encapsulations which are characterised
by an EBM. This is because the variables and their corresponding values to include in a
checkpoint are given by the EBM model. The checkpoint technique can further be coupled
with message logging and/or function call logging in order to save the operations that
are executed after a checkpoint. In this way, the current state of the application can be
restored based on the transitions executed after a checkpoint. An encapsulation which is
characterised by a DBM cannot rely on the checkpoint technique since the details of its set
of states are unknown. In this case, the state saving technique is based on message and/or
function call logging depending on the communication model implemented. Table 6.1
recaps the choice of the state saving techniques based on the type of behavioural model of
an entity.

Behavioural Model State Saving Technique based on

EBM Checkpoint and Logging

DBM Logging

Table 6.1: BM and State Saving Techniques

Message and function call logging can further be based on an optimistic or a pessimistic
approach. Logging can also take place at the reception or emission. Table 6.2 illustrates
how these different strategies are chosen with respect to the following three criteria: the
communication model, the properties of the local storage, and the type of the destination
entity.

a . Communication Model

The communication model implemented between two interacting entities can be based
on messaging (e.g., message buffers, message oriented middleware) or function calls (e.g.,
REST and SOAP APIs). The communication model thus determines whether the state
saving technique is based on message logging or function call logging. Function call logging
can also be used to save the internal computations executed by an encapsulation. An entity
can interact with multiple other entities and can thus implement both communication
models. In this case, the technique for saving its state is based on both message logging
and function call logging.

6.2. State Saving Policy 87

In order to log messages received, the wrapper intercepts incoming messages before deliv-
ering them to the encapsulation. Messages emitted are also intercepted before forwarding
them to the destination entity. Likewise, function calls are intercepted before calling the
original function. Function call logging can also be achieved at the caller or at the callee
(we refer to the former as emission and to the latter as reception, respectively). The in-
tercepted messages and function calls are saved at emission and/or at reception depending
on the type of destination entity.

b . Destination Entity

A message can be logged either by the emitting or by the receiving wrapper. The choice
of which wrapper saves the message or function call is done according to the nature of the
destination entity. If the destination is a software element, logging is done at the receiving
wrapper independently of whether an appliance or a software element has emitted the
event. However, the wrapper associated to an appliance is deployed on the neighbouring
fog node because of the lack of hosting capabilities on the appliance itself. In this case, it
means that the wrapper has to save the emitting events intended for an appliance because
logging cannot be done at the receiving end. Therefore, a wrapper that encapsulates only
a software element will save receiving events only. On the other hand, a wrapper that
encapsulates both a software element and an appliance has to log events that are received
for the software element and events that are emitted to the encapsulated appliance.

c . Local Storage Properties

In order to determine if the state data can be stored locally on the fog node, the nature

L
oc

al

S
to

ra
ge P

er
si

st
en

t
U

ns
ta

bl
e

Optimistic
Function Call Logging

at Reception

Optimistic
Message Logging

at Reception

Optimistic
Function Call Logging
at Emission & Reception

Optimistic
Message Logging at
Emission & Reception

Pessimistic
Function Call Logging

at Reception

Pessimistic
Function Call Logging
at Emission & Reception

Pessimistic
Message Log
at Reception

Pessimistic
Message Logging at
Emission & Reception

Software
Element

Appliance

Software
Element

Appliance

D
estin

ation

E
n

tity

Communication Model

Function Call Messaging

Table 6.2: State Saving Techniques

88 Chapter 6. State Saving Approach

of the local storage infrastructure is characterised as persistent or unstable. An unstable
local storage means that data stored locally can be lost or become inaccessible at any time
instant because of failures. Thus, state data cannot be stored locally, even temporarily,
because if a failure occurs, the state data can no longer be retrieved. Appliances have an
unstable storage and do not have additional disk storage capacities. This limitation implies
that their state data cannot be stored on the appliance itself. The storage of physical nodes
can be classified as unstable or persistent depending on the capacities and stability of the
device. A physical node has an unstable local storage if it cannot be rebooted after a failure
and the data stored locally become inaccessible. For instance, a physical node powered
by a battery cannot be automatically rebooted if it fails because of a battery drain. In
this case, the local storage of such a physical node is classified as unstable. A physical
node having a persistent storage implies that state data such as checkpoint and logs can
be stored locally. The logs can be grouped locally and later be flushed all at once on
the stable storage. This gives rise to the logging techniques based on an optimistic or a
pessimistic approach as described in Section 6.2.3. Therefore, optimistic logging is suitable
for a persistent local storage whereas pessimistic logging is done for encapsulations which
are deployed on an infrastructure entity which has an unstable local storage.

6.2.2 Frequency of Checkpoint

The wrapper defines the frequency at which an encapsulation is checkpointed. The fre-
quency of checkpoint is based on the execution time since the last checkpoint as well as
the number and types of events processed by the encapsulation.

A maximum time interval between two checkpoints is first set. It is denoted Tckpt. If Tckpt ≥
(Tcurrent−TlastCkpt), where Tcurrent is the current local timestamp of the encapsulation and
TlastCkpt is the timestamp of the last checkpoint performed, then the wrapper performs a
checkpoint of the encapsulation.

A checkpoint can be performed before the expiration of Tckpt based on the events that are
processed by the encapsulation. Nckpt denotes the maximum number of events processed
after which a checkpoint has to be performed. To this end, events are classified into three
weights w ∈ {0, 1, 2} according to how the event is processed by the encapsulation. An
event that does not affect the state of the encapsulation has a weight w = 0 and is therefore
not taken into account in the calculation of Nckpt. For instance, events that are received
by a stateless software element are assigned a weight w = 0. In this particular case, the
software element is never checkpointed. Events that are costly in terms of resources and
induce a long processing by the encapsulation are assigned a weight w = 2. For example, an
event that induces a hot patching (e.g., version update) of a software element is assigned a
weight w = 2. A checkpoint is immediately performed after the encapsulation has finished
processing the event so as to optimise the state restoration time. It is not processed again
during the recovery procedure. All other events are assigned, by default, a weight w = 1.
When the total weight of the processed events exceeds Nckpt, that is,

∑
wi ≥ Nckpt, a

checkpoint of the encapsulation is performed by the wrapper.

6.2. State Saving Policy 89

Algorithm 1 illustrates the computation of the checkpoint frequency. Upon reception of
an event (l.1), the wrapper saves the event according to the state saving policy and then
delivers the event to the corresponding encapsulation (l.2− l.3). If the weight of the event
is equal to two (l.4), the wrapper requests the checkpoint of the encapsulation and resets
the number of processed events Nevt (l.5 − l.6). The checkpoint request is processed by
the encapsulation after processing evt. If the weight of the event is equal to one (l.7), Nevt

is incremented by one (l.8). Since the default value of w is one, Nevt is also incremented
by one if the weight of the event is unknown (l.7). In this way, only particular events
having weights equal to zero or two may be defined. If the resulting Nevt after processing
an event is greater than or equal to the maximum total weights of events processed before
checkpoint (i.e., Nckpt), then the wrapper request the checkpoint of the encapsulation. Nevt

is subsequently reset (l.10 − l.11). Finally, if the weight of the event is zero, Nevt is not
incremented (l.12− l.13).

Algorithm 1 Frequency of Checkpoint based on Events Processed

1: Reception of event by wrapper: (encap, evt) . event evt to be delivered to encap

2: save(wrp.encap.policy, evt) . save evt according to the policy of encap

3: deliver(encap, evt) . delivery of evt to encap

4: if evt.weight == 2 then
5: sendCheckpointRequest(encap) . request checkpoint if weight is 2

6: Nevt ← 0 . reset Nevt

7: else if evt.weight == 1 || evt.weight == unknown then
8: encap.Nevt + + . increment Nevt if weight of evt is 1 or is unknown

9: if encap.Nevt ≥ encap.Nckpt then
10: sendCheckpointRequest(encap) . request checkpoint if Nevt ≥ Nckpt

11: Nevt ← 0

12: else if evt.weight == 0 then
13: continue

6.2.3 Optimistic and Pessimistic Logging Strategies

Optimistic and pessimistic logging are the two main strategies adopted for logging. The
choice between optimistic or pessimistic logging is done based on the properties of the local
storage as discussed in Section 6.2.1. Figure 6.3 depicts the difference between optimistic
and pessimistic message logging at reception.

In the case of optimistic logging, upon each reception of the messages m1,m2, and m3,
the wrapper intercepts and saves the message on the local storage of the physical node.
The local storage location is given by the value of Storage.Local which is defined in the
description of the state saving policy of the encapsulation (see Figure 6.2). Each message
is delivered to the corresponding encapsulation for processing in the same order they are
received by the wrapper. Multiple messages are aggregated and sent at once to the stable
storage at a frequency based on the number of messages received and processed by the

90 Chapter 6. State Saving Approach

m1

m2

m1,m2,m3

ack(m1,m2,m3)

m1

m2m3

LS(m1)
m1

Optimistic		Message
	Logging

Pessimistic	Message	
Logging

encapsulationwrapper

m1
ack(m1)

ack(m3)

m2

wrapper encapsulation

LS(m):	saving	message	
on	local	storage

delivering	event	to
encapsulation

message	processing
by	encapsulation

LS(m2)

m2
m3

LS(m3)

m3m4

LS(m4)

m4
purge(m1,m2,m3)

SSG

m1
m4

m2

SSG

m3

m4

m3
m4

SSG

ack(m2)

ack(m4)

SSG

Figure 6.3: Optimistic and Pessimistic Logging by Wrappers

encapsulation. For this example, the frequency is set to three messages. Thus, upon
reception of the third message m3, the three messages m1,m2, and m3 are sent to the
stable storage. When the wrapper receives an acknowledgement which indicates that the
messages have been stored on the stable storage, the local copies of the messages are purged
to avoid saturation of the local storage.

In the pessimistic strategy, upon each reception of a message, the wrapper intercepts and
saves the message on the stable storage before delivering it to the encapsulation for pro-
cessing. In this case, the messages are not aggregated locally before sending to the stable
storage because the local storage is unstable. To this end, upon reception of m1, the wrap-
per buffers the message, sends it to the stable storage, and waits for an acknowledgement.
m1 is delivered to the encapsulation only after receiving the acknowledgement ack(m1)
which indicates that the messages has been successfully stored on the stable storage. The
subsequent messages m2,m3, and m4 are logged in the same way. The wrapper then
delivers the messages in the same order that they were received.

6.2.4 Uncoordinated Checkpoint Combined with Logging

Uncoordinated checkpoint is combined with optimistic or pessimistic logging for entities
that are characterised by an EBM. The checkpoint of an encapsulation is temporarily
stored on the fog node on which the wrapper is deployed before sending it to the stable
storage. When a checkpoint is performed, the previous logs and checkpoint become ob-
solete. This is because the current checkpoint is enough to restore the current state of
the encapsulation. They should therefore be purged. When uncoordinated checkpoint is

6.2. State Saving Policy 91

combined with logging, the logging strategy also determines how the logs and checkpoint
preceding the current checkpoint are purged.

Uncoordinated checkpoint combined with the two logging strategies are illustrated in Fig-
ure 6.4. The frequency of checkpoint is determined as discussed in Section 6.2.2. Let us
consider that each of the messages m1,m2 and m3 has a weight of w = 1. The frequency
of checkpoint based on the number of events processed is set as follows, Nckpt = 3. Thus,
a checkpoint should be performed after processing these three messages.

Figure 6.4 (a) depicts the technique for state saving based on uncoordinated checkpoint
combined with optimistic message logging at reception. Upon reception of the messages
m1,m2 and m3, each message is saved locally and then delivered to the encapsulation. In
this case, the saved messages are not sent to the stable storage since the local storage is
persistent. Upon performing a checkpoint ckpt1, the local copies of the three messages
as well as the previous checkpoint ckpt0 are purged. ckpt1 is stored locally and then a
copy is sent to the stable storage. This checkpoint overwrites the previous one (i.e., ckpt0)
stored on the stable storage. The local copy of the checkpoint can then be kept or purged
depending on its size and the capacity of the local storage.

The combination of uncoordinated checkpoint and pessimistic logging is illustrated in Fig-
ure 6.4 (b). In the pessimistic logging strategy messages are not stored locally. Upon
performing a checkpoint, the local copy of any previous checkpoint is first replaced by the
current checkpoint. The current checkpoint is then immediately sent to the stable storage

m1

m2

m1

m2m3

LS(m1)
m1

(a)	UC	+	Optimistic		Message
	Logging

(b)	UC	+	Pessimistic	Message	
Logging

encapsulationwrapper

m1
ack(m1)

ack(m3)

m2

wrapper encapsulation

LS(m):	saving	message	
on	local	storage

delivering	event	to
encapsulation

message	processing
by	encapsulation

LS(m2)

m2

m3

LS(m3)

m3

purge(m1,m2,m3)

SSG

m1

m2

SSG

m3

m3

SSG

ack(m2)

SSG

reqCkpt
ckpt1

ckpt0

ckpt1

ack(ckpt1)
purge(ckpt0)

ckpt0

reqCkpt
ckpt1 ckpt1ckpt1

ack(ckpt1)purge(m1,	m2,m3)
purge(ckpt0)

UC:	Uncoordinated	
Checkpoint

ckpt1

Figure 6.4: Uncoordinated Checkpoint Combined with Logging

92 Chapter 6. State Saving Approach

because of the unstable nature of the local storage. After reception on the stable storage,
the previous checkpoint and all the messages saved on the stable storage can be purged
since they are no longer needed to restore the state of the encapsulation. The local copy
of the checkpoint can then be kept or purged depending on its size and the capacity of the
local storage.

6.2.5 Validity Time

A wrapper also associates contextual information the messages saved. To this end, a wrap-
per associates a validity time (vt) for each message saved as described by the state saving
policy (see Figure 6.2). The vt indicates whether a message should be taken into account
for the state restoration procedure. The expiration of the vt implies that the message is no
longer valid and should not be used in the computation of the target consistent state to re-
store the application. For cyber-physical events from appliances, the vt indicates the time
duration for which the event is valid and should be maintained in the PW. For instance,
the event sent to open a connected door lock may have a validity time of one minute. A
vt = 0 indicates an immediate expiration, that is, the event should never be taken into
account for state restoration. A vt = ∞ indicates that the event does not expire and
should always be taken into account during the state restoration procedure. By default,
events are assigned a vt =∞. In this way, only events that have a temporary validity time
have to be defined by the DevOps.

6.3 Summary

This section has presented the state saving step of the failure management approach. This
step is important as it saves the state of the application so that a consistent state of the
application with respect to the PW can be restored during the recovery procedure. State
saving policies determine the techniques and strategies for the wrapper to save the state of
its encapsulations. The techniques for state saving is based on uncoordinated checkpoint,
message logging and function call logging. Logging techniques are used for encapsulations
that are characterised by a DBM. It saves the transitions that are executed by the encap-
sulation. Uncoordinated checkpoint combined with logging techniques are performed for
encapsulations that are characterised by an EBM. The frequency of checkpoint is deter-
mined according to the time interval since the last checkpoint as well as the number of
events processed and the cost of processing these events by the encapsulation. The state
saving policy also defines the storage location (i.e, local or stable storage) of the state data
as well as the validity time of events.

Chapter 7

Failure Detection and Notification
Propagation

Contents
7.1 Monitoring . 94

7.1.1 Software Elements . 94

7.1.2 Appliance . 95

7.1.3 Physical Node and Fog Node . 96

7.1.4 Summary . 97

7.2 Failure Notification Propagation 98

7.2.1 Failure Decision . 98

7.2.2 Propagation of Failure Notifications 100

7.2.3 Recovery Notifications . 104

7.3 Summary . 105

The monitoring step of the failure management approach reports information on failures.
Monitoring is very important since it identifies which entity and the type of the entity that
has failed. It thus reports information so that failure notification can be propagated and
the subsequent recovery procedure can be performed. Therefore, the recovery procedure
and the correct behaviour of the application rely on the information reported by the moni-
toring step. Failure notification aims at propagating notifications to the entities that have
dependencies on a failed entity so that they can move to a degraded mode of their lifecycle.
For instance, in the case of the failure of a mandatory dependency, the entities affected
by the failure should pause their execution. Failure notifications also allows the wrappers
to discard messages that are intended for a failed entity. This chapter describes how an
application is monitored and how failure notifications are propagated when a failure is
detected. To this end, Section 7.1 and Section 7.2 detail, respectively, the monitoring step
and the failure notification step of the failure management approach.

93

94 Chapter 7. Failure Detection and Notification Propagation

7.1 Monitoring

Monitoring is an important step of failure management because it gives information about
the lifecycle phases of the infrastructure and applicative entities. More specifically, the
information reported by the monitoring step allows the detection of failures as well as
the detection of the entities that have recovered from a failure. The failure management
approach thus relies on this information to notify dependent entities that a failure has
occurred or that a failed entity has recovered. The reconfiguration and recovery actions
with respect to the identified failure can then be planned and carried out.

The monitoring step is carried out by the local failure managers: fog agents and wrappers.
A wrapper monitors each of its encapsulations. A fog agent monitors the neighbouring
physical/fog nodes. In order to ensure their monitoring roles, the wrappers and fog agents
implement multiple monitoring techniques based on local system observation, applicative
message observation, heartbeats, and ping-acks. Multiple techniques are required because
of the heterogeneous nature of the ecosystem. In order to cope with the limited capacities
of the Fog infrastructure, a monitoring technique is chosen with respect to the overhead
and interference induced by the technique. Thus, a monitoring technique is selected with
the objective of having a minimum overhead on the network and avoiding interference with
the application.

When a fog agent or a wrapper suspects the failure of an entity that it monitors, it adds
the entity in its local list of suspected entities and then notify the failure manager GDM.
The notification indicates the identifier of the entity that is suspected of failure and the
type of the entity (i.e., software element, appliance, or physical node).

The following subsections successively describe the techniques for monitoring software el-
ements, appliances, and physical nodes.

7.1.1 Software Elements

A wrapper and its encapsulated software element can be deployed on the same fog node
or on a remote fog node. The location of the wrapper and software element determines
which technique is adopted to monitor the software element. If both wrapper and the
software element is local, the monitoring technique chosen is local system observation. If
they are remote, the monitoring technique relies on a combination of applicative message
observation and ping-ack.

A wrapper monitors its locally encapsulated software element by periodically requesting
to the fog node the list of processes running on the local node. The wrapper is thus able
to determine if a software element has failed by inspecting this list and mapping it to
the corresponding processes of a software element. An important property of this local
monitoring technique is that it avoids the wrong suspicion of a software element because
there are no uncertainties due to message delays on the network. Local monitoring also
avoids influence on the network traffic. Finally, it avoids interfering with the execution of

7.1. Monitoring 95

the application by interrogating software elements on a regular basis.

If the wrapper and its encapsulated software element are located on remote fog nodes,
local monitoring is no longer possible. In this case, the wrapper implements a combination
of applicative message observation and ping-ack to monitor the remote software element.
The combination of these two techniques aims at avoiding, as much as possible, additional
network traffic due to monitoring. To this end, the wrapper configures two timeouts:
Tperiod and Treponse. Tperiod corresponds to the frequency of monitoring. More specifically,
it is the frequency at which the wrapper sends ping-ack messages to the encapsulated
software element. At each expiration of the timeout, a ping request is sent to the software
element. Tresponse is the maximum lapse of time the wrapper waits for a response from the
encapsulated software element before suspecting its failure. This monitoring procedure is
described in Algorithm 2. The wrapper first starts the timeout Tperiod (l.1). When Tperiod
expires (l.2), the wrapper starts the timeout Tresponse and sends a ping message to the
software element (l.3− l.4). If Tresponse expires before receiving an acknowledgement, then
the wrapper suspects the failure of the software element. The wrapper adds the software
element in its local list of suspected encapsulations and notifies the GDM of the suspicion
(l.5 − l.7). However, if the software element emits an event that is intercepted by the
wrapper before the expiration of Tperiod or Tresponse, then Tperiod is restarted and Trespose is
stopped if it was started (l.8− l.10). This is because the wrapper interprets the emission
of an event as the software element being failure-free. Therefore, if an emitted event is
intercepted before the expiration of Tperiod, the timeout is reset and the ping message is
not sent until the next expiration of Tperiod.

Algorithm 2 Monitoring of Remotely Encapsulated Software Elements

1: start Tperiod . first timer is started

2: if Tperiod expires then
3: start Tresponse . second timer is started

4: sendPing(se) . ping software element

5: if Tresponse expires then . second timer expires

6: SuspectedSE.add(se)
7: notifyGDM(se, SoftwareElement) . a notification is pushed to GDM indicating the id of the

failed entity and its type

8: if outgoingEvtIntercepted then
9: reset Tperiod . first timer starts again

10: stop Tresponse . second timer is stopped if it was started

7.1.2 Appliance

The monitoring technique preferred for appliances is applicative message observation be-
cause it limits the influence on the network traffic. No additional messages for monitoring
the appliance are emitted by the wrapper. However, this technique can only be chosen if

96 Chapter 7. Failure Detection and Notification Propagation

the appliance communicates at regular interval (e.g., a light intensity sensor that reports
values every five seconds). To do so, the wrapper observes the applicative messages re-
ported by the appliance. The wrapper sets a timeout Tfd = Tmsg + tε where Tmsg is the
time interval at which messages are emitted by the appliance and tε is an additional time
to account for variability in the network delay. The timer is reset at each message recep-
tion. If the timer expires before the interception of a message emitted by the appliance,
the wrapper suspects the failure of the appliance.

If the appliance does not communicate at regular interval, the technique based solely on
applicative message observation is not possible. In this case, the wrapper uses the same
technique as described in Section 7.1.1 for the monitoring of a software element when it is
remote to its wrapper

Some appliances have constrained functionalities and do not implement any monitoring
APIs. The monitoring of such appliances if they do not communicate at regular interval
is complicated since they can not be monitored using ping-acks or heartbeats mechanisms.
In this case, the wrapper has to rely on external tools (e.g., wireshark and Zniffer) to
observe the data packet exchanges on the network link for monitoring purposes. Such
data packets are exchanged regularly between appliances connected on the same network
even if applicative messages are not exchanged. The timeout to suspect the failure of the
appliance is then based on the frequency of the control packets exchanged on the network
link. When such packets are no longer observed from an appliance, the wrapper suspects
a failure.

When the wrapper suspects the failure of an encapsulated appliance, it adds the appliance
to its local list of failed encapsulations. It then pushes a failure notification to the GDM.

7.1.3 Physical Node and Fog Node

The fog agents monitor their neighbouring physical nodes. Since the lifecycle of a fog node
is tied to that of the physical node on which it is hosted, the information reported about
physical nodes is also valid for fog nodes. For this purpose, the fog agents implement a
heartbeat mechanism to monitor each other.

Each fog agent receives and sends heartbeats towards their neighbouring fog agents. A fog
agent associates two timeouts to each neighbouring fog node Thbe and Thbr. The timeout
Thbe is used to send heartbeat messages to the neighbouring fog agent at a given frequency
so as to indicate to the neighbouring fog agent that the local physical node is failure-
free. Thbr is used to monitor the neighbouring physical node by analysing the reception of
heartbeat messages. The value of the timeouts are configured according to the network
delays between the two physical nodes on which the fog agents are hosted. Algorithm 3
describes the monitoring of a neighbouring physical node by a fog agent. At each expiration
of the timeout Thbe, the fog agent emits a heartbeat to the neighbouring fog agent. Thbe is
then reset (l.3−l.5). At the reception of a heartbeat from a neighbour before the expiration
of Thbr, the receiving fog agent resets the timeout (l.6 − l.7). If Thbr expires before the

7.1. Monitoring 97

reception of a heartbeat message, the fog agent suspects the failure of the neighbouring
fog/physical node. However, if a fog agent fails whereas the fog/physical node is failure-
free, the timeout associated to the reception of the heartbeat expires and the neighbouring
fog agent will interpret this as a failure of the physical node. In order to avoid this wrong
suspicion, when a heartbeat is missed, the neighbouring fog agents implement a ping-ack
towards the physical node (i.e., on its IP address or DNS domain name). If the reply is
timed out (l.9), the fog agent deduces the failure of the fog node. It adds the fog/physical
node to its list of suspected entity and sends a failure notification to the GDM (l.10− l.11).
On the other hand, if a reply is received, the fog agent deduces that the physical node is
failure-free. It sends a message to the GDM to request the reinitialisation of a fog agent
on the fog node (l.12 − l.13). This request is forwarded to the ALM which established a
remote connection to the fog node in order to reinitialise a new fog agent on the fog node.
In this way, the failure of the fog agent is not interpreted as a failure of the physical node.

Algorithm 3 Monitoring of a Physical Node by a Neighbouring Fog Agent

1: start Thbe . timeout for heartbeat emission

2: start Thbr . timeout for heartbeat reception from a neighbour

3: if Thbe expires then
4: sendHeartbeatToNeighbour()
5: reset Thbe . timeout is reset

6: if heartbeat is received then
7: reset Thbr
8: if Thbr expires then . timeout for reception of heartbeat from neighbour expires

9: if ping timed out then
10: SuspectedPN.add(neighPN)
11: notifyGDM(neighPN, PhysicalNode) . a notification is pushed to GDM indicating the id

and type of the failed entity

12: else
13: resquestReinitFGAtoGDM(PhysicalNode)

7.1.4 Summary

This section has presented the monitoring step of the failure management approach. Mon-
itoring is achieved through multiple techniques. A monitoring technique is chosen so as to
consume the minimum resources and to have a minimum interference with the execution
of the application. Table 7.1 recaps the monitoring techniques. Fog agents monitor each
other with the heartbeat technique. Local system observation is used to monitor software
elements if they are deployed on the same fog node as their wrappers. If a software element
and its wrapper is remote, then applicative message observation combined with ping-acks
are used. The monitoring of an appliance that communicates at regular interval is done
through the observation of the messages it sends. If the appliance does not communicate
at regular intervals, then ping-acks is combined with applicative message observation. Ap-

98 Chapter 7. Failure Detection and Notification Propagation

pliances that do not provide a monitoring API is monitored by observing the data packets
exchanged on the network link.

Entity Properties Entity Monitored by Monitoring Technique
Physical

node
Physical nodes are neighbours Fog agent Heartbeats

Software
element

Wrapper and software element
are on local fog node

Wrapper Local system observation

Wrapper and software element
are remote

Wrapper
Applicative message

observation and ping-acks

Comm at
regular
interval

Monitoring
API

Appliance

✓ ✖ Wrapper Applicative message
observation

✖ ✓ Wrapper Applicative message
observation and ping-acks

✖ ✖ Wrapper by means of
external tools

Observation of packets
on network layer

Table 7.1: Monitoring Techniques by Wrappers

When the fog agent or wrapper suspects the failure of an entity, it notifies the GDM. Then,
failure notifications should be propagated to the entities that have dependencies on the
failed entity so that they can move into a degraded mode. The next section describes how
failure notifications are propagated.

7.2 Failure Notification Propagation

The GDM receives failure suspicion messages concerning software elements and appliances
from the wrappers. It also receives failure suspicion messages concerning physical nodes
from fog agents. Upon the reception of failure suspicion messages, the GDM processes
these messages and decides whether the entity should be considered as definitely failed. If
the failure is confirmed by the GDM, failure notifications are propagated to the wrappers
of entities having dependencies on the failed entity. Propagating failure notifications aims
at notifying the impacted failure-free entities of the failure. The impacted entities can
subsequently move to a degraded mode.

The following sections describe how the failure decision is computed by the GDM and how
failure notifications are propagated by wrappers.

7.2.1 Failure Decision

Upon the reception of failure suspicion messages from wrappers and fog agents, the GDM
processes these messages and decide whether the entity should be considered as failed. The
objective of this decision is to avoid engaging recovery procedure for an entity which is

7.2. Failure Notification Propagation 99

wrongly suspected of failure. Such procedures only cause unnecessary disruptions of the
services provided by the application.

The failure decision is taken according to Algorithm 4. When the GDM receives a failure
suspicion message concerning a software element (l.2), it de facto considers the software
element as failed. This is because when the wrapper and the software element are both
deployed on the same fog node, there are no communication uncertainties involved in fail-
ure detection. Thus, the GDM can immediately consider the software element as failed.
If the encapsulated software element is remote to the wrapper, a wrong suspicion is possi-
ble because of the communication uncertainties when implementing failure detection using
the ping-ack technique. However, the wrapper cannot distinguish whether it is a wrong
suspicion. When this happens, the wrapper has to send a signal to shut down the soft-
ware element before notifying the GDM. This eliminates the possibility of having multiple
instances of the same software element if a recovery procedure is engaged for a wrong sus-
picion. When the GDM considers a software element as failed, it adds the software element
to the global list of failed software element (l.3), and then sends a confirmation message
to the wrapper of the failed software element (l.4).

Algorithm 4 Failure Decision by GDM

1: Reception of Failure Suspicion: (idf , type) . identifier and type of failed entity

2: if type == software element then
3: FailedSE.add(idf) . add software element to failed list

4: sendFailureConf(getWrp(idf)) . send confirmation to wrapper

5: else if type == physical node then
6: SuspectedPN.add(idf) . physical node is suspected of failure

7: if getNumSuspicion(idf) == getNumNeighFga(idf) then
8: SuspectedPN.remove(idf)
9: FailedPN.add(idf) . add to failed list if all neigh fga suspect its failure

10: sendFailureConf(getNeighFga(idf)) . send failure confirmation to all neigh fga

11: else if type == appliance then
12: SuspectedAPL.add(idf) . add appliance to suspected list and the associated wrp

13: if getNumSuspicion(idf) == getNumNeigh(idf) then
14: SuspectedAPL.remove(idf)
15: FailedAPL.add(idf) . add to failed list if all its wrp suspect its failure

16: sendFailureConf(getWrp(idf)) . send failure confirmation to all wrappers of appliance

Fog agents send failure suspicion messages concerning neighbouring physical nodes. Since
the lifecycle of a fog node is tied to that of the physical node on which it is hosted, a failed
physical node implies that the fog node has failed. In order to avoid wrong suspicions,
when a failure suspicion message concerning a neighbouring physical node is received by
the GDM, it does not consider the physical node as failed immediately. It first adds the
physical node in a list of physical node suspected of failure (l.5− l.6). A wrong suspicion
may for example be due to delays on one of the network interfaces of the physical node

100 Chapter 7. Failure Detection and Notification Propagation

(e.g., temporarily saturated bandwidth, interference in the wireless network link). In this
case, the heartbeat timeout expires and the neighbouring fog agent suspects the failure of
the physical node. Therefore, the GDM inspects the list of suspected physical node before
considering the physical node has failed. If it has received failure suspicion messages from
all its neighbouring fog agents (l.7), the GDM removes the physical node from the suspected
list and adds it in a failed list (l.8− l.9). A failure confirmation message is then sent to all
the neighbouring fog agents of the failed physical node (l.10).

Failure suspicion messages concerning appliances are processed in the same way as those
of physical nodes because the wrapper and the encapsulated appliance are remote. Upon
reception of a failure suspicion message, the GDM adds the appliance in a suspected list
of failed appliances (l.11 − l.12). If a failure suspicion message is received from each
wrapper that encapsulates the appliance, then the GDM considers the appliance has failed
(l.13 − l.15), and sends a failure confirmation message to the the wrappers of the failed
appliance. It is worth noting that if only one fog agent (respectively wrapper) monitors a
physical node (respectively appliance), the GDM confirms the failure after the reception
of the first suspicion.

After a failure is confirmed by the GDM, the entities that are impacted by that failure
should be notified. The next section describes how these notifications are propagated.

7.2.2 Propagation of Failure Notifications

The propagation of failure notifications aims at notifying the failure to the part of the ap-
plication impacted by that failure. The impacted entities are those that have a mandatory
dependency on the failed entity, as well as, recursively, the entities that have a mandatory
dependency on the impacted entities. All the entities impacted by a failure should move
to a degraded phase of their lifecycle. The degraded mode of an encapsulation is imple-
mented by its wrapper. It can take different forms depending on the type of dependency
on the failed entity such as restricting access to the APIs of the encapsulation, discard-
ing incoming/outgoing operations or transferring them to another failure-free entity, and
pausing the behaviour of the encapsulation in the case of a mandatory dependency. Thus,
in a degraded mode, an encapsulation provides only part or none of its services. Moreover,
failure notifications should be propagated such that depending encapsulations move to a
degraded mode by respecting the functional dependencies between the encapsulations. For
instance, this means that the encapsulations should move to a degraded mode in a certain
order such that a service is not called by a depending entity after the service has been
paused. This can make the depending entities unresponsive, generate the re-emission of
events that cannot be delivered because of the failure, and create a cascading failure where
the whole application fails [118]. Figure 7.1 depicts the software architecture of two ap-
plications which will be used in order to illustrate the impact of a failure and how failure
notifications should be propagated.

Figure 7.1 (a) depicts an architecture composed of only mandatory dependencies between

7.2. Failure Notification Propagation 101

e1

e2

e3

e5e4

ea

eb

edec

ee

(a)	Architecture	with	only
mandatory	dependencies

(b)	Architecture	with	mandatory
and	optional	dependencies

Figure 7.1: Examples of Architecture with Mandatory and Optional Dependencies

the entities of an application. Let us consider the failure of e1. By propagation, all the
other entities are impacted by that failure and thus their execution should all be paused by
propagating failure notifications to them. In order to respect the functional dependencies
between the entities, e4 and e5 should be the first ones to be paused. This is because they
do not have any entities depending on them and thus they can be paused without affecting
other entities of the application. They can both be paused at the same time since they do
not have any dependencies on each other. e3 can only be paused if both e4 and e5 have
been paused. e2 can then be paused. When e1 recovers, recovery notifications should also
be propagated such that the functional dependencies are respected. The execution of an
entity should be resumed only if all its dependencies are satisfied. Therefore, the execution
of e2 and e3 are first resumed sequentially, and then the execution of e4 and e5 can be
resumed at the same time. Let us now consider the failure of e2. The entities impacted
by this failure are: e3, e4, and e5. In this case, e4 and e5 should be paused before e3. e1 is
not impacted by the failure and therefore continues its execution. However, e1 could send
messages to e2. These messages should be intercepted by the wrapper of e2 because they
cannot be delivered. Note that the failure of e4 and e5 do not impact any other entities of
the application.

Figure 7.1 (b) depicts an architecture composed of both mandatory and optional depen-
dencies between the entities of the application. Consider the failure of ea. eb is impacted
by this failure. However, since the dependency between ea and eb is optional, eb can still
provide its services even if this dependency is not satisfied. Therefore, ec and ed are not
impacted by the failure of ea. A failure notification is sent only to the wrapper of eb. The
subsequent messages sent by eb (i.e., to ea) is intercepted by its wrapper and those sent by
ee is intercepted by the wrapper of ea since they cannot be delivered. When ea recovers, a
recovery notification is sent to eb. The messages sent to ea can then be delivered.

The failure management approach makes use of failure notifications and paused messages
to notify a failure and move the application into a degraded mode. Failure notifications
are first propagated to notify the entities that are impacted by a failure. Then, paused
messages are propagated so as to respect the order in which the entities impacted by a

102 Chapter 7. Failure Detection and Notification Propagation

failure are paused.

When the failure of a software element or an appliance is confirmed to the wrapper by the
GDM, the wrapper propagates failure notifications to the neighbours having a dependency
on the failed encapsulation. In the case of a physical node failure, since the wrapper hosted
on the corresponding fog node also fails, the GDM has to first retrieve the dependencies of
the failed software elements from the ALM in order to notify the neighbouring wrappers.
Thus a wrapper wrp1 receives failure notification messages:

(a) To confirm the failure of one of its encapsulations. This failure notification is sent
by the GDM to wrp1.

(b) To notify the failure of an neighbouring dependency. This happens when the encap-
sulations of wrp1 have dependencies on a failed encapsulation of the neighbouring
wrapper wrp2. The failure notification is sent by wrp2 to wrp1. This failure notifica-
tion is sent by the GDM if the neighbouring fog node has failed because in this case
wrp2 has failed too.

(c) To notify the failure of an entity which impacts the functions of an encapsulation
of wrp1. This failure notification is sent by a neighbouring wrapper wrp2 to wrp1

because the encapsulation of wrp2 is impacted by a failure and by propagation an
encapsulation of wrp1 is also affected too.

In the following, we detail how these notifications are propagated and processed by the
wrappers so as to respect the functional dependencies of the application.

a . Failure Confirmation from GDM

Failure confirmations are received by wrappers concerning their encapsulated software el-
ement and appliances. Upon reception of the failure confirmation from the GDM, the
wrapper sends a failure notification to the entities having a dependency on the failed en-
capsulation. This is illustrated in Figure 7.2:

failure
confirmation	of
idf	from	GDM

send	failure
notifications	to

dependent	neighbours

intercept	and	buffer
incoming	events	to	idf

idf	has	dependent	
entiites?

yes

no

Figure 7.2: Reception of Failure Confirmation from GDM

• If there are no other entities that are dependent on the failed encapsulation, then
failure notifications are not sent (e.g., e4 and e5 in Figure 7.1 (a)). This is because
the failed encapsulation does not impact other failure-free entities. The wrapper
intercepts and buffers all the forthcoming incoming events to the failed encapsulation.

7.2. Failure Notification Propagation 103

• If the failed encapsulation has dependent neighbours (e.g., eb in Figure 7.1 (b)), a
failure notification is sent to each one of them (i.e., to their wrappers). This is done for
both mandatory and optional dependencies. The wrapper of the failed encapsulation
intercepts and buffers all the forthcoming incoming events to the failed encapsulation.
These events are used during the recovery procedure. For instance, in the case of a
failed software element, the events can be delivered after the software element has
been restarted. In the case of a failed appliance, these events can be forwarded to a
replacement appliance. This is discussed in more details in Chapter 8.

A wrapper wrp1 can thus receive failure notifications from a wrapper wrp2 if an encapsu-
lation of wrp1 has a dependency on a failed encapsulation of wrp2. This is discussed in
the following.

b . Failure Notification From GDM or Wrapper of a Failed Encapsulation

A wrapper may receive a failure notification from the GDM1 or from the wrapper of the
failed encapsulation, this implies that one of the encapsulation of the receiving wrapper
has a direct dependency on a failed entity idf . This dependency may be of two types:
optional or mandatory. Figure 7.3 illustrates how failure notifications are processed and
propagated in each case.

failure	notification	from
GDM	or	wrapper	of
failed	encapsulation
failed	entity:	idf

impacted	encap:	idi

add	idf	to	list	of	failed
neighbours

intercept	and	buffer
outgoing	events

to	idf

type	of	dependency
on	idf mandatory

optional

send	failure	notification
to	entities	having
dependency	on	idi

idi	has	dependent	
entities?

yes

idi	is	paused

no

Figure 7.3: Reception of Failure Notification from GDM or Wrapper of Failed Encapsula-
tion

When a wrapper receives a failure notification which impacts one of its encapsulations idi,
it adds the failed entity idf to its list of failed neighbours. If idi has an optional dependency
on idf , then the wrapper moves idi in a degraded mode by intercepting and buffering all
the outgoing events emitted to idf .

If idi has a mandatory dependency on idf , then idi has to be paused. However, idi and
its dependent entities have to be paused in a certain order. idi can be paused immediately
only if it has no other dependent entities. If this is not the case, a failure notification is
sent to the entities having a dependency on idi.

In this case, a wrapper wrp1 receives a failure notification from another wrapper wrp2

1In case of the failure of a physical node which implies that the wrappers of the failed entities have
failed too.

104 Chapter 7. Failure Detection and Notification Propagation

whose encapsulation is impacted by a failure. The encapsulations of wrp1 are also impacted
because they have dependencies on the encapsulations of wrp2.

c . Failure Notification from Wrapper of Impacted Encapsulation

A wrapper receives failure notification from other wrappers whose encapsulations are im-
pacted by a failure. Figure 7.4 illustrates how such failure notifications are processed.

failure	notification	from
wrapper	of	impacted

encapsulation
impacted	neighbour:	idi
local	encap	impacted:	idr

add	idi	to	list	of
neighbour	entities

impacted	by	a	failure

intercept	and	buffer
outgoing	events

to	idi

type	of	dependency
of	idr	on	idi

mandatory

optional

pause	idr

idr	has	dependent
entities	?

no

send	failure	notification
to	entities	having
dependency	on	idr

yes

send	pause
message	to	idi

Figure 7.4: Reception of Failure Notification from Wrapper of Impacted Encapsulation

Let us consider a failure notification which is received by the wrapper wrpr from a neigh-
bouring wrapper wrpi to indicate the failure of idf . The encapsulation of wrpi is impacted
by the failure of idf . The encapsulation idr of wrpr is also impacted by the failure because
its encapsulations have dependencies on the encapsulations of wrpi.

At the reception of the failure notification, the wrapper adds idi in the list of neighbouring
entities impacted by the failure of idf . If idr has an optional dependency on idi, then idr
moves to a degraded mode where its wrapper intercepts and buffers the outgoing events
to idi. If idr has mandatory dependency on idi, and there exist other dependencies on idr,
then a failure notification is sent to them. Otherwise, if there are no other entities that
are dependent on idr to propagate the failure notification, then idr moves into a degraded
mode where its execution is paused. The wrapper of idr then sends a pause message to the
wrapper of idi to confirm that idr has been paused. Upon reception of the pause message,
idi can be paused by its wrapper if all the other entities having a mandatory dependency
on idi are also paused. Thus the wrapper of idi waits for a pause message from all its
neighbours having a mandatory dependency on idi before pausing its execution.

In this way, the entities that have a mandatory dependency on the failed entity are paused
and so are the entities that have a mandatory dependency on the entities that are impacted
by the failure. The order in which the entities are paused is respected. Entities having
optional dependencies can continue their execution but do not interact with other entities
impacted by a failure.

7.2.3 Recovery Notifications

Recovery notifications aims at notifying that a failed entity has recovered. In this way,
after recovery, the application can be move into its running phase and be fully operational

7.3. Summary 105

again. To this end, when an entity has recovered from a failure, recovery notifications are
propagated so that the entities which were impacted by the failure and is currently in a
degraded mode can resume their executions. The order in which these entities resume their
execution should be respected so that the execution of an entity is not resumed without
first resuming its dependencies. Thus recovery notifications and resume messages are used
such that the execution of an entity is resumed only if all its mandatory dependencies are
satisfied.

When an entity recovers, its wrapper sends recovery notifications to the neighbouring enti-
ties (i.e., to their wrappers) that have dependencies on the recovered entity. Upon reception
of a recovery notification, the wrapper removes the recovered entity from its list of failed
entities and sends this recovery notification to neighbouring wrappers to propagate the
notification. In this way all the entities impacted by this recovery are notified. Follow-
ing a recovery notification, if the receiving wrapper has an encapsulation for which all its
mandatory dependencies have recovered and are running, the execution of the encapsula-
tion is resumed. When an encapsulation is resumed, its wrapper sends a resume message
to its dependent entities. Upon reception of the resume message, if all other mandatory
dependencies of an entity are satisfied (i.e, they are not failed or in a degraded mode), the
execution of the encapsulation is also resumed.

7.3 Summary

This chapter has presented the monitoring step of failure management and how failure
notifications are propagated when a failure occurs. Monitoring is achieved through multiple
techniques. A monitoring technique is chosen so as to consume the minimum resources
and to avoid interference with the execution of the application.

Failure notification propagation aims at moving the entities impacted by a failure into a
degraded phase. To this end, when a failure is detected, failure notifications are propagated
to entities having dependencies on the failed entity. Failure notifications are also propa-
gated to entities that have dependencies on the entities impacted by the failure. Degraded
mode is achieved by either intercepting and buffering events, or by pausing the execution of
the impacted encapsulations. When the application has recovered from a failure, recovery
notifications are propagated so that the application is fully operational again.

106 Chapter 7. Failure Detection and Notification Propagation

Chapter 8

Recovery Approach

Contents
8.1 Recovery Policy . 108

8.2 Reconfiguration . 109

8.3 Cyber-Physical Consistency . 112

8.3.1 Issues in CP-Inconsistency . 113

8.3.2 State Restoration and CP-Consistent Recovery 115

8.4 Ensuring Service Continuity of Replacement Appliances . . . 118

8.4.1 Motivation . 118

8.4.2 Adaptation of State Data . 119

8.4.3 Adaptation and Redirection of Events 119

8.5 Summary . 121

As discussed in the previous chapter, when a failure occurs, failure notifications are prop-
agated to the entities that are impacted by that failure. At the same time, a recovery
procedure is planned and performed by the failure managers. The recovery procedure aims
at recovering the application from the failure and restoring it in a consistent state, includ-
ing consistency with respect to the PW. The recovery procedure is done in two successive
steps: reconfiguration and state restoration. The type of entity that has failed determines
the type of reconfiguration (i.e., architecture, placement) that is implemented. The objec-
tive of reconfiguration is to perform operations on the application (e.g., restarting software
elements, connecting to new appliances) so as to repair its architecture. Then, the data
saved during the state saving phase is used to restore a consistent state of the application,
including consistency with respect to the PW (i.e., cyber-physical consistency). The state
restored is CP-consistent if the states of the geographical spaces in the PW are not different
from their pre-failure states, taking into account expired events and the events generated
during the recovery procedure. Moreover, in order to maintain CP-consistency, the state
restoration procedure implemented should be safe for the PW, that is, it should not have
harmful consequences on the PW.

107

108 Chapter 8. Recovery Approach

This chapter presents the reconfiguration and state restoration procedures that are per-
formed in order to recover from infrastructure and applicative failures. Section 8.1 intro-
duces recovery policies which describe the local strategy for recovery. Section 8.2 reports
how reconfiguration is performed when a failure occurs. Section 8.3 describes the state
restoration procedure so that a CP-consistent state of the application is restored. Sec-
tion 8.4 details the procedures to ensure that the application has a consistent behaviour
after recovery. Finally, Section 8.5 summarises this chapter.

8.1 Recovery Policy

A recovery procedure is performed when the GDM confirms the failure of an entity after
receiving failure suspicion messages from wrappers and fog agents. This failure decision
and failure notification propagation are described in Chapter 7. The subsequent recov-
ery procedure is composed of two successive steps. The application is first reconfigured.
This involves performing operations on the architecture of the application, such as restart-
ing/reinitialising software elements and connecting to new appliances, so as to recover from
failures. When reconfiguration is completed, the wrappers retrieve the data saved during
the state saving step and restore the application in a CP-consistent state. CP-consistency
aims at restoring a consistent state within the application and with respect to the PW.

The recovery procedure makes use of recovery policies which describe the local strategies
and actions to perform in order to recover a failed entity. To this end, each wrapper
embeds a description of the recovery policy of each of its encapsulations. Figure 8.1 gives
an overview of the different parameters of a recovery policy.

EncapsulationId:	<id>																									/*id	of	encapsulation*/

Type:	SoftwareElement	⊕	Appliance		

SoftwareElement:(restart,	<nrt>)	|	reinitialisation	/*encapsulation	is	a	software	element*/
															
Appliance:(reboot,	<nrt>)	|	replacement								/*if	encapsulation	is	an	appliance	*/

StateRestoration:
								BM:	DBM	⊕		EBM
								Checkpoint:	(local,	<path>),	(stableStorage,	<path>)
								Events:	(local,	<path>),	(stableStorage,	<path>)

ExternalAdmin:	<path>

⊕	:	exclusive	or					|	:	inclusive	or				

Figure 8.1: Description of the Recovery Policy of an Encapsulation

EncapsulationId gives the identifier of the software element or appliance encapsulated by

8.2. Reconfiguration 109

the wrapper. The recovery policy defined in this description file applies for the identified
encapsulation.

Type indicates whether the identified encapsulation is a software element or an appliance.

SoftwareElement indicates the approach for the reconfiguration of the software element
encapsulated by the wrapper. restart specifies that the software element should be restarted
on the same fog node after confirmation of the failure by the GDM. The number of restart
trials (nrt) defines the maximum number of times that the wrapper successively tries to
restart the software element on the same fog node. If the number of restart trials exceed
nrt, then the wrapper notifies the GDM of the impossibility to restart the software element
on the same fog node and asks for the reinitialisation of the software element on another
fog node. Likewise, Appliance indicates the approach for reconfiguration of the appliance.
The number of reboot trials (nrt) defines the maximum number of times that the wrapper
successively tries to reboot the appliance. The wrapper then notifies the GDM so that a
replacement appliance can take over the failed one.

StateRestoration describes the information in order to restore the state of an encapsu-
lation. BM indicates the type of behavioural model available for the encapsulation. The
state restoration procedure is based on the type of behavioural model available for the
encapsulation as discussed later in Section 8.3. The local filesystem path and stable stor-
age to retrieve the state data (checkpoints and events) are specified. This information is
extracted from the state saving policy of the encapsulation.

ExternalAdmin defines an external administrator where a notification is pushed when an
appliance has failed and cannot be recovered. This is particularly useful to notify service
providers so that a new appliance can be automatically shipped or to notify care-givers in
smart homes for medicated people.

The recovery procedure of an encapsulation is performed according to its local recovery
policy as well as according to the decisions taken by the GDM. The recovery procedure
involves the wrappers as well as the global failure managers SSG, ALM, and Thing’in. The
SSG is used to retrieve the state data of the application. The ALM and fog agents are
involved in the reinitialisation of software elements. Thing’in is used to retrieve information
about the available appliances so that a failed appliance can automatically be replaced. The
reconfiguration and state restoration techniques performed during the recovery procedure
are further discussed in the following sections.

8.2 Reconfiguration

Reconfiguration is the first step of the recovery procedure. Reconfiguration is performed
by wrappers and may also involve the global failure managers Thing’in and ALM depend-
ing on the type of reconfiguration to be performed. The type of entity that has failed
determines the reconfiguration operations that are performed. In the case of a software

110 Chapter 8. Recovery Approach

element element failure, the reconfiguration first involves the restart on the local fog node.
If this is unsuccessful, a placement reconfiguration is performed to reinitialise the software
element on a new fog node. A placement reconfiguration of the software elements hosted
on a fog node is also performed if the fog node fails. In the case of an appliance failure,
the reconfiguration first involves the reboot of the appliance. If this is unsuccessful, an ar-
chitectural reconfiguration is needed to replace the failed appliance. If there is an absence
of replacement appliance, a functional reconfiguration (i.e., degraded mode) is performed.

In the following, the reconfiguration of the application which is performed before restoring
the state of the application is described in more details. To this end, the reconfiguration
operations upon the failure of software elements and appliances are successively presented.

a . Reconfiguration Upon Software Element Failures

A wrapper performs reconfiguration operations on its encapsulated software element. This
procedure, as well as the failure managers involved, is illustrated in Figure 8.2. When
the failure of a software element is confirmed by the GDM, its wrapper restarts a new
instance of the software element. The wrapper may fail to restart the software element
if, for instance, there are not enough resources on the local fog node. A failure to restart
the software element may also happen when the wrapper and the software element are
remote because the wrapper does not have full administration capabilities on the software
element. Therefore, the wrapper tries to restart the software element according to the
maximum number of restart trials nrt as defined in the recovery policy of the software
element. If the number of trials tr ≥ nrt, then the wrapper stops trying to restart the
software element on the same fog node. It notifies the GDM that the software element
cannot be restarted. This implies that a placement reconfiguration is needed. A new
placement should be determined for the software element and it has to be subsequently
redeployed. To this end, the GDM requests a reinitialisation of the software element to
the ALM which determines a new placement for the software element. The ALM, with
the help of fog agents, deploys the software element on the new fog node, sets up the new
wrapper for the software element, and configures the runtime for its execution. Finally,
the wrapper restarts the software element. At this stage, the software element is not yet
functional. It is in a degraded mode where the wrapper intercepts any incoming/outgoing
operations of the software element. The wrapper restores the state of the software element
by retrieving its state data from the local storage of its previous physical node and/or
from the SSG. The wrapper then interrogates its neighbours to know if the mandatory
dependencies of the software element are satisfied. A neighbouring dependency is satisfied
if the neighbouring entity is in its running phase. If this is the case, the behaviour of the
software element is resumed. Otherwise, the software element stays in a degraded mode
until its mandatory dependencies are satisfied.

The failure of software elements is also provoked by the failure of the physical/fog node
on which they are hosted. When a fog node fails, the reconfiguration procedure is more
complex since multiple software elements fail at the same time. When this happens, the

8.2. Reconfiguration 111

GDM requests the reinitialisation of the set of software elements hosted on the failed fog
node. The ALM determines a new placement for each of the failed software element. These
software elements can be placed and reinitialised on different fog nodes depending on the
location of the available resources for the execution of the application. Once the ALM
determines the placement of software elements, it makes use of the fog agents which run on
the corresponding fog nodes to deploy the software elements, set up their wrappers, and
configure their runtime environment. The behaviour of each software element is resumed
after its state has been restored and its mandatory dependencies are satisfied. Note that
if a wrapper cannot restart the software element on the new fog node, it notifies the GDM
so that another placement can be determined.

failure	
decision

entity	
type?

software
element,	se

wrapper

The	FMs	involved	are	annotated	on	each	phase

reconfiguration:
restart	se

restore	state resume	execution
of	software	element

success	?

yes

no;	tr	<	nrt

placement	reconfiguration,
reinitialisation	of	se(s)

no;	tr	≥	nrt

mandatory	dependencies
of	se	satisfied	?

yes

physical/fog	node

GDM wrapper wrapper

ALM,	fog	agent,	wrapper
wait	for	mandatory
dependencies	to	be
satisfied	to	resume

no wrapper

Figure 8.2: Recovery of Software Elements

b . Reconfiguration Upon Appliance Failures

When an appliance fails, if rebooting is unsuccessful, the recovery procedure depends on
the availability of a replacement appliance that has similar features and is available on the
same geographical space as the failed one. Figure 8.3 depicts the steps to recover from the
failure of an appliance as well as the failure managers involved. When an appliance fails, its
primary wrapper tries to reboot the appliance according to the maximum number of reboot
trials as described in its recovery policy. If the appliance cannot be rebooted, the wrapper
notifies the GDM which requests an equivalent appliance to the object registry Thing’in.
An appliance apl1 is said to be functionally equivalent to another appliance apl2 if apl1 can
provide at least a subset of the functionalities of apl2. This replacement appliance should
also be located on the same geographical space as the failed one so that its scope of action
covers the geographical space of the failed appliance. This functionally equivalent appliance
which is given by Thing’in can be a temporary or a permanent replacement according to
the set of services provided by the replacement appliance compared to the failed one.
A permanent replacement appliance is one which offers the full range of services of the
failed appliance. It takes over the failed appliance permanently. A temporary replacement
appliance is one which offers only a subset of the services of a failed appliance and replaces
the failed appliance until a permanent replacement joins the application. For instance, a
bedside lamp can be used as a temporary replacement when the primary lamp in a bedroom
has failed. When the failed lamp is replaced, the application is reconfigured so that the

112 Chapter 8. Recovery Approach

The	FMs	involved	are	annotated	on	each	phase

failure	
decision	of

appliance,	apl

GDM

request	equivalent
appliance

restore	state	of
appliance

resume	execution
of	appliance

degraded	mode

GDM,	Thing'in
equivalent	appliance

found	?
mandatory	dependencies

of	apl	satisfied	?
yesyes

no

wrapper wrapper

wrapper

reboot	apl

no;	tr	<	nrt

no;	tr	≥	nrt

success	?

yes
wrapper

wait	for	mandatory
dependencies	to	be
satisfied	to	resume

wrapperno

Figure 8.3: Recovery of Appliances

primary lamp takes over the bedside lamp and resumes its nominal behaviour. On the
other hand, if two speakers are located in a room and one of them is a backup, then they
can be permanent replacements for each other. When reconfiguration is completed, the
state data of the failed appliance is used to restore the state of the replacement appliance.

If no alternate temporary or permanent replacement appliance is found, architectural re-
configuration fails and the application has to continue its execution with fewer features
in a degraded mode. In this case, the generated events that have to be sent to the failed
appliance is intercepted by the wrappers and discarded. Note that, if the appliance is
essential to the functions of the application, for instance if all other entities depend on the
appliance, the application cannot recover.

In order to restore the state of the application after reconfiguration of software elements
and appliances, the respective wrappers retrieve the state data saved during the state
saving phase. These data are used to restore the state of the application. The subsequent
state restoration procedure performed by wrappers makes use of the behavioural models
of their encapsulations in order to guarantee that a CP-consistent state is restored. The
next section reports the importance of CP-consistency and how it is achieved.

8.3 Cyber-Physical Consistency

IoT applications are cyber-physical. IoT devices can interact with the PW. This implies
that appliances such as actuators can change the state of the PW by performing physi-
cal actions. The state of the PW corresponds to what we can perceive around us (e.g.,
temperature, humidity, light intensity) and is given by sensors and actuators.

During a recovery procedure, restoring the state of an appliance may involve replaying
events after a checkpoint. Upon replaying events on an actuator to restore its state, each
event processed by the appliance can change the state of the actuator and thus perform
actions to change the state of the PW. Even if at the end of the state restoration procedure
the application is in a consistent state, consistency with respect to the PW is violated.
This is because the replay of the events changes the state of the appliance and thus creates
intermediary states before reaching the target state. These intermediary states can create
hazardous and costly consequences in the PW. Hence, the state restoration procedure is

8.3. Cyber-Physical Consistency 113

inconsistent with respect to the PW. Our approach makes use of the behavioural model
of the application and validity times of events in order to compute a target CP-consistent
state to restore the application.

The next subsection describes some of the consequences of cyber-physical inconsistency.
Then, we explain how the behavioural model of the application is used to restore a CP-
consistent state of the application and avoid these undesirable consequences.

8.3.1 Issues in CP-Inconsistency

This section aims at illustrating the issues that arise during the replay of events for state
restoration in the Fog-IoT ecosystem because of its cyber-physical properties. In the fol-
lowing, three IoT use cases in different application domains are presented. In each case,
the issues and consequences of CP-inconsistency are discussed.

a . Patient Morphine Injection Application

The importance of state saving in a patient morphine injection application was discussed in
Chapter 6 and illustrated in Figure 6.1. It showed that if the state of the morphine injection
device is not restored after a reboot/replacement of the failed device, then the number of
already administered doses of morphine is lost. Therefore, extra doses of morphine can be
injected which is dangerous for the health of the patient. A common technique to restore
the state of an entity is to replay the events it has processed before its failure. At the end
of the replay, the entity reaches its pre-failure state. In the case of the morphine injection
device, this means that replaying the messages minjectdose would restore the volatile memory
of the device and thus the number of administered doses before the failure of the device
would be recovered, as illustrated in Figure 8.4.

At the end of the state restoration procedure, the state of the device has been restored
in a consistent state within the application because the value of dose = 3 is consistent.
However, consistency with respect to the PW has been violated. This is because upon
the replay of each message, the device changes state and inject a morphine dose to the

Control
Button

Morphine
Injection
Device

dose	=	1 dose	=	2 dose	=	3

dose	=	3
max	dose
reached

device
reboot

dose	=	0 dose	=	0

doses	injected	during
state	restoration

inject
morphine
dose

inject
morphine
dose

inject
morphine
dose

minjectdose minjectdose minjectdose
minjectdose replaying	messages

during	state	restoration

dose	=	3

volatile	memory
of	device	restored

Figure 8.4: An Example of CP-Inconsistency during State Restoration

114 Chapter 8. Recovery Approach

patient. These changes in state affect the state of the PW and make the PW unsafe to
the patient. Thus, CP-consistency is violated because the state restoration procedure has
made the PW unsafe.

b . Smart Crop Irrigation

Let us now consider a smart crop irrigation application in which appliances which deliver
water and pesticides are deployed on an agricultural field. A server analyses the environ-
mental data to plan and send messages to the appliances for the delivery of water and
pesticides to the crops. If the physical server fails, all the data it has collected and stored
locally become inaccessible. If the server was checkpointed and the messages sent to the
appliances were saved on a stable storage before the failure, a new instance of the server
could be deployed. The checkpoint and saved messages can be retrieved to restore the state
of the server. However, the messages replayed after a checkpoint will deliver an additional
amount of water and pesticides already delivered before the failure. This will result in the
damage of the crops which can be very costly for the farmers. Thus, CP-consistency is
violated because the consequences of the state restoration procedure have made the PW
unsafe (i.e., with respect to the crops) and has caused unnecessary expenses.

c . Smart Home

A recovery procedure in a smart home application that does not account for consistency
with respect to the PW may also be hazardous and costly. For instance, in a smart home
application for elderly and medicated persons, even the failure of a lamp, which may at
first seem unimportant, may be dangerous. The state of the lamps should be restored to
avoid disrupting the activities of the house tenants. Moreover, restoring the state of a
lamp by replaying the set of saved events will make the lamp blink multiple times. This
may annoy the house tenants suffering from epilepsy. Repeated blinking may also provoke
the failure of the lamp. Moreover, an inconsistent state with respect to the PW may be
restored if the validity of events is not taken into account during the state restoration
procedure. The validity of an event gives information about the time duration for which
the event is maintained and valid in the PW. For instance, an event to unlock the door
of the house may have a validity time of 30s after which the door should be locked for
the safety of the house tenants (e.g., to prevent physical intrusion). This means that the
event to unlock the door should not be replayed during a state restoration procedure if its
validity has expired. Likewise, the temperature reported by a sensor at an instant in time
may no longer be valid during a state restoration procedure because the PW has evolved
(e.g., day and night).

Therefore, CP-consistency is essential in order to avoid dangerous and costly situations in
the PW. CP-Inconsistency arises when:

• The state of the application is not restored upon recovery. In this case, the application
has an inconsistent behaviour because it processes events in a different way than
expected. This inconsistent behaviour may impact the PW by provoking hazardous

8.3. Cyber-Physical Consistency 115

situations (This is discussed in Section 6.1).

• The state of the application transits through a set of intermediary states during
the state restoration procedure before reaching the target state. This happens, for
example, when events are replayed during the state restoration. In this case, the
replay of each event causes a change in the state of the PW which can be unsafe and
provoke costly situations.

• The validity time of events are not taken into account upon state restoration. This
result in the replay of expired events and thus the state restored is inconsistent with
respect to the PW.

In order to avoid CP-inconsistency, the failure management approach takes into account
the validity times of events during state restoration. The replay of events is avoided by
making use of behavioural models to compute a target consistent state of the application.
The application can then be set in this state without replaying events. In this way, CP-
inconsistencies are avoided. In the following, the use of behavioural models and validity
time of events to guarantee CP-consistency are described.

8.3.2 State Restoration and CP-Consistent Recovery

CP-consistency aims at restoring a consistent state of the application, including consistency
with respect to the PW. CP-consistency avoids harmful situations and guarantees that the
recovery is safe for the PW. The state restored upon recovery is said to be CP-consistent
if the states of the geographical spaces in the PW are not different from their pre-failure
states, taking into account expired events and the generated events during the recovery
procedure.

Definition 16 (CP-Consistency) Let us denote gs(S) the state of a geographical space gs
where S = {(e1, vt1), ..., (en, vtn)} (see Definition 4). A state restoration procedure is said
to be CP-consistent if ∀gs ∈ PW, gs(Srec) = (gs(Spf)\gs(Sexp))

⋃
gs(Safbr) where gs is

a geographical space in the PW; gs(Srec) is the state of gs after recovery; gs(Spf) is the
pre-failure state of gs; gs(Sexp) is the expired state of gs which is composed of a set couples
(evti, vti) where the values of vti have expired, and gs(Safbr) is a set of couples (evtj, vtj)
representing the set of events that occurred over gs after the failure but before recovery.

In order to restore the application in a CP-consistent state, the failure management ap-
proach makes use of the the validity time of events as well as the behavioural model of
the entities of an application. The state saving policy determines the state data that are
available for the state restoration procedure. This state restoration procedure is performed
by wrappers for their respective encapsulations by retrieving their state data from the local
storage and/or the stable storage. In the following, state restoration for entities which are
characterised by an EBM and a DBM are successively described.

a . State Restoration based on an EBM

116 Chapter 8. Recovery Approach

Let us consider the behavioural model of a software element or an appliance which is
denoted EBM and a state saving policy of the entity which is based on uncoordinated
checkpoint combined with pessimistic message logging. The saved state of the entity is
thus composed of a checkpoint sckpt as well as a sequence of transitions executed during the
runtime of the entity with their associated validity time, E = {(t0, vt0), .., (tm, vtm)}. The
state restoration using the EBM of an entity is illustrated in Figure 8.5. E is first processed
by a filter function. This function aims at discarding all the events that have an expired
vt at the time that the state restoration procedure is being performed. These events are
discarded as they should not be taken into account in the state restoration procedure. The
output of the filter function is the remaining sequence of non-expired events. Note that
the order of occurrence of the events are kept. Thus, filter(E) = Treplay where Treplay is
the sequence of transitions which has a vt that has not expired. The current state of the
entity is thus composed of the couple (sckpt, Treplay).

However, as discussed in Section 8.3.1, replaying the events in Treplay on an appliance may
cause CP-inconsistencies. In order to avoid violating CP-consistency, for restoring the state
of the entity, the wrapper first feeds the checkpoint and then the sequence of transitions
Treplay as input in the EBM of the entity. The EBM executes the sequence of transitions
in Treplay, respecting the order in which they were executed before the failure, by starting
at the state sckpt. Thus, the target state st is computed as follows,

sckpt
ereplay1 ,act,ve,invv−−−−−−−−−−−→ s1

ereplay2 ,act,ve,invv−−−−−−−−−−−→ ...
ereplayn ,act,ve,invv−−−−−−−−−−−→ st

Once st is computed, the appliance or software element can be set to this state. In this
way, the intermediary states during the state restoration procedure are avoided and CP-
consistency is maintained.

EBM
Appliance

sckpt
	Treplay st Appliance

EBM	
Software	element

st Software
element

filterE

filterE

sckpt
	Treplay

wrapper

Figure 8.5: State Restoration using EBM

Using the EBM of an entity during the state restoration procedure has the following ad-
vantages. In the case of appliances, this procedure maintains CP-consistency by avoiding
the harmful impacts of replaying events and executing intermediary states on the PW.
Software elements do not interact with the PW and therefore replaying events on software
elements does not violate CP-consistency. The events re-emitted by the software element
during the replay should however be discarded. The advantage of using an EBM to com-
pute the target state before restoring software elements is to avoid the replay of events that

8.3. Cyber-Physical Consistency 117

can take time to be processed by the software element. The re-emission of events by the
software element during the state restoration procedure is also avoided. Hence, performing
state restoration by making use of the EBM of a software element optimises the procedure.

b . State Restoration based on a DBM

The available behavioural model of a software element may be a DBM. The set of states of
a software element characterised by a DBM is unknown. This means that the target state
of the software element cannot be computed beforehand from its state data. In this case,
a state saving policy based on optimistic or pessimistic message logging is considered. The
saved state of the software element is composed of a sequence of transitions executed during
the runtime of the entity with their associated validity time, E = {(t0, vt0), .., (tm, vtm)}. In
order to restore the state of the software element, E is first processed by the filter function
to discard the expired events. Thus, filter(E) = Treplay where Treplay is the sequence of
transitions which has a vt that has not expired. The sequence of events are then replayed
directly on the software element, in the same order they were received, so that it can
recover its pre-failure state. Note that if the validity time of the events are also unknown,
all the logged events are replayed on the software element by the wrapper. When these
events are replayed on the software element, it transits through a set of intermediary states
before reaching the target state. During this process, the software element may re-emit
events that were already delivered during its pre-failure runtime. These outgoing events
emitted are considered as obsolete and should not be delivered again. Thus, the wrapper
intercepts and discards all the outgoing events during the state restoration process.

Treplay Software
elementfilterE

wrapper

Figure 8.6: State Restoration using DBM

When the application has recovered from a failure and its behaviour is resumed, the wrap-
pers deliver the forthcoming events to the recovered software elements. However, a re-
placement appliance, albeit functionally equivalent, may use different network protocols
and data formats. Thus, the state data saved during the runtime of the failed appliance
have to be adapted into a format that can be processed by the replacement appliance. The
forthcoming events intended for the failed appliance also have to be adapted and redirected
to the replacement appliance if they are encapsulated by different wrappers. The adapta-
tion and redirection of events ensure that the application maintains a consistent behaviour
after recovery. This is discussed in more details in the next section.

118 Chapter 8. Recovery Approach

8.4 Ensuring Service Continuity of Replacement Ap-

pliances

The aim of a replacement appliance is to take over a failed one by ensuring the functions
and services previously provided by the failed appliance. To this end, the state data of
the failed appliance is used to set a CP-consistent state of the replacement appliance.
Moreover, after state restoration, the events that are intended to the failed appliance
should be redirected to the replacement appliance. Likewise, the events generated by a
replacement appliance should be redirected to the corresponding software element that was
connected to the failed appliance. This ensures a consistent behaviour of the application
after the recovery procedure.

8.4.1 Motivation

A failed appliance and its replacement may be of the same family and be functionally
equivalent but, however, have different manufacturers, network protocols, data formats. In
this case they expose interfaces that are functionally equivalent but syntactically different.

Let us consider two functionally equivalent actuators (lamps): Awox StriimLight lamp and
Philips Hue lamp (see Chapter 10). They can be turned on/off with different intensities and
colours. However, the Awox StriimLight lamp connects with a Wi-Fi network and exposes
a SOAP API. On the contrary, the Philips Hue lamp connects with a Zigbee network and
exposes a REST API. They use different data formats to perform the same operation (e.g.,
turn on the lamp). This implies that the state data of one of the lamp cannot be used
as is to restore the state of the other lamp. Moreover, when the failed Awox StriimLight
lamp is replaced by the Philips Hue lamp, the events generated for the Awox StriimLight
have to be adapted in format which can be processed by the Philips Hue lamp and then
redirected to the Hue lamp.

Let us consider now consider two functionally equivalent sensors (motion): Fibaro Multi-
purpose sensor and the Wemo Motion sensor (see Chapter 10). They are connected with
a Z-wave and Wi-Fi network, respectively. The events they send when a motion is de-
tected have different formats. Thus, if the Wemo Motion is used to replace the Fibaro
Multipurpose sensor, then the events generated by the Wemo Motion should be adapted
to correspond to the format of the event generated by the Fibaro Multipurpose sensor.
This ensures that the event can be processed by the corresponding software element.

To this end, Thing’in provides an interface which allows the adaptation of events and state
data for replacement appliances having the same functionalities but having different data
formats and APIs. Thus, our failure management approach relies on Thing’in in order
to ensure the continuity of the services provided by a replacement appliance. The next
subsections detail the mechanisms implemented by the failure management approach to
interact with Thing’in for this procedure.

8.4. Ensuring Service Continuity of Replacement Appliances 119

8.4.2 Adaptation of State Data

The data available to restore the state of a replacement appliance may have been produced
by a currently failed appliance having different API implementations and data formats. In
this case, Thing’in adapts the state data based on the EBMs of the failed and replacement
appliances. This procedure is illustrated in Figure 8.7.

The target state to be restored st is first computed by the EBM of the failed appliance. The
process is carried out by the wrapper of the failed appliance and is similar to the process
illustrated in Figure 8.5. The validity time of events are taken into account so that st is
CP-consistent. Then, the state st has to be adapted so that the replacement appliance can
be restored. Thing’in computes the corresponding equivalent state s′t by making use of the
EBM of the replacement appliance and the ontological equivalences between the appliances.
When the replacement appliance is in the state s′t, it exhibits the same behaviour as the
failed appliance in the state s′t. Note that the computation of the equivalent state, given
by Thing’in, is not in the scope of this Thesis. When s′t is determined by Thing’in, this
state is sent to the wrapper of the replacement appliance. The wrapper sets the state of
the replacement appliance to s′t so that the application is restored in a CP-consistent state.

sckpt,
Δreplay EBM		Failed

AppliancefilterE

wrapper	of	failed	appliance

EBM	Replacement
Appliance

st s't replacement
Appliance

wrapper	of	replacement	applianceThing'in

Figure 8.7: Adaptation of State Data for Restoring Replacement Appliance

8.4.3 Adaptation and Redirection of Events

After the state of the appliance has been restored in a CP-consistent state, the incoming
events originally intended for the failed appliance should be redirected to the replacement
appliance. Likewise, events produced by the replacement appliance should be redirected
to the software element that was connected to the failed appliance. This allows a complete
take over by the replacement appliances and ensures that the application maintains a
consistent behaviour after recovery.

When replacement appliances have different API implementations and data formats, the
redirected events to the replacement appliance have to be dynamically adapted before they
can be processed by the replacement appliance. Events that are produced by replacement
appliances should also be adapted so that they can be processed the destination software
element.

Algorithm 5 illustrates the part of the behaviour of the wrapper with respect to the adap-
tation and redirection of events to replacement appliances.

Several cases are identified depending on the types of APIs implemented by the appliances

120 Chapter 8. Recovery Approach

Algorithm 5 Delivering Events to Replacement Appliances

1: Reception of event intended for a failed appliance: (apl, eapl)
2: if apl /∈ FailedAPL then
3: save(wrp.apl.policy, eapl)
4: deliver(apl, eapl)
5: else
6: if aplRepl 6= null then . replacement appliance aplRepl exists

7: if aplRepl.wrp == apl.wrp then . encapsulated by same wrapper as aplRepl

8: if aplRepl.I == apl.I then . same APIs

9: save(wrp.aplRepl.policy, eapl)
10: deliver(aplRepl, eapl)
11: else . different APIs

12: eadp ← Thingin.adaptEvt(eapl, apl.ebm, aplRepl.ebm)
13: save(wrp.aplRepl.policy, eadp)
14: deliver(aplRepl, eadp)

15: else . encapsulated by different wrapper

16: send(aplRepl.wrp, eapl) . redirect event to wrapper of aplRepl

17: else . event deleted if no replacement apl found

18: delete(eapl)

and whether they are encapsulated by the same wrapper (l.7 − l.8). If the failed and
replacement appliances are encapsulated by the same wrapper (l.7) and implement the
same APIs (l.8), then the wrapper saves the event according to the state saving policy
and delivers the event to the replacement appliance (l.9 − l.10). The event does not
have to be adapted. However, if the failed and replacement appliances have different API
implementations (l.11), then the format of the events have to be adapted before sending
it to the replacement appliance. In this case, Thing’in provides a transformation function
(l.12) for adapting events, which gives for each event intended to the failed appliance, eapl,
the corresponding event to actuate the replacement appliance, eadp. The adapted event
is computed based on the EBM models of the two appliances and the ontologies defined
in Thing’in. The wrapper then sends eadp to the replacement appliance after saving the
event according to its policy (l.13 − l.14). Otherwise, if the replacement appliance is
encapsulated by another wrapper, the event is forwarded to the wrapper that encapsulates
the replacement appliance which also handles its state saving (l.15−l.16). If no replacement
appliance is found, then the event is discarded (l.17−l.18). The application is in a degraded
mode and offers fewer features.

Algorithm 6 illustrates the part of the behaviour of the wrapper with respect to the adap-
tation and redirection of events generated by replacement appliances.

If both the replacement appliance and the failed appliance is connected to the same software
element se, this implies that they are encapsulated by the same wrapper (l.2). In this case,

8.5. Summary 121

Algorithm 6 Delivering Events Generated by Replacement Appliances

1: Reception of event generated by a replacement appliance: (aplRepl, eaplRepl)
. event eaplRepl generated by replacement appliance aplRepl

2: if aplRepl.se == aplFailed.se then . connected to the same software element se

3: if aplRepl.I == aplFailed.I then . have same APIs

4: save(wrp.aplRepl.policy, eaplRepl)
5: deliver(se, eaplRepl)
6: else . different APIs

7: eadp ← Thingin.adaptEvt(eaplRepl, aplRepl.ebm, aplFailed.ebm)
8: save(wrp.aplRepl.policy, eadp)
9: deliver(se, eadp)

10: else . connected to a different software element

11: send(aplRepl.wrp, eapl) . redirect event to wrp of software element

if both appliances have the same API implementations, then the event is saved according
to its state saving policy and delivered to the local software element se (l.3− l.5). However,
if they have different API implementations, then the equivalent event eadp is computed by
Thing’in based on the EBM of the appliances (l.6− l.9) before delivery. If the replacement
appliance and the failed appliance are not encapsulated by the same wrapper (i.e., the event
is intended for a software element encapsulated by another wrapper), then the wrapper
of the replacement appliance sends the event to the wrapper of the destination software
element (l.10− l.11). The event is saved by the wrapper of the software element.

Note that for a temporary replacement, eadp does not always exist because the replacement
appliance offers only a subset of the behaviour of the failed appliance. This is why the
application should be reconfigured as soon as a permanent replacement is available.

8.5 Summary

This chapter has presented the final step of the failure management approach. The recovery
procedure is based on recovery policies which describe local recovery strategies. A recovery
is composed on two successive steps: reconfiguration and state restoration. Reconfiguration
aims at performing operations on the architecture of the application. In the case of software
element failures, the reconfiguration involves the restart of the software element or its
reinitialisation on another fog node according to its recovery policy. In the case of appliance
failures, a replacement appliance which has the same features as the failed one takes over
the functions of the failed appliance. When reconfiguration is completed, the application
is restored in a CP-consistent state. This is performed by computing a target state using
the behavioural model of the application, thus avoiding the replay of events on appliances
and its impacts on the PW. The events generated by replacement appliances as well as
the events redirected to replacement appliances are adapted according to the APIs they

122 Chapter 8. Recovery Approach

expose. This ensures the continuity of the services provided by the replacement appliance
and maintains a consistent behaviour of the application after recovery.

Part III

Validation of the Failure
Management Approach

123

Chapter 9

Model Checking

Contents

9.1 Specification . 126

9.1.1 LNT . 126

9.1.2 Specification of the Failure Management Approach 126

9.2 Properties to Verify . 128

9.3 Evaluation . 131

9.4 Detected Issues . 132

9.5 Summary . 133

The design of the proposed distributed failure management approach is a difficult and
an error-prone task. This is mainly due to the highly distributed nature of the Fog-IoT
ecosystem which requires a distributed architecture for failure management. Thus, the
behaviours of the different failure managers are executed concurrently. This makes the
design of the approach complicated and consequently the validation of the correctness of
the failure management approach is of prime importance. To this end, formal techniques
and tools were used to ensure that the approach respect important correctness properties.

This chapter reports the formal specification of the proposed failure management approach.
The corresponding formal model is used to carry out an extensive analysis to ensure that
the proposed approach works as expected and respects important correctness properties
such as architectural invariants (e.g., there are no disconnected entities in the application)
and functional properties (e.g., when a software element fails, it eventually recovers and
resumes its behaviour in its pre-failure state). This verification is performed using model
checking techniques [74]. Since the most important part of the approach is the recovery
step, the proposed verification is focussed on this step.

125

126 Chapter 9. Model Checking

9.1 Specification

This section introduces the formal specification of the failure notification and recovery
steps of the failure management approach. LNT [52] was chosen as specification language
because it is expressive enough and adequate for formally describing the behaviour of our
failure management approach. Moreover, it is equipped with CADP [74], a rich toolbox
for analysing LNT specifications using model checking techniques.

9.1.1 LNT

LNT is an extension of LOTOS [85], an ISO standardised process algebra, which allows
the definition of data types, functions, and processes. Table 9.1 provides an overview of
the behavioural fragment of LNT syntax. B stands for a LNT term, A for an action, E for
a Boolean expression, x for a variable, T for a type, and P for a process name. The syntax
fragment presented in this table contains the termination construct (stop) and actions
(A). LNT processes are then built using several operators: sequential composition (;),
conditional statement (if), non-deterministic choice (select), parallel composition (par)
where the communication between the involved processes is carried out by rendezvous on
a list of synchronised actions, looping behaviours described using process calls or explicit
operators (while), and assignment (:=) where the variable should be defined beforehand
(var). LNT is formally defined using operational semantics based on Labelled Transition
Systems (LTS).

B ::= stop | A (!E, ?x) | B1;B2

| if E then B1 else B2 end if | select B1[]...[]Bn end select
| par A1, ..., Am in B1||...||Bn end par | P [A1, ..., Am](E1, ..., En)
| while E loop B end loop | var x:T in x := E;B end var

Table 9.1: LNT Syntax (Behaviour Part)

9.1.2 Specification of the Failure Management Approach

The specification for the failure management protocol consists of three parts: data types
(∼100 lines), functions (∼600 lines), and processes (> 800 lines). A large part of the
specification depends on the input application model (involved applicative entities and
their dependencies), and is therefore automatically generated from a program written in
Python (∼1,500 lines). For instance, the running application presented in Section 4.6
(consisting of nine software elements / appliances) results in about 2,500 lines of LNT
specification that are generated automatically from the Python program.

Data types are used to describe mainly the application model (fog nodes, software elements,
appliances, dependencies, behavioural models) as defined in Chapter 4. Figure 9.1 shows
some of the datatypes used to define an application. An application consists of a set of
Fog Nodes, a set of appliances, and a set of logical bindings. A fog node is defined as a

9.1. Specification 127

set of software elements. Each software element consists of an identifier, a set of interfaces
(operations) as well as an LTS describing the order in which these operations must be
triggered (behavioural model).

1 type Application is
2 application (fgns: FGNSet, apps: ApplianceSet, bindings: BDSet)
3 end type
4
5 −− a set of fog nodes
6 type FGNSet is
7 set of FogNode
8 end type
9

10 type FogNode is
11 fognode (ident : ID, ses : SESet)
12 end type
13
14 −− a set of software elements
15 type SESet is
16 set of SE
17 with ”==”, ”!=”
18 end type
19
20 type SE is
21 se (ident : ID, interface : IDSet, model: LTS)
22 end type

Figure 9.1: Excerpt of the LNT Data Types Defined for Modelling an Application

Functions apply to data expressions and are necessary for several kinds of computations:
extracting information from the application such as dependent entities, checking if two
appliances have equivalent behavioural models, checking whether the application respects
some specific invariants (absence of cycles, no disconnected entity, etc.), computing the
target state in case of recovery of an entity, etc.

Processes are used to specify the behaviour of the global and local failure managers. Only
the behaviour of the managers which are important for the recovery step are specified,
namely the SSG for retrieving state data and the GDM to decide recover step. The be-
haviour of the wrappers and fog agents on local fog nodes are combined into one process
called Local Agent. Another process, called Simulator, is used to make the application
execute functional operations and inject failures to the system. This simulator process is
parametrised by the length of the execution (the maximum number of functional opera-
tions) and the maximum number of failures to inject during an experiment.

Figure 9.2 shows the four LNT modules used to specify the approach where boxes cor-
respond to LNT modules (generated code with dashed boxes). When a module is inside
another one, it means that the external one includes the inner one. The DATATYPES

128 Chapter 9. Model Checking

module defines data types and functions. The APPLI module describes the application
model. The GDM module defines the behaviour of the Global Decision Manager, which
is independent of the application, so written once and for all. Finally, the MAIN module
defines all other processes for the local and global failure managers.

DATATYPES

APPLI

GDM

MAIN

Figure 9.2: Overview of the Specification Structure

For illustration purposes, let us give one example of processes. Figure 9.3 shows an instance
of the simulator process. One can see that this process can either make the application
evolved (top part). It also shows why a part of the specification depends on the application,
and also how different types of failures can be injected in the application. The process
keeps track of the number of occurred operations (l.3: functional or l.4: failure) in order to
terminate (correctly) when the simulation has reached the indicated maximum number of
execution steps. As illustrated in the same figure, we use actions for modelling functional
operations (e.g., l.7 − l.11: initiate, on, off) or for identifying the occurrence of specific
events in the prococol (e.g., l.15: failureSE, l.17: failureAppliance, l.19: failureFogNode).

Finally, the MAIN process is generated and represents all processes (simulator, global man-
agers, local agents associated to software elements and appliances) executed concurrently
as well as the way they interact with each other.

9.2 Properties to Verify

We identified 12 key properties that must be respected by the protocol. These properties
can be organised in three different groups: (i) final objective of the approach (prop. 1
below) (ii) architectural invariants (prop. 2, 3, 4 below), and (iii) additional functional
properties (prop. 5-12 below). For some of these properties, we also give their formulation
in the MCL language [108], the temporal logic used in CADP toolbox. Note that, since
some of these properties depend on the functional actions used in the application (prop.
6, 7, 9), they are generated automatically using our Python program at the same time as
the LNT specification. Note that we could verify additional properties, but the following
12 properties are the most important ones.

9.2. Properties to Verify 129

1 process simulator [initiate :any, on:any, off:any, failureSE: any, failureAppliance: any,
failureFogNode: any, finish : any] (nbFuncOperationsMax: Nat, nbFailureMax: Nat) is

2 var x, y: ID, sender: ID, receiver : ID, nbFuncOperations: Nat, senderTargetState: ID,
receiverTargetState: ID, nbFailure: Nat in

3 nbFuncOperations := nbFuncOperationsMax ; −− to count the size of the trace
4 nbFailure := 0 ; −− to count the number of effective failures
5 while (nbFuncOperations > 0) loop
6 select −− functional behaviour
7 initiate (?sender of ID, ?receiver of ID, ?senderTargetState of ID, ?receiverTargetState of ID)
8 []
9 on (?sender of ID, ?receiver of ID, ?senderTargetState of ID, ?receiverTargetState of ID)

10 []
11 off (?sender of ID, ?receiver of ID, ?senderTargetState of ID, ?receiverTargetState of ID)
12 [] −− failure injector (3 kinds of failures)
13 if (nbFailure < nbFailureMax) then
14 select
15 failureSE (?x of ID, ?y of ID)
16 []
17 failureAppliance (?x of ID, ?y of ID)
18 []
19 failureFogNode (?x of ID)
20 end select;
21 nbFailure := nbFailure + 1 −− updating the number of failures
22 end if
23 end select;
24 nbFuncOperations := nbFuncOperations − 1 −− updating the number of operations
25 end loop;
26 finish −− correct termination
27 end var
28 end process

Figure 9.3: Example of Simulator Process

(i) Final Objective:

1. The state of a failed software element (or appliance if there is an equivalent
appliance available) after restoration is identical to its pre-failure state.

(ii) Architectural invariants:

2. There are no cycles of dependencies in the architecture of the application.

3. There are no disconnected entities in the application.

4. Appliances have no dependencies on other appliances.

(iii) Functional properties:

5. When a failure occurs, the failed entity eventually recovers. This is true for
appliance only if there is an equivalent one available.

130 Chapter 9. Model Checking

library actl.mcl end library

[true* . ’{FAILURESE ?se:String ?state:String}’]

AU A A(true, not ’{FAILURESE !se !.*}’,

’{RESTORESECOMPLETED !se !.*}’, true)

This property is formalised by making use of action CTL patterns [64].

6. When a software element is paused, it eventually starts again. This is not always
true for appliances because they cannot always be replaced.

7. When a failure occurs, every mandatory dependent software element and appli-
ance (by propagation) is paused.

8. A software element or appliance cannot execute its functional behaviour when
paused or failed.

9. The managers implementing the failure management (GDM, SSG, Local Agents)
can always terminate correctly.

mu X . (< true > true and [not FINISH] X)

10. The application is fully operational except when operating in degraded mode.

11. There is no sequence of two failures without a restore in between (illustrated on
software elements below).

(

[true* . ’ FAILURESE ?se:String ?state:String ’ .

not (’ RESTORESECOMPLETED !se !.* ’) .

’ FAILURESE !se !.* ’

] false

)

12. A sequence exists resulting in the application execution with no failure.

All the properties verified on the running application illustrated in Figure 4.6 consists of
about 600 lines of MCL. Half of the code corresponds to property 8, since in that case
we generate one property for each possible functional operation for each entity in the
application. Property 8 consists of the conjunction of all these atomic properties.

The next section presents the experiments carried out for the evaluation of the failure
management approach.

9.3. Evaluation 131

9.3 Evaluation

To verify that our failure management approach satisfies all the twelve properties of inter-
est, we use as input a set of applications. This set of applications are extracted from the
running application illustrated in Figure 4.6. The structure of the application as well as the
number of fog nodes, software elements, appliances, and bindings are modified. This al-
lows the input of applications with different architectural configurations. For each resulting
application, we generate the part of the LNT specification depending on the application,
and then we call CADP exploration tools for generating an LTS describing all the possi-
ble executions for that application. In this LTS, transitions are labelled with the actions
introduced previously in the specification, and we use these actions in the properties to
check that the protocol works as expected.

The analysis of the protocol was run on a macOS Mojave machine with a 2.8 GHz Intel Core
i7 processor, 16GB of DDR3 RAM and 256GB PCIe-based flash storage. An experiment
takes as input an application, the maximum number of functional operations executed by
the application, and the maximum number of failures. It is worth noting that since we use
enumerative techniques here, there is no need to experiment with large applications, long
executions or a high number of failures in order to find issues in the approach. In contrast,
most problems are usually detected on small applications and scenarios.

Table 9.2 summarises some of the experiments we carried out during the verification phase.
The first column identifies the example. The next four columns characterise the size of the
application (number of fog nodes |FGN |, of software elements |SE|, of appliances |APL|
and of dependencies |DEP |). The following two columns characterise the scenario in terms
of execution length (|E|) and number of failures (|F |). Finally, we give the size of the raw
LTS (number of states |S| and transitions |T |), the time in seconds for generating the LTS
(Gen.), and the time for verifying all temporal properties (Verif.). Those properties are
analysed on a minimised version of the LTS (reduced with respect to strong bisimulation).
It takes a few seconds to obtain that minimised version, which is computed using CADP
reduction tools. The minimised version is about the half in average in terms of number of
states and transitions compared to the raw version.

The row with identifier 4 in Table 9.2 corresponds to the running application illustrated
in Figure 4.6. These results show that the larger the application is (in terms of number
of entities), the longer it takes to generate the corresponding LTS model (see row with
identifier 6 for example). Second, the main factor impacting the size of the LTS is the sim-
ulation parameters. Since we rely on enumerative techniques, one more functional action
or one more failure generate many more executions since this action/failure may occur at
any moment during the application execution and this results in additional interleavings
of actions (see rows with identifiers 1 and 2 in the table). The time for model checking all
properties is generally much longer than the generation time. More generally, the verifica-
tion time linearly increases with the size of the LTS whereas the generation time tends to
explode when the application size increases. We use rather small applications for verifica-

132 Chapter 9. Model Checking

Ident
Appli. model Simul. LTS (raw) Time (sec.)

|FGN| |SE| |APL| |DEP| |E| |F| |S| |T| Gen. Verif.
1a 3 3 2 4 10 1 56,416 193,025 11 179
1b 3 3 2 4 10 2 156,432 517,758 12 535
1c 3 3 2 4 10 3 236,871 713,535 12 783
1d 3 3 2 4 10 4 281,549 756,433 12 1,285
1e 3 3 2 4 10 5 296,946 716,387 12 4,469

2a 3 4 3 7 5 1 3,815 13,045 15 64
2b 3 4 3 7 5 2 16,081 52,582 16 163
2c 3 4 3 7 7 2 52,207 198,247 16 338
2d 3 4 3 7 7 3 105,550 358,924 17 397
2e 3 4 3 7 10 3 489,778 2,096,701 25 1,012

3a 4 5 3 11 5 2 29,779 112,377 102 365
3b 4 5 3 11 10 3 314,349 2,077,252 109 992

4 3 5 4 8 5 2 22,709 58,177 2,403 111

5 5 6 4 11 5 2 33,444 121,254 327 371

6 5 8 4 15 5 2 53,973 212,742 9,392 16,764

Table 9.2: Experimental Results

tion purposes (up to 12 entities for example with identifier 6 in the table) because this is
not necessary to use large applications for finding issues, and contrarily, most problems are
usually found on small yet pathological applications. Moreover, verification in this case is
done once before deployment of the application and long verification time can therefore be
afforded.

9.4 Detected Issues

The specification and verification helped to refine our understanding of the finer points
of the recovery procedure. This section focuses on three points of interest which were
identified or confirmed using model checking.

First, it is worth reminding that, although the failure management approach is always able
to work and terminate correctly, this is not the case of the application. Indeed, in case
of appliance failure, if there is no functionally equivalent appliance available, the state of
the application cannot be repaired and restored. In this case, the application has to keep
working in degraded mode. This was confirmed using verification techniques. During our
experiments, when there was no additional equivalent appliance for replacing a failed one,
the first part of property 10, “ the application is fully operational ” was violated. This is
because an appliance has failed and cannot be replaced. In this case, the application is not
fully operational since it offers a partial service in a degraded mode.

9.5. Summary 133

Another interesting problem comes from the propagation of failure notifications when there
is a failure in an application with multiple dependencies. Let us consider an application
with four entities and dependencies among them looking like a diamond. For instance e2

depends on e1, e3 depends on e1 and e4 depends on both e2 and e3. If e1 fails, by propagation
two failure notifications will be received at the local agent of e4. If those messages are not
consumed, this can induce a deadlock (correct termination of the protocol is not possible,
property 9) because one of the local agents of e2 and e3 is not able to propagate its
notification, resulting in an erroneous situation. This can be corrected by either receiving
as many notifications as supposed with respect to the failed entity and the structure of
the application, or by accepting the first failure notification message and discarding the
forthcoming similar ones.

As far as multiple simultaneous failures are concerned, the protocol was originally supposed
to support such failures. However, the design of the approach was more complicated and
several properties were violated. This is due to the fact than when trying to handle several
failures at the same time, some contradictory messages can be exchanged because of delays
in asynchronous message exchanges (e.g., one message saying to resume the execution an
entity whereas another failure has occurred so a contradictory message asking to pause
is also received). As a consequence, in this first version of the protocol, the GDM treats
failures one after the other, which is reasonable since the occurrence of multiple failures is
scarce and the implementation of the failure management approach on a realistic testbed
shows that the time taken to recover from failures is less than one second (see Section 10).

9.5 Summary

This chapter has described the formal specification and verification of our failure manage-
ment approach, with a focus on the recovery step, using model checking techniques. The
verification of the approach is particularly important because it is complex and thus prone
to design errors. The aim of verification using model checking techniques was to ensure
that the approach works as expected and respects important correctness properties. It was
also useful for clarifying several questions about the approach as well as for identifying
and correcting some issues in the approach (e.g., failure notification propagation and de-
graded mode). It is worth noting that all key properties were satisfied for all the examples
of our dataset of applications used for verification purposes. In addition, the issues and
feedback of the specification and verification of the approach helped in its implementation
as a framework called F3ARIoT for IoT DevOps. This framework and its deployment on
a smart home testbed is presented in the next chapter.

134 Chapter 9. Model Checking

Chapter 10

F3ARIoT - Implementation and
Evaluation

Contents
10.1 Implementation of F3ARIoT . 136
10.2 Experimental Environment . 140

10.2.1 Smart Home Testbed . 140
10.2.2 Use Case Application . 142
10.2.3 Deployment of F3ARIoT . 143

10.3 Evaluation Methodology . 144
10.4 Evaluation Tools . 147
10.5 Functional Evaluation . 149
10.6 Performance Evaluation . 151
10.7 Conclusion . 153

In the previous chapter, a formal verification of the failure management approach was
presented. It validates the correctness of the approach. However, this evaluation cannot
reproduce the complexity of the Fog-IoT ecosystem and its runtime. Moreover, it does
not give any indication on the time taken to perform the recovery procedures. Hence, this
chapter is complementary to the previous one. This chapter reports the implementation
of the failure management approach presented in Part II of this Thesis. The approach
is implemented as a framework called F3ARoT, intended for IoT DevOps1. In order to
evaluate F3ARoT, it is deployed on a smart home application. A functional evaluation
is performed to confirm the results presented in Chapter 9. A performance evaluation
is carried out to analyse whether the time taken to recover from failures is done in an
acceptable delay with respect to end users, which according to [47, 114], is one second
for the user’s flow to stay uninterrupted.

In the following, Section 10.1 describes the implementation of F3ARoT and how it is

1Development and Operations team

135

136 Chapter 10. F3ARIoT - Implementation and Evaluation

configured for deployment. Section 10.2 describes the smart home application and the
deployment of F3ARoT on this application for its evaluation. Sections 10.3 and 10.4 discuss
the methodologies and the tools, respectively, for performing this evaluation. Sections 10.5
and 10.6 detail the result of the evaluation of F3ARoT. Finally, Section 10.7 concludes this
chapter.

10.1 Implementation of F3ARIoT

F3ARIoT is a framework designed for DevOps of IoT applications. The framework provides
the following failure managers as described in Part II of this Thesis: the SSG, the Global
Decision Manager (GDM), the fog agents, and the wrappers. The SSG was implemented
as a MongoDB database. The other failure managers were developed in Node.js because it
is lightweight (i.e, low memory footprint) and its packet manager, npm, handles effectively
the management of runtime dependencies. Moreover, the failure managers are completely
portable and can run on heterogeneous physical nodes independently of the underlying
operating system. This makes its integration simple in the Fog-IoT environment. Note that
the Application Lifecycle Manager (ALM) [99] and the Object Registry (Thing’in) [15, 14]
are provided by other platforms at Orange Labs.

The failure managers GDM, fog agent, and wrappers each embeds a configuration file
based on a json format. The GDM is generic and independent of the use case application.
Its configuration file indicates how it communicates with the other failure managers. The
configuration file of the fog agent specifies the configuration for monitoring neighbouring
physical nodes. The configuration file of wrappers defines the relevant information (e.g.,
state saving policy, recovery policy, BM) about its encapsulations. In the following, we
explain in more details these configuration files.

a . Configuration of the GDM

Figure 10.1 shows the structure of the configuration file of the GDM. This configuration
file indicates how the GDM communicates with the other failure managers. The GDM
sends requests to the ALM (l.2) for reinitialisation of software elements and Thing’in for
requesting replacement appliances (l.12). Two communication methods are supported:
MQTT and event-based sockets. MQTT [4, 3] is a standard messaging protocol based
on a publish/subscribe mechanism (l.3, l.13). MQTT is useful because it consumes very
low resources and is therefore suitable for IoT applications. DNSname gives the domain
name of the device on which the MQTT broker is deployed and MqttPort gives the logical
port to connect in order to publish and subscribe to events. Socket.IO [11] (l.7, l.17) is
an event-based communication library of Node.js. In this case, the DNSname gives the
domain name of the device on which the ALM/Thing’in is deployed. Note that the domain
names can be replaced by an IP address to reach the device.

10.1. Implementation of F3ARIoT 137

1 {
2 ”ALM”: {
3 ”Mqtt”: {
4 ”DNSname”: ”<broker−dns−name or IP−adr>”,
5 ”MqttPort”: ”<mqtt−port>”
6 },
7 ”Socket”: {
8 ”DNSname”: ”<alm−dns−name or IP−adr>”,
9 ”socketPort”: ”<socket−port>”

10 }
11 },
12 ”Thingin”: {
13 ”Mqtt”: {
14 ”DNSname”: ”<broker−dns−name or IP−adr>”,
15 ”MqttPort”: ”<mqtt−port>”
16 },
17 ”Socket”: {
18 ”DNSname”: ”<thingin−dns−name or IP−adr>”,
19 ”socketPort”: ”<socket−port>”
20 }
21 }
22 }

Figure 10.1: Configuration File of the GDM

b . Configuration of Fog Agents

The structure of the configuration file of fog agents is illustrated in Figure 10.2. The
configuration part for communication with the ALM and GDM is similar to that presented
in Figure 10.1. Thus, we show only the configuration part for monitoring of neighbouring
physical nodes. Figure 10.2 shows the configuration file of the fog agent rpi-x.fga. The
configuration file lists two sets fog agents. The set PhysicalNodeMonitoredBy gives the list
of fog agents that monitors the physical node on which rpi-x.fga is deployed (l.2). Thus,
rpi-x.fga sends heartbeat messages to these fog agents. The frequency of emission of the
heartbeat is based on the average network latency between the two fog agents. The default
value of hb-period-emission is calculated as follows, period = 1.5 ∗ (RTT/2) where RTT
is the network round-trip time between the two fog agents. The period is 1.5 times higher
than time to send a heartbeat message to account for network variations. This value can
be adjusted by the IoT DevOps so that the detection of a failure of a physical node is
more/less reactive with respect to their use case applications. For example, l.12 − l.15
shows the configuration to send heartbeats to the fog agent rpi-0001.fga on port 3001.
The period of emission of the heartbeat is 50ms. In this case, rpi-x.fga sends a heartbeat
message to rpi-0001.fga every 50ms. The set NeighPhysicalNodeToMonitor gives the list
of the neighbouring physical node that rpi-x.fga should monitor. Thus, rpi-x.fga receives
heartbeat messages from these neighbouring fog agents. For example, l.25 − l.28 shows
the configuration for monitoring a neighbouring physical node. The fog agent rpi-x.fga
receives hearbeat messages from the neighbouring fog agent deployed on the physical node
rpi-0002 at a period of 60ms. Therefore, if a heartbeat message is not received in the 60ms
time interval, rpi-x.fga suspects the failure of rpi-0002.

138 Chapter 10. F3ARIoT - Implementation and Evaluation

1 {
2 ”fog−agent−id”: ”rpi−x.fga”,
3 ”physical−node−id”: ”rpi−x”,
4 ”PhysicalNodeMonitoredBy”: [
5 {
6 ”id”: ”<fog−agent−id>”,
7 ”DNSname”: ”<fga−physical−node−dns−name−or−IP>”,
8 ”hb−port”: ”<heartbeat−port−for−monitoring>”,
9 ”hb−period−emission”: ”<period−of−sending−heartbeat>”

10 },
11 {
12 ”id”: ”rpi−0001.fga”,
13 ”DNSname”: ”pn.far−iot.rpi−0001”,
14 ”hb−port”: ”3001”,
15 ”hb−period−emission”: ”50”
16 }
17],
18 ”NeighPhysicalNodeToMonitor”: [
19 {
20 ”id”: ”<physical−node−id>”,
21 ”hb−port”: ”<heartbeat−port−for−monitoring>”,
22 ”hb−period−reception”: ”<period−of−reception−heartbeat>”
23 },
24 {
25 ”id”: ”rpi−0002”,
26 ”DNSname”: ”pn.far−iot.rpi−0002”,
27 ”hb−port”: ”3002”,
28 ”hb−period−reception”: ”60”
29 }
30]
31 }

Figure 10.2: Configuration File of a Fog Agent

c . Configuration of Wrappers

The configuration file of a wrapper is composed of four components as illustrated in Fig-
ure 10.3. Architecture defines the local and neighbouring architecture. More specifically,
it defines the entities that the wrapper encapsulates and the dependencies of these encap-
sulations. Monitoring defines the monitoring technique for each encapsulation. Policies
defines the state saving policy and the recovery policy for each encapsulation. BM defines
the behavioural model of the encapsulations. The monitoring technique as well as the
policies for state saving and recovery are automatically assigned based on the properties
of the encapsulations as discussed in Part II of this Thesis. The wrapper generates a
configuration file for each encapsulation which details these four components.

Wrapper

Architecture Monitoring Policies BM

Figure 10.3: Components of Configuration Files of Wrappers

10.1. Implementation of F3ARIoT 139

1 {
2 ”encapsulationId”: ”se−0001”,
3 ”typeEntity”: ”software element”,
4 ”Architecture”: {
5 ”fog−node”: ”fgn−0001”,
6 ”EncapsulationDependsOn”: [
7 {
8 ” identifier ”: ”apl−0002”,
9 ”typeEntity”: ”appliance”,

10 ”dependency”: ”optional”
11 }
12],
13 ”DependsOnEncapsulation”: []
14 },
15 ”monitoring”: {
16 ”technique”: ”local system observation”,
17 ”period”: ”10”
18 },
19 ”BM”: {
20 ”model”: ”EBM”,
21 ”path”: ”./BM−se−0001”
22 },
23 ” Policies ”: {
24 ”LocalData”: [
25 {
26 ”exec−process−se−0001”: ”˜/appli/se−0001.js”
27 }
28],
29 ”StateSavingApproach”: {
30 ”Technique”: ”Checkpoint, MsgLog”,
31 ”ER”: ”Emission, Reception”,
32 ”OP”: ”Pessimistic”
33 },
34 ”CkptParams”: {
35 ”Weight”: [
36 {
37 ”updateVersion”: ”2”
38 }
39],
40 ”Freq”: {
41 ”Tckpt”: ”12h”,
42 ”Nckpt”: ”10”
43 }
44 },
45 ”Storage”: {
46 ”local”: ”˜/appli/localStorage”,
47 ”StableStorage”: {
48 ”comm”: ”Mqtt”,
49 ”DNSname”: ”ssg.far−iot.mongoDB”,
50 ”port”: ”1883”
51 }
52 },
53 ”nrt”: ”3”,
54 ”ExternalAdmin”: {
55 ”comm”: ”REST”,
56 ”API”: ”/ failureNotification /permanent/fognode/fgn−0001”
57 }
58 }
59 }

Figure 10.4: Configuration File of a Wrapper

140 Chapter 10. F3ARIoT - Implementation and Evaluation

Figure 10.4 depicts an example of part of the configuration file generated by the wrapper
for an encapsulation. The encapsulation is a software element and its identifier is se-
0001 (l.2 − l.3). It is hosted on the fog node fgn-0001. The software element has an
optional dependency on the appliance apl-0002 (l.4− l.10). There are no entities that has
dependencies on the se-0001 (l.13). The monitoring of the software element is based on
local system observation with a period of 10ms (l.15− l.17). This is the default monitoring
technique for software elements. The behavioural model of the software element is an EBM
and is described in the file BM-se-0001 (l.19− l.21). The state saving and recovery policies
of se-0001 is described as from l.23. LocalData gives the resources to execute the sotfware
element (l.24 − l.28). In this case, it is composed of a Node.js process. The state saving
approach is based on checkpoint and pessimistic message logging at emission and reception
(l.29− l.32). This state saving technique is assigned based on the properties discussed in
Chapter 6. The event updateVersion has a weight = 2. This implies that a checkpoint
is performed immediately after the reception of this event. By default, all other events
received/emitted by the software element have a weight = 1. A checkpoint is performed
after processing ten events. The maximum time interval between two checkpoints is 12h
(l.34 − l.42). Storage (l.45 − l.50) specifies the access to the local and stable storage. By
default, the number of reboot trials (nrt) of software elements is 3 (l.53). ExternalAdmin
defines a REST API to push a notification in case the fog node fgn-0001 has failed and
cannot be recovered.

10.2 Experimental Environment

The target experimental environment for evaluating F3ARIoT is a smart home application
inspired from an industrial project at Orange Labs [99]. The testbed is composed of
infrastructure and applicative entities that can be found in real-life smart homes. For
instance, the Connected Home Service [7, 8] by Orange include the appliances involved in
this testbed.

10.2.1 Smart Home Testbed

Figure 10.5 depicts the smart home testbed with the location of the appliances in the home
as well as the placement of the software elements hosted on fog nodes.

The physical nodes of the testbed are PC1, rpi1, rpi2, and rpi3 which are respectively
a PC (x86 64, 4GB RAM, Windows 7), and three Raspberry Pi Model 3 Type B (64-
bit, 1.2Ghz, quad-core ARM Cortex-A53 processor, 1 GB RAM, 16GB microSD storage,
Raspbian GNU/Linux 8.0 jessie). These devices are representative of the physical resources
and capacities that are available at the edge of the network and more specifically in a smart
home.

The appliances are as follows: two Philips Hue lamps, a Hue Go lamp (bedside lamp),
a Hue Tap (a set of four connected push-release buttons), a Fibaro Multipurpose Sensor

10.2. Experimental Environment 141

SoundPlayer
Orchestrator

NodeHueActuate
NodeHueSense

MQTT	Broker

FibaroAdapter
WemotionSense
AwoxActuate

Bedroom

Kitchen

Living	room

Hue	Tap	

Hue	lamp
Hue	Go	lamp

Fibaro	Multipurpose	Sensor

Speaker

Wemo	Motion
Fibaro	Door	Opener	Sensor

rpi2(fgn2)

rpi3(fgn3)

PC1(fgn4)
rpi1(fgn1)

:	Fog	Agent
Awox	StriimLight

Figure 10.5: Smart Home Testbed

(motion, light, temperature and vibration sensors), an analog wired Speaker, an Awox
StriimLight lamp (lamp with integrated speaker), a Wemo Motion Sensor, and a Fibaro
Door Opener Sensor. The Philips Hue devices use the wireless protocol Zigbee. The Fibaro
devices uses Z-wave protocol. Awox StriimLight and Wemo Motion are connected through
Wi-Fi.

The application consists of four fog nodes fgn1, fgn2, fgn3 and fgn4 which are hosted on
the physical nodes. The software elements running on these fog nodes are:

• MQTT Broker : a Message Oriented Middleware (MOM) based on a publish-
subscribe communication pattern. It is an implementation of a MQTT broker based
on Mosquitto [3].

• Orchestrator : it subscribes to all the events published on the MQTT Broker. It
defines the corresponding scenarios and user stories (set of actions) that should be
triggered based on the patterns of events reported by sensors. It sends messages to
other software elements according to the scenarios defined.

• NodeHueSense: it retrieves the button events from the Hue Tap Buttons device and
publishes them onto the MQTT Broker. The event published contains the button
number pressed and the local time it was pressed.

• FibaroAdapter : it retrieves events sensed by the Fibaro Multipurpose Sensor and
Door Opener Sensor and publishes them on the MQTT Broker. It also configures
the frequency of reported events from the devices. For instance, an event is sent each

142 Chapter 10. F3ARIoT - Implementation and Evaluation

time the door is opened and closed.

• WemotionSense: it reports motion events sensed by the Wemo Motion device and
published them onto the MQTT Broker. A motion event is sent when motion is
sensed and when the motion subsequently stops.

• NodeHueActuate: it accepts messages for the control of the Hue lamps (e.g., turning
on/off, changing colour/intensity). The lamps are controlled via the REST API they
expose.

• AwoxActuate: it accepts messages for the control of the Awox StriimLight lamp and
its integrated speaker. The lamp is controlled via its SOAP API.

• SoundPlayer : it accepts messages for the actuation of the Speaker. It is based on
the open-source audio player mpg123.

The application was developed in Node.js and Go as they consume low resources. They
are therefore suitable for running on Raspberry Pis.

10.2.2 Use Case Application

The smart home use case application is light automation and physical intrusion detection.
This type of smart home application is increasingly popular because it aims at the comfort
and convenience of the house tenants. To this end, a set of user stories corresponding to this
use case is identified and enumerated below. These user stories are defined at the software
element Orchestrator which recognises patterns of events and triggers the corresponding
events for actuation of the IoT devices.

a . User Story: Indoor Light Automation

The Hue Tap buttons are used to control the Hue lamps. The device has four buttons b1,
b2, b3 and b4. The software element NodeHueSense retrieves the buttons pressed as well
as the number of times they are pressed. In this way, the bedroom lamp can be turned on
with different intensity. For instance, pressing the button b3 turns on both the bedroom
lamp and kitchen lamp at a very low intensity. This is particularly useful to prevent itching
of the eyes when the house tenants wakes up at night to go to the bathroom.

b . User Story: Welcome Home

In the second user story, the house tenant comes back home after dark. The lamp in the
porch (i.e., Awox StriimLight) is turned on when motion is detected by the Wemo Motion
Sensor. The lamp is kept on for 30 seconds, the time for the person to unlock the front
door. It is then automatically turned off. Upon entering the house, the Hue lamp in the
living room is turned on and a welcome music is played on the Speaker.

c . User story: Bedtime

10.2. Experimental Environment 143

In the bedtime user story, the house tenant indicates that he is going to bed by pressing
the button b4 of the Hue Tap device. In doing so, all the lamps of the house are turned off
and an alarm is set to notify physical intrusion into the house. If any motion is detected
inside the house by the Fibaro Multipurpose Sensor or if the door is opened (detected by
the Fibaro Door Opener Sensor), then an alarm is triggered on the Speaker and all the
lamps of the house are turned on in a red colour. It is worth noting that the alarm is
automatically unset when the house tenant presses any other button upon waking up at
night to prevent the activation of the alarm by himself.

These user stories were chosen so as to illustrate the different types of state restoration
and recovery that F3ARIoT implements. For instance, the first user story is useful because
it allows the software elements and the lamps to move to different states. This allows the
design of experiments that can be repeated which involves the same software elements and
appliances but with different states to be restored for each experiment. In this way, any
bias can be eliminated when evaluating consistent state restoration since the experiment
involving the same entities is repeated with different inputs and outputs. The user stories b
and c also illustrate the validity of events that should be taken into account for computing
the target state to be restored in order to achieve CP-consistency.

10.2.3 Deployment of F3ARIoT

In order to carry out the evaluation of F3ARIoT on this smart home application, a fog agent
was deployed on each fog node of the application. Eight wrappers were deployed. Each
wrappers encapsulates a software element and the neighbouring appliances. Table 10.1
summarises the wrappers and their encapsulated software element and appliances. For
instance the wrapper wrp1 encapsulates the software element NodeHueActuate as well
as the both Hue lamps and the Hue Go lamp. Each wrapper embeds a DBM of its
encapsulated software element and an EBM of its encapsulated appliances.

Wrapper Encapsulated Software Element Encapsulated Appliances

wrp1 NodeHueActuate
Hue Lamps

Hue Go lamp
wrp2 NodeHueSense Hue Buttons
wrp3 SoundPlayer Speaker
wrp4 Orchestrator –

wrp5 FibaroAdapter
Fibaro Door Opener Sensor
Fibaro Multipurpose Sensor

wrp6 WemotionSense Wemo Motion
wrp7 AwoxActuate Awox StriimLight
wrp8 MQTT Broker –

Table 10.1: Wrappers and their Encapsulations

For the purpose of the evaluation, the global failure managers GDM, SSG, ALM, and

144 Chapter 10. F3ARIoT - Implementation and Evaluation

Thing’in are deployed on a dedicated high capability computer HCC (x86 64, Intel core
i7, 4 cores, 2.90Ghz, 16GB RAM and 250GB storage). This computer is considered to be
reliable and part of the neighbourhood Telco’s infrastructure. A simplified version of the
ALM and Thing’in are used in this evaluation.

10.3 Evaluation Methodology

This section explores the methodology for carrying out experiments on a Fog-IoT testbed
and how this methodology is applied in the evaluation of F3ARIoT on the smart home
testbed presented in Figure 10.5. Such an evaluation is complex because of the issues
and challenges related to: a) constrained capabilities, b) heterogeneity, c) cyber-physical
interactions, d) failure injections, and e) the complexity of reproducing some scenarios.
These challenges and how they are tackled are highlighted in this section.

a . Constrained Capabilities

Devices in the Fog-IoT environment, like Arduinos and Raspberry Pi, are usually con-
strained in terms of functions, processing, storage and communication capabilities. There-
fore, the evaluation techniques for diagnosis, auditing and measurements logging should
be chosen so as to have a minimal impact on the application. The evaluation tools, for
instance, should consume negligible physical resources (CPU, bandwidth, storage) that
should rather be dedicated to the application. Therefore, storage of measurement data
should be externalised to a dedicated storage infrastructure. Moreover, to avoid consump-
tion of applicative bandwidth and computing resources, auditing of logs is done a posteriori
to experiments rather than during the experiments.

b . Heterogeneity

Heterogeneity should be taken into account when mounting a Fog-IoT testbed so that it
exhibits the properties of a real deployment. If this is not the case, the evaluation would
lead to conclusions that cannot be extrapolated to real world application. Heterogeneity
was taken into account in the proposed testbed. The network of devices vary from Wi-Fi,
Zigbee and Z-wave. For instance, the Hue lamps communicate with a Zigbee network
and implement a REST API whereas the Awox StriimLight lamp has a Wi-Fi network
and implements a SOAP API. Multiple technologies are involved like MQTT and message
buffers for communication, as well as Node.js and Go for programming languages. The
capacities and physical architecture of the physical nodes also differ (CPU, RAM, physical
architecture, OS).

10.3. Evaluation Methodology 145

c . PW Isolation and Event Injection

When carrying out experiments on cyber-physical IoT applications, there may be unex-
pected or unwanted interference from the PW. A change of state in the PW captured
by devices will trigger a change in the state of the application. For example, during an
experimental scenario where the Wemo Motion Sensor and Awox StriimLight lamp are
involved, an accidental motion detected before the start of the experiment may lead to an
unexpected state saved and subsequently an unexpected state restored. This may lead to
an erroneous evaluation. In order to prevent PW interference, sensor devices should be
either physically isolated, emulated or put in a controlled PW environment.

Physical isolation consists in creating a barrier around an appliance such that changes in the
PW are not sensed and/or changes in the state of the device do not change the state of the
PW. In some cases, physical isolation may be simple to implement and enough to prevent
interferences. For instance, the Wemo Motion Sensor can be physically isolated using
an opaque box (e.g., carton box). However, inevitable changes in the PW, like changes
in temperature or humidity, will be sensed by the Fibaro Multipurpose Sensor. In this
case, the state of the surrounding PW environment should be controlled and maintained
constant by making use of devices like thermostats. In other cases, it becomes harder and
costly to isolate these interferences. For instance, physical isolation of the Speaker would
require an anechoic chamber which is an unrealistic solution. A more convenient solution
is to replace a sensor that cannot (or is costly to) be physically isolated with emulation.
An emulated module is a program that is designed based on the EBM behavioural model
of the appliance. The program reproduces the behaviour of the real appliance. Emulation
provides an easy and cheap way of isolating a device without decreasing the features of the
application.

Isolating an appliance from the PW implies that the events previously generated by the
appliance have to be injected. For instance, if a temperature sensor is replaced with an
emulated module, changes in temperature of the PW will not be sensed. Two techniques
for injecting events are adopted: (i) Physical Event Injection where the change of state of
an isolated sensor is forced by an electronic/mechanical actuator. For instance, a motion
can be injected on the Wemo Motion Sensor (and a press on the Hue Tap buttons) by
automating an electronic circuit like Servo [10] or a solenoid-based motor by making use
of an Arduino; (ii) Virtual Event Injection consists in using a program to inject an event
which the application sees as coming from the isolated appliance. This type of injection is
most appropriate for the emulated appliance since virtual injection is not always possible on
a real device. For example, a virtual event cannot be injected on the Fibaro Door Sensor.
It has to be physically brought apart to generate the corresponding door opened event.
Virtual event injection can also be used to inject events on software elements. These events
should, however, be injected at the producer of that particular event. Injecting directly
at the consumer may create inconsistencies in the global state of the application. For
example, injecting an event directly on the Speaker to play music may result in its state
being inconsistent with the state of the software elements SoundPlayer and Orchestrator.

146 Chapter 10. F3ARIoT - Implementation and Evaluation

Figure 10.6 recaps the procedure for deciding the type of isolation and event injection.

Isolate
appliance

PW	state	changes
affect	experiments?

No	PW
Isolation

no

physical	isolation
possible?

yes

Physical
Barrier

yes

PW	environment	
control	costly?

no

Add	devices
to	control	PW

no
yes Emulation

physical	event	injection
costly/impossible?

Physical	Event	Injection
by	Arduinos	or	selenoid-

based	motor

Virtual	Event
Injectionyes

no

Figure 10.6: PW Isolation and Event Injection

d . Failure Injection

Failures on software elements and emulated modules can be injected by shutting down
their corresponding processes or stopping their services through system calls. It can be
automated and repeated any number of times without consequences on the software element
(software resources like configuration files and databases should be reinitialised) or on
the underlying infrastructure. Failures on infrastructure entities (appliances and physical
nodes) can be provoked by cutting the power source of the device using a smart plug for
devices that use the main power supply from wall sockets or using an external power source
modulator circuit for devices powered by a battery. However, repeated failure injections
on these devices for evaluation purposes can be harmful and end up in a definite failure.
Cutting the power source of a Raspberry Pi or the Hue lamps repeatedly will ultimately
cause their break down. In such cases, the failure of the device can be simulated such
that its failure can be inferred. For instance, a Faraday cage can be used to prevent
communication of a wireless appliance. The network interface of a physical node can be
shut down whereby the failure detection mechanism will deduce its failure. This technique
is used as failure injection on Raspberry Pis. Finally, failure notifications can also be
injected to simulate failures. Figure 10.7 recaps the decision for the type of failure injection.
Randomisation of failure injections (i.e., randomly choosing entities to inject failures) is also
important in order to eliminate bias. The implementation of randomisation and replication
of failure injections for our evaluations are described in Section 10.4.

e . Reproducing Miscellaneous Conditions

Some experimental conditions cannot be repeatedly reproduced. This means that repeating
an experiment with pre-defined conditions to evaluate the behaviour of the approach may
be impossible. For instance, once the firmware of an appliance is updated, rolling back to

10.4. Evaluation Tools 147

Failure
Injection

entity	type

Shutting	down
processes

software
element,
emulation

physical	node,
appliance

repeated	failure
injections	to	be

performed	?

power
source

network	
type

Smart	plug Faraday	cage

External	power
modulator

wireless

wired

main	socket

batteryno

yes

Shut	down	network
interface,	Emulation,
Failure	notification

Figure 10.7: Failure Injection

the previous version may be blocked, preventing experimentation during a live update of
the device. Likewise, mobility of wireless devices, like Hue Go lamp, are hard to reproduce
and the use of robots [21] for this purpose is expensive. Emulation may be adapted for
reproducing some of the cases that cannot be reproduced on real devices since it offers the
possibility of extending the behaviour of an appliance. Furthermore, emulation coupled
with event injection were used to make the application execute the different user stories.
This allows the automatic generation of state data of software elements and appliances.
This procedure avoids manually running the user stories for data generation. Emulation
is also a way of easing monitoring and failure injections since operations can be performed
easily on an emulated program.

10.4 Evaluation Tools

In order to implement the methodology discussed in the previous section and perform the
evaluation of F3ARIoT, five additional evaluation tools were developed:

a . Random Failure Injector, RFI

The aim of the RFI is to replicate (i.e., repeat on different entities) and randomise failure
injections on software elements, appliances and physical nodes. The failure of software
elements are provoked by shutting down their corresponding processes or services. The
failure of appliances is simulated by injecting a failure notification at the corresponding
wrappers or by provoking the failure of their emulated modules. Failure notifications are
used because, unlike software elements, repeatedly injecting failures on a physical device
may cause its break down. The failure of physical nodes are provoked by shutting down
their network interfaces. The RFI consists of two components: a Failure Injection Selector,
FIS and a set of Failure Injection Operators, FIOs. A FIO is deployed on each fog node and
they synchronise with a global FIS. The FIS is centralised for better control and aftermath

148 Chapter 10. F3ARIoT - Implementation and Evaluation

audit. It executes the following function, Array<Id> injectFailures(Array<Type> E, Int
nf, Int tf, Date st, Date et), where E contains the type(s) of entities on which to provoke
the failures (i.e. physical/fog nodes, appliances, software elements), nf is the number of
failures, tf is the number of seconds between failures, st and et are the start and end time
of the experiment. The function diffuses nf random entities of type(s) E at a tf rate to the
FIOs which inject the corresponding failures. The FIS and FIOs log the failure injections
and their timestamps for auditing.

b . Repair Injector, RI

It is used to inject a repair on physical nodes and appliances after their failure have been
provoked by the RFI. For instance, the failure of a Raspberry Pi is provoked by the RFI by
shutting down its network interfaces. Subsequently, the neighbouring fog agents detect its
failure since heartbeat messages are not received. To mock the repair of the Raspberry Pi,
the RI reboot its network interface so that the neighbouring fog agents detect the repair.
The RI is coupled with the RFI to reproduce the failure and subsequent repair behaviour
of physical nodes and appliances.

c . Scenario Injector, SI

The purpose of the SI is to change the state of the application. To do so, it injects an
event or a sequence of events corresponding to a given user story. After injection, it returns
the resulting state in which the application should be to the Verifier tool. The change of
state provoked by the SI allows the generation of state data and the change of state of
the application. In this way, the restoration of consistent a state can be evaluated under
different states of the application.

d . Verifier

It checks that the application is in a specific state after a scenario injection and checks
CP-consistent recovery. To do so, it requests the state of the different entities of the
application. It also checks that the application is functional. To do so, it requests a user
story injection to the SI and checks that the resulting change in state of the application is
consistent with the user story.

e . Measurements Logger, ML

The ML observes the events (failures, reconfiguration, state restoration, recovery, etc.)
pushed by the GDM, wrappers and evaluation tools. It logs these events with their times-
tamps for auditing. For instance, these logs allow the computation of the time taken to
repair a failure or the time taken to restore the state of software elements and appliances.
All computing and storage tasks related to the experiments are performed on a dedicated
machine a posteriori to experiments.

In the following, two types of evaluation are proposed. The functional evaluation focuses
on evaluating whether the different failure managers work as expected and that the differ-

10.5. Functional Evaluation 149

ent recovery procedures are successfully achieved. The aim of this evaluation is to confirm
the results obtained in Chapter 9 by performing experiments on real application. The per-
formance evaluation focuses on evaluating whether the recovery procedure is implemented
in a reasonable user time.

10.5 Functional Evaluation

This section aims at analysing the end-to-end failure management of F3ARIoT under real
world conditions and scenarios. In order to do so, the failure of both software elements
and appliances are targeted to evaluate failure notification propagation, degraded mode
and CP-consistent recovery. Three classes of Failure-Recovery Scenarios are implemented
for this evaluation. Each scenario describes a set of steps to evaluate the different tasks
implemented by the framework. The steps in the scenarios are illustrated in the workflow
in Figure 10.8. For each step, it gives the operations, the tools involved, the outputs of
the Verifier, and the outputs of the ML. An evaluation starts by first setting up an initial
state of the application using the SI. The ML logs the start time Tstart of the evaluation
and the Verifier logs a boolean, Bsucc when the initial settings are completed. Next, a
Failure-Recovery Scenario among F-R-S1, F-R-S2, and F-R-S3 is randomly chosen. The
ML logs the timestamps of each step. The Verifier logs a boolean, Bsucc, representing the
success of a recovery procedure.

Initial State
Setting

Failure
injection State

restoration
Application
is operational

Repair
injection

Verification

Tools

Outputs Tstart, Bsucc Tfailure T , B Bsucc Trepair

1.1

F-R-S2

SE

Hue Lamp

Wemo
Hue Tap2.1

3.1

1.2 1.3 1.4
2

2.4

2.3

2.2
2.5

2.6

3.2

3.5

3.4
3.3
3.6

3.7

SI, Verif, ML FI, ML SI, Verif, ML SI, Verif, ML RI, ML

succrestoration

Figure 10.8: Failure-Recovery Scenarios

F-R-S1 aims at evaluating the consistent recovery of software elements. A random software
element failure is provoked by the Failure Injector. The Verifier is used to check that the
software element has recovered in a consistent state. A set of events is then injected.
The correct change of state confirms that the application has been repaired and is fully
functional.

150 Chapter 10. F3ARIoT - Implementation and Evaluation

F-R-S2 aims at assessing degraded mode, architectural reconfiguration, and CP-consistent
recovery. Both the Wemo Motion and Hue Tap buttons are targeted for this experiment
because they trigger a degraded mode when they fail since they cannot be replaced in
this testbed. A failure is first injected on one of these two devices, randomly chosen.
The subsequent failure notification propagation and degraded mode of the application is
checked by the Verifier. The RI is then used to inject a repair of the device. This triggers a
reconfiguration of the application whereby the previously failed device is reintegrated into
the application. Recovery notifications are propagated. The Verifier is used to confirm that
the application has been successfully recovered and is fully operational again by requesting
a set of motion events and button press injections. It then checks the correct change
of state in the application, i.e. the Awox StriimLight/Hue lamps are turned on and off
accordingly.

F-R-S3 evaluates architectural reconfiguration and CP-consistent recovery. After the ini-
tial settings, a failure is injected onto the bedroom Hue lamp. This results in the state
of the failed lamp being restored on the Hue Go lamp (bedside lamp) which is used as
a temporary replacement. The Verifier is used to check that the correct CP-consistent
state of the bedside lamp is restored. It should correspond to the pre-failure state of the
failed Hue lamp. Then, Hue Tap buttons events are injected to check that the forthcoming
events are redirected to the replacement appliance by the wrapper and that corresponding
changes in the state of the bedside lamp are consistent. Finally, a repair is injected con-
cerning the bedroom Hue lamp. The subsequent CP-consistent recovery on the permanent
replacement (i.e. main bedroom lamp) is checked by the Verifier. Hue Tap buttons events
are injected. The correct changes of the state of the lamps confirm that the application
has recovered and is fully operational.

In order to repeat and randomise the experiments for evaluation, the tools presented in
Section 10.4 are synchronised such that two random scenarios from F-R-S1, F-R-S2 and
F-R-S3 are selected every hour at a random time instant. The experiments lasted for
one month for which, 681 software elements and 688 appliances failures were injected.
F-R-S2 was run 393 times involving Wemo Motion Sensor and 183 times for Hue Tap
buttons device. F-R-S3 was run 166 times. The auditing of the logs retrieved during these
experiments showed that F3ARIoT works well in practice for failure scenarios that can
happen in real-life. F3ARIoT recovers a consistent state of the application upon software
element failures. Moreover, a degraded mode is achieved when an appliance, that cannot
be replaced, fails. The experiment also shows the success of failure notification propagation
and CP-consistent recovery.

Therefore, this functional evaluation confirms the correct behaviour of the F3ARIoT on a
real deployment of a smart home application and supports the results presented in Chap-
ter 9.

10.6. Performance Evaluation 151

10.6 Performance Evaluation

This section aims at having a performance evaluation of the recovery process performed
by F3ARIoT. More specifically, it aims at showing that the time taken for F3ARIoT to
implement PW-consistent recovery is performed within an acceptable time with respect to
end users.

a . Software Elements

The first experimental campaign aims at evaluating F3ARIoT for single software element
failure at a given frequency. To this end, the RFI is set to provoke one random failure
every five seconds. The experiment is stopped after provoking five thousand failures on
each software element. The state restoration procedure of the software element consists in
replaying events before loading a checkpoint. The mean time to recover a failed software
element is given by the ML tool and computed as follows, Trecover = Trestart+Trestore, where
Trestart is the mean time taken to restart the software element and Trestore is the mean time
taken to retrieve the data and restore its state. Figure 10.9 illustrates the average values
of Trestart of the software elements where se1, se2, se3, se4, se5, se6, and se7 are respectively
AwoxActuate, WemotionSense, FibaroSense, NodeHueActuate, NodeHueSense, Speaker-
Actuate, and Orchestrator. It shows that the time taken for a software element to be
functional varies, but takes less than one second. The heterogeneous restart times are
mainly due to the implementation and the runtime dependencies of the software elements.
The figure also illustrates the corresponding mean time taken for state restoration of each
software element. It shows that the percentage overhead introduced by F3ARIoT for state
restoration is almost negligible compared to the time for the software element itself to
restart. Thus, the time for recovery is mostly dependent on the nature of the software
element rather than the mechanisms implemented by F3ARIoT.

se1 se2 se3 se4 se5 se6 se7

Software Elements

Ti
m

e
to

 re
co

ve
r i

n
m

s

0
20

0
40

0
60

0
80

0
10

00

6.4%
10.4% 11.2% 9.9%

7.5%
8.6%

7.3%restart time
restoration time

Figure 10.9: Time to Recover Software Elements Failures

Note, however, that the time for state restoration may be higher if there is a costly pro-
cessing following the replay of an event. This is why the frequency of checkpoints defined

152 Chapter 10. F3ARIoT - Implementation and Evaluation

at a wrapper should not only be based on the number of processed events or execution
time, but also on the weights of events such that a checkpoint can be performed after an
event that causes a costly processing. The optimal frequency of checkpoint is a subject of
future works.

In a second experimental campaign, the frequency of RFI is modified such that the number
of failures in the five-second intervals is increased up to five failures. The aim is to analyse
the performance of F3ARIoT under stress. The time to restore the state of individual
software elements is computed each time and is depicted in Figure 10.10. The horizontal
axis defines the number of failures of software elements in a five-second interval. The
vertical axis describes the average time taken to restore the state of each software element.
In the case of two failures in the five-second interval, the average time to restore the
state of each software element is less than 100ms. In the case of five failures, the average
time to restore the state of each software element is less than 120ms. It shows a slight
increase in the state restoration overhead as the number of failures increases which remains,
however, rather below the restart time of the software elements which can be up to 900ms
as illustrated in Figure 10.9. This increase accounts for the repeated solicitation of the
stable storage within small time intervals.

1 2 3 4 5

20
40

60
80

10
0

Number of Failures

T
im

e
to

 r
es

to
re

 in
 m

s

Figure 10.10: Time to Restore State of Software Elements for Multiple Failures

b . Appliances

The objective of the experiments targeting appliances is to measure the time taken for
restoring a CP-consistent state of appliances by using their EBM models. The time to
restore consists of the time for the wrapper of the appliance to retrieve the state data, feed
the set of events into its EBM, restore the resulting target state of the appliance and receive
an acknowledgement from the appliance. The experiment is repeated one thousand times
for each appliance at five seconds interval. Figure 10.11 depicts the time to restore the state
of appliances appl1, appl2, appl3, appl4 and appl5 which are respectively Awox StriimLight,
Speaker, livingroom Hue lamp, bedroom Hue Go and bedroom Hue lamps. The time taken
to restore a CP-consistent state of the appliance remains close to 100ms for the Awox

10.7. Conclusion 153

StriimLight and is less than 150ms for the Speaker. In the case of the Hue lamps, the state
restoration time is always below 200ms. The time for state restoration of appliances are
expectedly higher than those of software elements because the appliance and the wrapper
are, unlike software elements, delocalised and connected over a wireless network. Thus, a
higher time to restore the state of appliances is due to network communication. The time
for restoring a CP-consistent state is always below 200ms and is therefore acceptable from
a user point of view in a smart home.

appl1 appl2 appl3 appl4 appl5

0
5

0
1

0
0

1
5

0
2

0
0

Appliances

T
im

e
 t

o
 r

e
s
to

re
 i
n

 m
s

Figure 10.11: Time to Restore State of Appliances

10.7 Conclusion

This chapter has presented an implementation of our failure management approach as
a framework called F3ARIoT. It was deployed on a smart home testbed composed of
infrastructure and applicative entities that can be found in real-life smart homes.

A functional evaluation of F3ARIoT showed that the failure managers ensure their roles
and the recovery procedures are performed successfully for the different types of failures
injected. The performance evaluation aimed at evaluating whether the recovery procedure
is done in an acceptable delay with respect to end users. According to [47, 114], 1s is the
limit in response time for the user’s flow to stay uninterrupted. Moreover, [114] estimates
that in case of failures, recovery should be done in less than 15s to avoid annoyance and
disruption of the user. The performance evaluation showed that the overhead for state
restoration is negligible compared to the restart time of software elements. The time to
recover, including the time for state restoration, does not exceed 1s. The time for restoring
a CP-consistent state of appliances is achieved in less than 200ms. To sum up, these results
are satisfactory and show that recovery is done within short delays, even in the case of
high frequency of failures, that is completely acceptable from an end user point of view.

154 Chapter 10. F3ARIoT - Implementation and Evaluation

Chapter 11

Conclusion

Contents
11.1 Summary of Contributions . 155

11.2 Future Work . 157

11.2.1 Full Autonomicity . 157

11.2.2 Inferring Parameters . 157

11.2.3 Predictive Maintenance . 158

11.2.4 Scalability . 158

11.2.5 Extension to Other IoT Application Domains 159

This Thesis proposed an end-to-end autonomic failure management approach for IoT ap-
plications in the Fog that is capable of detecting failures and recovering the application in a
consistent state with respect to the PW. The approach avoids costly and unsafe situations
in the PW as well as maintains a consistent behaviour of the application after recovery.
This chapter concludes this Thesis by summarising our key contributions. Future work to
extend the proposed approach is also discussed.

11.1 Summary of Contributions

This section summarises our contributions in designing an autonomic failure management
approach for IoT applications in the Fog.

The first contribution of this Thesis is a formal model for IoT applications in the Fog. This
model characterises the devices in the Fog infrastructure which provide physical resources
as well as applicative entities that run on this infrastructure. The mechanisms performed
for failure management such as for observing state changes, detecting failures, reconfiguring
the application, as well as for recovery are implemented according to the properties of the
entities involved in the application as defined in the proposed model. Thus, the approach
relies on this model to implement autonomic failure management.

155

156 Chapter 11. Conclusion

Then, we proposed an end-to-end failure management approach which is composed of four
functional steps. (i) state saving, (ii) monitoring, (iii) failure notifications, and (iv) recov-
ery. State saving aims at saving the state of the application during its runtime. We propose
state saving policies which describe several combinations of state saving techniques that
suit the specificities of the Fog-IoT ecosystem. Monitoring is a continuous process and aims
at reporting information about the failure and recovery of the entities participating in the
application. The techniques for monitoring are chosen such that they have a minimal in-
terference on the application. When a failure is detected, the state saving step of the failed
entity stops. Failure notifications are propagated to the part of the application impacted
by the failure so that the application can move to a degraded mode and a partial service
can be provided. To recover from the failure, the application is first reconfigured and then
a consistent state of the application is restored, including consistency with respect to the
PW. In order to achieve CP-consistency, we propose a state restoration procedure that is
based on recovery policies which make use of (i) the data saved during the state saving
step, (ii) the behavioural model of the application, and (iii) the validity time of events. The
use of the EBM behavioural model avoids the replay of events that have harmful impacts
on the PW and ensures consistency between the state of the application and the state of
the physical world (i.e., cyber-physical consistency).

We proposed two complementary validations of the approach. First, we described a formal
specification and verification of the approach, with a focus on the recovery step, using
model checking techniques. This aimed at eliminating design errors and ensuring that the
approach works as expected as well as respect important correctness properties. The results
of this validation showed that the properties of interest such as architectural invariants
(e.g., there are no disconnected entities in the application) and functional properties (e.g.,
when a software element fails, it eventually recovers and resumes its behaviour in its pre-
failure state) are satisfied. Second, we implemented the failure management approach as a
framework called F3ARIoT. This framework is intended for IoT DevOps. The parameters
by default can be tuned by IoT DevOps to fit the specificities of their use case applications
(e.g., frequency of monitoring, validity time of events, frequency of checkpoints, etc.).
F3ARIoT was deployed on a smart home application based on an industrial project at
Orange Labs. The results of this evaluation showed that the framework works well in
practice and recovers from failures of the infrastructure and application in a CP-consistent
way. A performance evaluation of the F3ARIoT showed that the additional overhead
introduced by the failure management framework is negligible. Moreover, the recovery
time is bounded by one second. The recovery procedure is thus done in a completely
acceptable delay in regards to end users.

11.2. Future Work 157

11.2 Future Work

As far as future works are concerned, we propose some research directions to extend our
work. Sections 11.2.1 and 11.2.2 describe short terms perspectives. Sections 11.2.3 and
11.2.4 report medium term perspectives. Section 11.2.5 describes a long term endeavour.

11.2.1 Full Autonomicity

In its current version, F3ARIoT recovers from failures of the infrastructure and application
that it manages. One of our priority in terms of future work is to make F3ARIoT fully
autonomic. In order to be fully autonomic, F3ARIoT should be able to manage and
repair itself. This property is referred to as self 2-repair [41]. This can be based on a
recursive design where F3ARIoT manages itself in the same way it manages a distributed
application so that it can detect failures of the failure managers and recover from these
failures. To this end, the global failure manager GDM should be replicated on different
physical node. In this case, the replicas monitor each other and an election protocol
can determine which replica takes over when a failure occurs. Regarding the wrappers,
they can monitor each other by observing the messages exchanged between them and by
implementing ping-ack/heartbeat mechanisms. A neighbouring wrapper can be used to
implement the recovery procedure of a failed wrapper. When a wrapper recovers from a
failure, it has to retrieve the messages (from the local or stable storage) it has logged but
are not yet delivered to its encapsulations. If there are multiple messages that have to
be delivered to an encapsulation, the messages can be replayed on its EBM to determine
the target state to set the encapsulation. If the wrapper fails upon reception of a message
but before logging it, the message should be re-emitted by the emitting wrapper after the
failed wrapper has recovered. To do so, acknowledgement messages can be used. In this
case, a message is acknowledged only after logging the message. This ensures that if the
wrapper fails before logging, the message will be re-emitted.

11.2.2 Inferring Parameters

Most of the parameters in the configuration files of F3ARIoT such as monitoring technique
and state saving techniques can be automatically assigned based on the properties (e.g.,
communication model, frequency of emission of messages, entity type, etc.) of the applica-
tion. However, other parameters such as validity time of events and weights of events (for
computation of the checkpoint frequency) have to be manually filled in by the DevOps of
the IoT application in the configuration file of wrappers. These parameters can be inferred
so that the framework could be easily adopted and well appreciated by IoT DevOps. For
instance, the validity times of events can be inferred from the type of the event and from
the frequency at which the event is sent. The weights of events can be inferred by mea-
suring the time an entity takes to process the event. The frequency of checkpoint is then
automatically set based on the information inferred. The average time taken to compute
an event can also be used to distinguish between a busy and a failed entity. The frequency

158 Chapter 11. Conclusion

of monitoring can then be dynamically set based on the variations in communication delays
and the time to compute events.

11.2.3 Predictive Maintenance

In this Thesis, we had a reactive approach to failure management. That is, a recovery
procedure is engaged only after a failure has occurred. A pro-active approach can be
achieved by coupling the current approach with predictive maintenance. This pro-active
approach would recover from the occurrence of failures and would also be able to predict
when a failure might occur based on machine learning techniques. Such prediction can be
based on the time of execution, the frequency and history of failures, performance data,
or heat dissipated by a device. The occurrence of the failure may then be prevented by
performing a maintenance (e.g., reboot of the device, temporary shut down, notifications
to plug a device before its battery drains out of power). In this way, the failure of a
component of the application that may bring down the whole application may be avoided.
For instance, IIoT (Industrial IoT) applications may involve engine cylinders or turbines
for which it would be preferable to implement predictive maintenance because the failure
of such components may damage surrounding equipments and be very costly.

11.2.4 Scalability

The evaluation of F3ARIoT on the smart home application showed that the recovery proce-
dure exhibits good performances with respect to end users even in the case of high frequency
of failures. In order to keep these performances for applications that are highly geograph-
ically distributed, such as smart cities, the GDM should be geographically distributed.
This aims at minimising the network latencies between the entities of the application and
the GDM. In this way, each instance of GDM manages a subset of the entities (i.e., a
cluster) grouped with respect to geographical constraints. For instance, a GDM instance
can be deployed in each smart home or across each neighbourhood in the Telco’s infras-
tructure (e.g., Telecom’s towers, PoP of Internet Service Providers, Mini data-centers such
as RuggedPod [135]). The GDM instances can share information about the impact of a
failure across multiple clusters. They can also share information on the resources available
in each cluster to perform recovery procedures.

11.2. Future Work 159

11.2.5 Extension to Other IoT Application Domains

Although the proposed approach in this Thesis was designed for IoT applications in the
smart home/building domains, the presented concepts and ideas can be used in other
application domains. It would be interesting to study how this approach can be enriched
to manage failures in these cases. For instance, in a drone application domain, the choice
between the different state saving policies, in addition to the parameters presented in
Table 6.2, may also depend on the mobility of the entities in the application. State data
could be stored and replicated on nearby drones so as to optimise the recovery time.
The proposed recovery policies can also be extended. For example, when a drone cannot
be rebooted, rather than performing an immediate reinitialisation of the hosted software
elements, another drone can be used to bring back the failed drone in a network range in
which remote maintenance can be performed.

160 Chapter 11. Conclusion

Bibliography

[1] Arduino Website. https://www.arduino.cc/.

[2] BME280 Combined Humidity and Pressure Sensor - Final Data Sheet. https://

www.embeddedadventures.com/datasheets/BME280.pdf.

[3] Mosquitto Website. https://mosquitto.org/.

[4] MQTT Website. http://mqtt.org/.

[5] Onion Omega Website. https://docs.onion.io/omega2-docs/.

[6] OPT3001 Ambient Light Sensor (ALS). http://www.ti.com/lit/ds/symlink/

opt3001.pdf.

[7] Orange Maison Connectée. https://boutique.orange.fr/maison/domotique/.

[8] Orange Maison Protégée. https://boutique.orange.fr/telesurveillance.

[9] Report: Orvibo Smart Home Devices Leak Billions of User Records (June, 2019).
https://www.vpnmentor.com/blog/report-orvibo-leak/.

[10] Servo Circuit. https://www.arduino.cc/en/reference/servo.

[11] Socket.IO Website. https://www.npmjs.com/package/socket.io.

[12] That ”Internet of Things” Thing: In the real world, Things Matter More Than Ideas.
http://www.rfidjournal.com/articles/view?4986.

[13] The ”only” Coke Machine on the Internet. https://www.cs.cmu.edu/~coke/

history_long.txt.

[14] Thing’in Graph. https://hellofuture.orange.com/en/

thingin-the-things-graph-platform/.

[15] Thing’in Platform and The Web of Things. http://thinginthefuture.com/.

[16] An Architectural Blueprint for Autonomic Computing. IBM White Paper, 31:1–6,
2006.

161

https://www.arduino.cc/
https://www.embeddedadventures.com/datasheets/BME280.pdf
https://www.embeddedadventures.com/datasheets/BME280.pdf
https://mosquitto.org/
http://mqtt.org/
https://docs.onion.io/omega2-docs/
http://www.ti.com/lit/ds/symlink/opt3001.pdf
http://www.ti.com/lit/ds/symlink/opt3001.pdf
https://boutique.orange.fr/maison/domotique/
https://boutique.orange.fr/telesurveillance
https://www.vpnmentor.com/blog/report-orvibo-leak/
https://www.arduino.cc/en/reference/servo
https://www.npmjs.com/package/socket.io
http://www.rfidjournal.com/articles/view?4986
https://www.cs.cmu.edu/~coke/history_long.txt
https://www.cs.cmu.edu/~coke/history_long.txt
https://hellofuture.orange.com/en/thingin-the-things-graph-platform/
https://hellofuture.orange.com/en/thingin-the-things-graph-platform/
http://thinginthefuture.com/

162 BIBLIOGRAPHY

[17] Current Trends in Smart City Initiatives: Some Stylised Facts. Cities, 38:25 – 36,
2014.

[18] SmartSantander: IoT Experimentation Over a Smart City Testbed. Computer Net-
works, 61:217 – 238, 2014. Special issue on Future Internet Testbeds – Part I.

[19] The Internet of Things: Mapping the Value Beyond the Hype.
https://www.mckinsey.com/business-functions/digital-mckinsey/our-insights/the-
internet-of-things-the-value-of-digitizing-the-physical-world, 2015.

[20] David Perez Abreu, Karima Velasquez, Marilia Curado, and Edmundo Monteiro. A
resilient Internet of Things architecture for smart cities. Annals of Telecommunica-
tions, 72(1), 2017.

[21] Cedric Adjih, Emmanuel Baccelli, Eric Fleury, Gaetan Harter, Nathalie Mitton,
Thomas Noel, Roger Pissard-Gibollet, Frederic Saint-Marcel, Guillaume Schreiner,
Julien Vandaele, and Thomas Watteyne. FIT IoT-LAB: A Large Scale Open Exper-
imental IoT Testbed. In IEEE 2nd World Forum on Internet of Things (WF-IoT),
Dubai, 2015.

[22] L. Alvisi, E. Elnozahy, S. Rao, S. A. Husain, and A. de Mel. An Analysis of Com-
munication Induced Checkpointing. In Digest of Papers. Twenty-Ninth Annual In-
ternational Symposium on Fault-Tolerant Computing (Cat. No.99CB36352), pages
242–249, 1999.

[23] Lorenzo Alvisi, Karan Bhatia, and Keith Marzullo. Causality Tracking in Causal
Message-logging Protocols. Distrib. Comput., 15(1):1–15, 2002.

[24] Lorenzo Alvisi and Keith Marzullo. Message Logging: Pessimistic, Optimistic,
Causal, and Optimal. IEEE Trans. on Software Engineering, 24(2):149–159, 1998.

[25] Dana Angluin, Sarah Eisenstat, and Dana Fisman. Learning regular languages via al-
ternating automata. In Proceedings of the 24th International Conference on Artificial
Intelligence, IJCAI’15, pages 3308–3314, 2015.

[26] J. Ansel, K. Arya, and G. Cooperman. DMTCP: Transparent checkpointing for
cluster computations and the desktop. In 2009 IEEE International Symposium on
Parallel Distributed Processing, pages 1–12, 2009.

[27] Masoud Saeida Ardekani, Rayman Preet Singh, Nitin Agrawal, Douglas B. Terry, and
Riza O. Suminto. Rivulet: A Fault-tolerant Platform for Smart-home Applications.
In Proc. of Middleware’17, Middleware ’17, pages 41–54. ACM, 2017.

[28] F. Aı̈ssaoui, G. Cooperman, T. Monteil, and S. Tazi. Intelligent Checkpointing
Strategies for IoT System Management. In 2017 IEEE 5th International Conference
on Future Internet of Things and Cloud (FiCloud), pages 305–312, 2017.

BIBLIOGRAPHY 163

[29] Algirdas Avižienis, Jean-Claude Laprie, and Brian Randell. Dependability and Its
Threats: A Taxonomy. In Renè Jacquart, editor, Building the Information Society,
pages 91–120, Boston, MA, 2004. Springer US.

[30] J. Bai, Y. Sun, and C. Phillips. CRRP: A Cooperative Relay Routing Protocol for
IoT Networks. In 2016 IEEE 27th Annual International Symposium on Personal,
Indoor, and Mobile Radio Communications (PIMRC), pages 1–6, 2016.

[31] R. Baldoni, J. . Helary, A. Mostefaoui, and M. Raynal. A Communication-Induced
Checkpointing Protocol that Ensures Rollback-Dependency Trackability. In Proceed-
ings of IEEE 27th International Symposium on Fault Tolerant Computing, pages
68–77, 1997.

[32] Beneyaz A. Begum and Satyanarayana V. Nandury. Component-based Self-Healing
Algorithm with Dynamic Range Allocation for Fault-Tolerance in WSN. In Proceed-
ings of the 7th International Conference on Computer and Communication Technol-
ogy, ICCCT-2017, pages 58–65, New York, NY, USA, 2017. ACM.

[33] Paolo Bellavista and Alessandro Zanni. Feasibility of Fog Computing Deployment
Based on Docker Containerization over RaspberryPi. In Proceedings of the 18th
International Conference on Distributed Computing and Networking, ICDCN ’17,
pages 16:1–16:10. ACM, 2017.

[34] Marin Bertier, Olivier Marin, and Pierre Sens. Performance Analysis of a Hierar-
chical Failure Detector. In 2003 International Conference on Dependable Systems
and Networks (DSN 2003), 22-25 June 2003, San Francisco, CA, USA, Proceedings,
pages 635–644, 2003.

[35] Flavio Bonomi, Rodolfo Milito, Preethi Natarajan, and Jiang Zhu. Fog Comput-
ing: A Platform for Internet of Things and Analytics. In Big Data and Internet of
Things: A Roadmap for Smart Environments, pages 169–186. Springer International
Publishing, 2014.

[36] Flavio Bonomi, Rodolfo Milito, Jiang Zhu, and Sateesh Addepalli. Fog Computing
and its Role in the Internet of Things. In Proc. of MCC’12, pages 13–16. ACM, 2012.

[37] Anita Borg, Wolfgang Blau, Wolfgang Graetsch, Ferdinand Herrmann, and Wolfgang
Oberle. Fault Tolerance Under UNIX. ACM Trans. Comput. Syst., 7(1):1–24, 1989.

[38] S. Bouchenak, F. Boyer, D. Hagimont, S. Krakowiak, N. de Palma, V. Quema, and J. .
Stefani. Architecture-Based Autonomous Repair Management: Application to J2EE
Clusters. In Second International Conference on Autonomic Computing (ICAC’05),
pages 369–370, 2005.

[39] Mohamed-Lamine Boukhanoufa. Adaptability and Reconfiguration for Embedded and
Real-Time Systems. PhD thesis, Université Paris Sud - Paris XI, 2012.

164 BIBLIOGRAPHY

[40] Fabienne Boyer, Olivier Gruber, and Damien Pous. Robust Reconfigurations of
Component Assemblies. In Proc. of ICSE’13, pages 13–22. IEEE Press, 2013.

[41] Fabienne Boyer, Noel Palma, Olivier Gruber, and Sylvain Sicard. Full Autonomic Re-
pair for Distributed Applications. Softw. Pract. Exper., 44(9):1027–1045, September
2014.

[42] Antonio Brogi, Stefano Forti, Carlos Guerrero, and Isaac Lera. How to Place Your
Apps in the Fog - State of the Art and Open Challenges, 2019.

[43] Greg Bronevetsky, Daniel Marques, Keshav Pingali, Peter Szwed, and Martin Schulz.
Application-level Checkpointing for Shared Memory Programs. SIGPLAN Not.,
39(11):235–247, October 2004.

[44] Eric Bruneton, Thierry Coupaye, Matthieu Leclercq, Vivien Quéma, and Jean-
Bernard Stefani. The FRACTAL Component Model and Its Support in Java: Ex-
periences with Auto-adaptive and Reconfigurable Systems. Softw. Pract. Exper.,
36(11-12):1257–1284, 2006.

[45] L. Buechley and M. Eisenberg. The LilyPad Arduino: Toward Wearable Engineering
for Everyone. IEEE Pervasive Computing, 7(2):12–15, 2008.

[46] George Candea, Shinichi Kawamoto, Yuichi Fujiki, Greg Friedman, and Armando
Fox. Microreboot — A Technique for Cheap Recovery. In Proceedings of the 6th
Conference on Symposium on Operating Systems Design & Implementation - Volume
6, OSDI’04, pages 3–3. USENIX Association, 2004.

[47] Stuart K. Card, George G. Robertson, and Jock D. Mackinlay. The Information
Visualizer, an Information Workspace. In Proc. of CHI ’91, pages 181–186. ACM,
1991.

[48] W. C. Carter. A Time for Reflection. In Proceedings IEEE International Symposium
on Fault Tolerant Computing (FTCS-12).

[49] Dr. Jeff D. Case, Russ Mundy, David Partain, and Bob Stewart. Introduction and
Applicability Statements for Internet-Standard Management Framework. RFC 3410,
2002.

[50] Marco Castaldi, Antonio Carzaniga, Paola Inverardi, and Alexander L. Wolf. A
Lightweight Infrastructure for Reconfiguring Applications. In Bernhard Westfechtel
and André van der Hoek, editors, Software Configuration Management, pages 231–
244, Berlin, Heidelberg, 2003. Springer Berlin Heidelberg.

[51] Luca Catarinucci, Danilo de Donno, Luca Mainetti, Luca Palano, Luigi Patrono,
Maria Laura Stefanizzi, and Luciano Tarricone. An IoT-Aware Architecture for
Smart Healthcare Systems. IEEE Internet of Things Journal, 2(6):515–526, 2015.

BIBLIOGRAPHY 165

[52] D. Champelovier, X. Clerc, H. Garavel, Y. Guerte, F. Lang, C. McKinty, V. Powazny,
W. Serwe, and G. Smeding. Reference Manual of the LNT to LOTOS Translator,
Version 6.7. Inria, 2018.

[53] Tushar Deepak Chandra and Sam Toueg. Unreliable Failure Detectors for Reliable
Distributed Systems. J. ACM, 43(2):225–267, March 1996.

[54] K. Mani Chandy and Leslie Lamport. Distributed Snapshots: Determining Global
States of Distributed Systems. ACM Trans. Comput. Syst., 3(1):63–75, 1985.

[55] Abiy Biru Chebudie, Roberto Minerva, and Domenico Rotondi. Towards a Definition
of The Internet of Things (IoT). Technical report, IEEE, 2015.

[56] D. Chen, P. Bovornkeeratiroj, D. Irwin, and P. Shenoy. Private Memoirs of IoT
Devices: Safeguarding User Privacy in the IoT Era. In 2018 IEEE 38th International
Conference on Distributed Computing Systems (ICDCS), pages 1327–1336, 2018.

[57] Peter M. Chen, Edward K. Lee, Garth A. Gibson, Randy H. Katz, and David A.
Patterson. RAID: High-performance, Reliable Secondary Storage. ACM Comput.
Surv., 26(2):145–185, 1994.

[58] Wei Chen, Sam Toueg, and Marcos Kawazoe Aguilera. On the Quality of Service of
Failure Detectors. IEEE Trans. Comput., 51(5):561–580, May 2002.

[59] Xuejun Chen and Martin Simons. A Component Framework for Dynamic Reconfig-
uration of Distributed Systems. In Judith Bishop, editor, Component Deployment,
pages 82–96, Berlin, Heidelberg, 2002. Springer Berlin Heidelberg.

[60] M. Chereque, D. Powell, P. Reynier, J. . Richier, and J. Voiron. Active Replication
in Delta-4. In [1992] Digest of Papers. FTCS-22: The Twenty-Second International
Symposium on Fault-Tolerant Computing, pages 28–37, 1992.

[61] J. Chiu, A. Liu, and C. Liao. Design the DNS-Like Smart Switch for Heterogeneous
Network Base on SDN Architecture. In 2016 International Computer Symposium
(ICS), pages 187–191, 2016.

[62] David C. Chou. Cloud Computing: A Value Creation Model. Computer Standards
& Interfaces, 38:72 – 77, 2015.

[63] Aakanksha Chowdhery, Marco Levorato, Igor Burago, and Sabur Baidya. Urban IoT
Edge Analytics. Springer International Publishing, 2018.

[64] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett. Patterns in Property Specifications
for Finite-State Verification. In Proc. of ICSE’99, pages 411–420. ACM, 1999.

[65] Y. Elkhatib, B. Porter, H. B. Ribeiro, M. F. Zhani, J. Qadir, and E. Rivière. On
Using Micro-Clouds to Deliver the Fog. IEEE Internet Computing, 21(2):8–15, 2017.

166 BIBLIOGRAPHY

[66] E. N. (Mootaz) Elnozahy, Lorenzo Alvisi, Yi-Min Wang, and David B. Johnson. A
Survey of Rollback-recovery Protocols in Message-passing Systems. ACM Comput.
Surv., 34(3):375–408, 2002.

[67] X. Etchevers, T. Coupaye, F. Boyer, and N. de Palma. Self-Configuration of Dis-
tributed Applications in the Cloud. In Proc. of CLOUD’11, pages 668–675. IEEE
Computer Society, 2011.

[68] Xavier Etchevers, Gwen Salaün, Fabienne Boyer, Thierry Coupaye, and Noel De
Palma. Reliable Self-deployment of Distributed Cloud Applications. Softw., Pract.
Exper., 47(1):3–20, 2017.

[69] Colin J. Fidge. Timestamps in Message-Passing Systems that Preserve the Partial
Ordering. In Proc. of the 11th Australian Computer Science Conference, pages 56–66,
1988.

[70] Sergio Fortes, José Antonio Santoyo-Ramón, David Palacios, Eduardo Baena, Roćıo
Mora-Garćıa, Miguel Medina, Patricia Mora, and Raquel Barco. The Campus as
a Smart City: University of Málaga Environmental, Learning, and Research Ap-
proaches. Sensors, 19(6), 2019.

[71] Felix C. Freiling, Rachid Guerraoui, and Petr Kuznetsov. The Failure Detector
Abstraction. ACM Comput. Surv., 43(2):9:1–9:40, February 2011.

[72] Gerhard Friedrich, Mariagrazia Fugini, Enrico Mussi, Barbara Pernici, and Gaston
Tagni. Exception Handling for Repair in Service-Based Processes. IEEE Trans.
Software Eng., 36(2):198–215, 2010.

[73] Guilherme Galante and Luis Carlos E. de Bona. A Survey on Cloud Computing
Elasticity. In Proceedings of the 2012 IEEE/ACM Fifth International Conference
on Utility and Cloud Computing, UCC ’12, pages 263–270, Washington, DC, USA,
2012. IEEE Computer Society.

[74] H. Garavel, F. Lang, R. Mateescu, and W. Serwe. CADP 2011: A Toolbox for the
Construction and Analysis of Distributed Processes. STTT, 2(15):89–107, 2013.

[75] Martin Gerdes, Yohanes Baptista Dafferianto Trinugroho, Mari Næss, and Rune
Fensli. Security, Reliability and Usability of mHealth Environments. In Mobile
Health, pages 1043–1066. Springer International Publishing, 2015.

[76] Tuan Nguyen Gia, Amir-Mohammad Rahmani, Tomi Westerlund, Pasi Liljeberg, and
Hannu Tenhunen. Fault Tolerant and Scalable IoT-Based Architecture for Health
Monitoring. In IEEE SAS, pages 1–6. IEEE, 2015.

[77] Sébastien Guillet, Bruno Bouchard, and Abdenour Bouzouane. Safe and Automatic
Addition of Fault Tolerance for Smart Homes Dedicated to People with Disabili-
ties. In Trends in Ambient Intelligent Systems, pages 87–116. Springer International
Publishing, 2016.

BIBLIOGRAPHY 167

[78] C. Hofmeister and J. Purtilo. Dynamic Reconfiguration in Distributed Systems:
Adapting Software Modules for Replacement. In [1993] Proceedings. The 13th Inter-
national Conference on Distributed Computing Systems, pages 101–110, May 1993.

[79] Christine Ruth Hofmeister. Dynamic Reconfiguration of Distributed Applications.
PhD thesis, College Park, MD, USA, 1993. UMI Order No. GAX94-07643.

[80] P Horn. Autonomic Computing: IBM’s Perspective on the State of Information
Technology, IBM Corporation (October 15, 2001).

[81] Pengfei Hu, Sahraoui Dhelim, Huansheng Ning, and Tie Qiu. Survey on Fog Com-
puting: Architecture, Key Technologies, Applications and Open Issues. Journal of
Network and Computer Applications, 98:27–42, 2017.

[82] Michel Hurfin and Michel Raynal. A Simple and Fast Asynchronous Consensus
Protocol Based on A Weak Failure Detector. Distributed Computing, 12(4):209–223,
1999.

[83] Joshua Hursey, Jeffrey Squyres, Timothy Mattox, and Andrew Lumsdaine. The
Design and Implementation of Checkpoint/Restart Process Fault Tolerance for Open
MPI. pages 1–8, 01 2007.

[84] J. Isaak and M. J. Hanna. User Data Privacy: Facebook, Cambridge Analytica, and
Privacy Protection. Computer, 51(8):56–59, 2018.

[85] ISO. LOTOS — A Formal Description Technique Based on the Temporal Ordering
of Observational Behaviour. Technical Report 8807, ISO, 1989.

[86] Samir Jafar, Axel Krings, and Thierry Gautier. Flexible Rollback Recovery in Dy-
namic Heterogeneous Grid Computing. IEEE Trans. Dependable Secur. Comput.,
6(1):32–44, January 2009.

[87] Barry W. Johnson. Fault-tolerant Computer System Design. chapter An Introduction
to the Design and Analysis of Fault-tolerant Systems, pages 1–87. Prentice-Hall, Inc.,
1996.

[88] G. Kakamanshadi, S. Gupta, and S. Singh. A survey on Fault Tolerance Techniques
in Wireless Sensor Networks. In 2015 International Conference on Green Computing
and Internet of Things (ICGCIoT), pages 168–173, 2015.

[89] Carlos Kamienski, Juha-Pekka Soininen, Markus Taumberger, Stenio Fernandes, At-
tilio Toscano, Tullio Salmon Cinotti, Rodrigo Filev Maia, and Andre Torre Neto.
SWAMP: an IoT-based Smart Water Management Platform for Precision Irrigation
in Agriculture. In 2018 Global Internet of Things Summit (GIoTS). IEEE, 2018.

[90] Vasileios Karagiannis, Periklis Chatzimisios, Francisco Vazquez-Gallego, and
J Alonso-Zarate. A Survey on Application Layer Protocols for the Internet of Things.
Trans. IoT Cloud Comput., 3:11–17, 01 2015.

168 BIBLIOGRAPHY

[91] Jeffrey O. Kephart and David M. Chess. The Vision of Autonomic Computing.
Computer, 36(1):41–50, 2003.

[92] N Kushalnagar, G Montenegro, and C Schumacher. IPv6 over Low-Power Wireless
Personal Area Networks (6LoWPANs): Overview, Assumptions, Problem Statement,
and Goals. 01 2007.

[93] Ten H. Lai and Tao H. Yang. On Distributed Snapshots. Information Processing
Letters, 25(3):153–158, 1987.

[94] Leslie Lamport. Distribution, May 1987. Email Message Sent to a DEC SRC Bulletin
Board at 12:23:29 PDT on 28 May 87.

[95] Butler Lampson and Howard E. Sturgis. Crash Recovery in a Distributed Data
Storage System. Technical report, Xerox Palo Alto Research Center, 1979.

[96] J. C. Laprie, editor. Dependability: Basic Concepts and Terminology. Springer
Vienna, 1992.

[97] Q. Le, T. Ngo-Quynh, and T. Magedanz. RPL-based Multipath Routing Protocols
for Internet of Things on Wireless Sensor Networks. In 2014 International Conference
on Advanced Technologies for Communications (ATC 2014), pages 424–429, 2014.

[98] Marc Léger. Fiabilité Des Reconfigurations Dynamiques dans les Architectures à
Composants. PhD thesis, École Nationale Supérieure des Mines de Paris, 2009.

[99] Löıc Letondeur, François-Gaël Ottogalli, and Thierry Coupaye. A Demo of Applica-
tion Lifecycle Management for IoT Collaborative Neighborhood in the Fog. In IEEE
Fog World Congress, pages 1–6. IEEE, 2017.

[100] Mo Li and Yunhao Liu. Underground Structure Monitoring with Wireless Sensor
Networks. In Proc. of the 6th International Conference on Information Processing
in Sensor Networks, IPSN ’07, pages 69–78. ACM, 2007.

[101] Michael Litzkow, Todd Tannenbaum, Jim Basney, and Miron Livny. Checkpoint
and Migration of UNIX Processes in the COndor Distributed Processing System.
Technical Report UW-CS-TR-1346, University of Wisconsin - Madison Computer
Sciences Department, April 1997.

[102] S. Lukasik. Why the Arpanet Was Built. IEEE Annals of the History of Computing,
33(3):4–21, 2011.

[103] R. E. Lyons and W. Vanderkulk. The Use of Triple-Modular Redundancy to Improve
Computer Reliability. IBM Journal of Research and Development, 6(2):200–209,
1962.

[104] N. Maalel, E. Natalizio, A. Bouabdallah, P. Roux, and M. Kellil. Reliability for Emer-
gency Applications in Internet of Things. In 2013 IEEE International Conference on
Distributed Computing in Sensor Systems, pages 361–366, 2013.

BIBLIOGRAPHY 169

[105] Somayya Madakam and Rajesh M. Holmukhe. Songdo Smart City. In Advances in
Civil and Industrial Engineering, pages 278–298. IGI Global, 2019.

[106] L. Mainetti, L. Patrono, and A. Vilei. Evolution of Wireless Sensor Networks Towards
the Internet of Things: A Survey. In SoftCOM 2011, 19th International Conference
on Software, Telecommunications and Computer Networks, pages 1–6, Sep. 2011.

[107] O. Marin, M. Bertier, and P. Sens. DARX - A Framework for the Fault-Tolerant
Support of Agent Software. In 14th International Symposium on Software Reliability
Engineering, 2003. ISSRE 2003., pages 406–416, 2003.

[108] R. Mateescu and D. Thivolle. A Model Checking Language for Concurrent Value-
Passing Systems. In Proc. of FM’08, volume 5014 of LNCS, pages 148–164. Springer,
2008.

[109] Friedemann Mattern. Virtual Time and Global States of Distributed Systems. In
Parallel and Distributed Algorithms, pages 215–226. North-Holland, 1988.

[110] Friedemann Mattern. Efficient Algorithms for Distributed Snapshots and Global Vir-
tual Time Approximation. Journal of Parallel and Distributed Computing, 18(4):423–
434, 1993.

[111] K. Mekki, E. Bajic, F. Chaxel, and F. Meyer. Overview of Cellular LPWAN Tech-
nologies for IoT Deployment: Sigfox, LoRaWAN, and NB-IoT. In 2018 IEEE In-
ternational Conference on Pervasive Computing and Communications Workshops
(PerCom Workshops), pages 197–202, March 2018.

[112] Peter Middleton, Jim Tully, and Peter Kjeldsen. Forecast: The Internet of Things,
Worldwide, 2013, November 2013.

[113] Fabien Mieyeville, Mihai Galos, and David Navarro. Dynamic Reconfiguration for
Software and Hardware Heterogeneous Real-time WSN. In SENSORCOMM 2012:
The Sixth International Conference on Sensor Technologies and Applications, 2012.

[114] Robert B. Miller. Response Time in Man-Computer Conversational Transactions. In
Proc. of AFIPS ’68 (Fall, part I), pages 267–277. ACM, 1968.

[115] S. Misra, A. Gupta, P. V. Krishna, H. Agarwal, and M. S. Obaidat. An Adap-
tive Learning Approach for Fault-Tolerant Routing in Internet of Things. In 2012
IEEE Wireless Communications and Networking Conference (WCNC), pages 815–
819, 2012.

[116] Kaveh M. Moazami-Goudarzi. Consistency Preserving Dynamic Reconfiguration of
Distributed Systems. PhD thesis, Imperial College London, UK, 1999.

[117] N. Mohamed, J. Al-Jaroodi, and I. Jawhar. Towards Fault Tolerant Fog Computing
for IoT-Based Smart City Applications. In 2019 IEEE 9th Annual Computing and
Communication Workshop and Conference (CCWC), pages 0752–0757, 2019.

170 BIBLIOGRAPHY

[118] Fabrizio Montesi and Janine Weber. Circuit Breakers, Discovery, and API Gateways
in Microservices. ArXiv, 2016.

[119] M. I. Naas, P. R. Parvedy, J. Boukhobza, and L. Lemarchand. iFogStor: An IoT
Data Placement Strategy for Fog Infrastructure. In 2017 IEEE 1st International
Conference on Fog and Edge Computing (ICFEC), pages 97–104, 2017.

[120] A. Nabina and J. L. Nunez-Yanez. Dynamic Reconfiguration Optimisation with
Streaming Data Decompression. In 2010 International Conference on Field Pro-
grammable Logic and Applications, pages 602–607, 2010.

[121] Behailu Shiferaw Negash, Amir M. Rahmani, Pasi Liljeberg, and Axel Jantsch. Fog
Computing Fundamentals in The Internet-of-Things. 04 2017.

[122] Jeremy W. Nimmer and Michael D. Ernst. Automatic Generation of Program Spec-
ifications. SIGSOFT Softw. Eng. Notes, 27(4):229–239, 2002.

[123] Peyman Oreizy et al. Issues in Modeling and Analyzing Dynamic Software Architec-
tures. In Proceedings of the international workshop on the role of software architecture
in testing and analysis, pages 54–57, 1998.

[124] C. Pahl, S. Helmer, L. Miori, J. Sanin, and B. Lee. A Container-Based Edge Cloud
PaaS Architecture Based on Raspberry Pi Clusters. In 2016 IEEE 4th International
Conference on Future Internet of Things and Cloud Workshops (FiCloudW), pages
117–124, 2016.

[125] M. Pasin, S. Fontaine, and S. Bouchenak. Failure Detection in Large Scale Systems:
a Survey. In NOMS Workshops 2008 - IEEE Network Operations and Management
Symposium Workshops, pages 165–168, April 2008.

[126] Charith Perera, Yongrui Qin, Julio C. Estrella, Stephan Reiff-Marganiec, and
Athanasios V. Vasilakos. Fog Computing for Sustainable Smart Cities: A Survey.
ACM Comput. Surv., 50(3):32:1–32:43, 2017.

[127] James S Plank. An Overview of Checkpointing in Uniprocessor and Distributed
Systems, Focusing on Implementation and Performance. Technical report, Technical
Report UTCS-97-372, 1997.

[128] Alex Polacco and Kayla Backes. The Amazon Go Concept: Implications, Applica-
tions, and Sustainability. Journal of Business & Management, 24(1), 2018.

[129] Stefano Porcarelli, Marco Castaldi, Felicita Di Giandomenico, Andrea Bondavalli,
and Paola Inverardi. A Framework for Reconfiguration-Based Fault-Tolerance in Dis-
tributed Systems. In Rogério de Lemos, Cristina Gacek, and Alexander Romanovsky,
editors, Architecting Dependable Systems II, pages 167–190, Berlin, Heidelberg, 2004.
Springer Berlin Heidelberg.

BIBLIOGRAPHY 171

[130] Harald Raffelt and Bernhard Steffen. LearnLib: A Library for Automata Learning
and Experimentation. In Luciano Baresi and Reiko Heckel, editors, Fundamental Ap-
proaches to Software Engineering, pages 377–380. Springer Berlin Heidelberg, 2006.

[131] B. Randell. System Structure for Software Fault Tolerance. IEEE Transactions on
Software Engineering, SE-1(2):220–232, 1975.

[132] S. Rani, S. H. Ahmed, R. Talwar, J. Malhotra, and H. Song. IoMT: A Reliable Cross
Layer Protocol for Internet of Multimedia Things. IEEE Internet of Things Journal,
4(3):832–839, 2017.

[133] R. Ratasuk, B. Vejlgaard, N. Mangalvedhe, and A. Ghosh. NB-IoT System for
M2M Communication. In 2016 IEEE Wireless Communications and Networking
Conference, pages 1–5, 2016.

[134] Damian Roca, Rodolfo Milito, Mario Nemirovsky, and Mateo Valero. Tackling IoT
Ultra Large Scale Systems: Fog Computing in Support of Hierarchical Emergent Be-
haviors, pages 33–48. Springer International Publishing, 2018.

[135] RuggedPOD Website. http://ruggedpod.qyshare.com.

[136] Stavros Salonikias, Ioannis Mavridis, and Dimitris Gritzalis. Access Control Issues
in Utilizing Fog Computing for Transport Infrastructure. In Erich Rome, Marianthi
Theocharidou, and Stephen Wolthusen, editors, Critical Information Infrastructures
Security, pages 15–26. Springer International Publishing, 2016.

[137] Sriram Sankaran, Jeffrey M. Squyres, Brian Barrett, Vishal Sahay, Andrew Lums-
daine, Jason Duell, Paul Hargrove, and Eric Roman. The Lam/Mpi Check-
point/Restart Framework: System-Initiated Checkpointing. The International Jour-
nal of High Performance Computing Applications, 19(4):479–493, 2005.

[138] André Schiper. Early Consensus in an Asynchronous System with a Weak Failure
Detector. Distrib. Comput., 10(3):149–157, April 1997.

[139] M. Sha, D. Gunatilaka, C. Wu, and C. Lu. Empirical Study and Enhancements of
Industrial Wireless Sensor–Actuator Network Protocols. IEEE Internet of Things
Journal, 4(3):696–704, 2017.

[140] Daniel P. Siewiorek. Reliable Computer Systems: Design and Evaluation, Third
Edition. A K Peters/CRC Press, 1998.

[141] Carlos Sosa and Brant Knudson. IBM System Blue Gene Solution: Blue Gene/P
Application Development. Technical report, International Technical Support Orga-
nization, 2009.

[142] Georg Stellner. CoCheck: Checkpointing and Process Migration for MPI. In Pro-
ceedings of the 10th International Parallel Processing Symposium, IPPS ’96, pages
526–531. IEEE Computer Society, 1996.

http://ruggedpod.qyshare.com

172 BIBLIOGRAPHY

[143] J. P. G. Sterbenz. Smart City and IoT Resilience, Survivability, and Disruption
Tolerance: Challenges, Modelling, and a Survey of Research Opportunities. In 2017
9th International Workshop on Resilient Networks Design and Modeling (RNDM),
pages 1–6, 2017.

[144] E. Strickland. Cisco Bets on South Korean Smart City. IEEE Spectrum, 48(8):11–12,
2011.

[145] Rob Strom and Shaula Yemini. Optimistic Recovery in Distributed Systems. ACM
Trans. Comput. Syst., 3(3):204–226, 1985.

[146] P. H. Su, C. Shih, J. Y. Hsu, K. Lin, and Y. Wang. Decentralized Fault Tolerance
Mechanism for Intelligent IoT/M2M Middleware. In 2014 IEEE World Forum on
Internet of Things (WF-IoT), pages 45–50, 2014.

[147] A. Subahi and G. Theodorakopoulos. Ensuring Compliance of IoT Devices with
Their Privacy Policy Agreement. In 2018 IEEE 6th International Conference on
Future Internet of Things and Cloud (FiCloud), pages 100–107, 2018.

[148] M. Terán, J. Aranda, H. Carrillo, D. Mendez, and C. Parra. IoT-based System for
Indoor Location Using Bluetooth Low Energy. In 2017 IEEE Colombian Conference
on Communications and Computing (COLCOM), pages 1–6, Aug 2017.

[149] Kishor S. Trivedi. Probability and Statistics with Reliability, Queuing and Computer
Science Applications. John Wiley and Sons Ltd., 2nd edition edition, 2002.

[150] Chinyang Henry Tseng. Multipath Load Balancing Routing for Internet of Things.
Journal of Sensors, 2016:1–8, 2016.

[151] Umit D. Ulusar, Gurkan Celik, Erdinc Turk, Fadi Al-Turjman, and Halil Guvenc.
Practical Performability Assessment for ZigBee-Based Sensors in the IoT Era, pages
21–31. Springer International Publishing, Cham, 2019.

[152] Sathish S. Vadhiyar and Jack J. Dongarra. Self Adaptivity in Grid Computing.
Concurrency and Computation: Practice and Experience, 17(2-4):235–257, 2005.

[153] Marco Vanneschi. The Programming Model of ASSIST, an Environment for Par-
allel and Distributed Portable Applications. Parallel Comput., 28(12):1709–1732,
December 2002.

[154] Luis M. Vaquero and Luis Rodero-Merino. Finding your Way in the Fog. ACM
SIGCOMM Computer Communication Review, 44(5):27–32, 2014.

[155] Rebekka Volk, Julian Stengel, and Frank Schultmann. Building Information Model-
ing (BIM) for Existing Buildings — Literature Review and Future Needs. Automation
in Construction, 38:109 – 127, 2014.

[156] Jian-xiong Wang, Yang Liu, Zhi-bin Lei, Kang-heng Wu, Xiao-yu Zhao, Chao Feng,
Hong-wei Liu, Xue-hua Shuai, Zhong-min Tang, Li-yang Wu, Shao-yun Long, and

BIBLIOGRAPHY 173

Jia-rong Wu. Smart Water Lora IoT System. In Proceedings of the 2018 International
Conference on Communication Engineering and Technology, ICCET ’18, pages 48–
51, New York, NY, USA, 2018. ACM.

[157] Weixun Wang, Prabhat Mishra, and Sanjay Ranka. Dynamic Reconfiguration in
Real-Time Systems. Springer New York, 2013.

[158] Yi-Min Wang, Pi-Yu Chung, In-Jen Lin, and W. Kent Fuchs. Checkpoint Space
Reclamation for Uncoordinated Checkpointing in Message-Passing Systems. IEEE
Trans. Parallel Distrib. Syst., 6(5):546–554, May 1995.

[159] T. Watteyne, S. Lanzisera, A. Mehta, and K. S. J. Pister. Mitigating Multipath
Fading through Channel Hopping in Wireless Sensor Networks. In 2010 IEEE Inter-
national Conference on Communications, pages 1–5, 2010.

[160] Christof Weinhardt, Arun Anandasivam, Benjamin Blau, Nikolay Borissov, Thomas
Meinl, Wibke Michalk, and Jochen Stößer. Cloud Computing – A Classification,
Business Models, and Research Directions. Business & Information Systems Engi-
neering, 1(5):391–399, Oct 2009.

[161] K. Woyach, D. Puccinelli, and M. Haenggi. Sensorless Sensing in Wireless Networks:
Implementation and Measurements. In 2006 4th International Symposium on Mod-
eling and Optimization in Mobile, Ad Hoc and Wireless Networks, pages 1–8, Feb
2006.

[162] Jian Xu and Robert H.D. Netzer. Adaptive Independent Checkpointing for Reducing
Rollback Propagation. In Proc. 5th IEEE SPDP, pages 754–761. IEEE, 1993.

[163] Xiaoli Xu, Tao Chen, and Mamoru Minami. Intelligent Fault Prediction System
based on Internet of Things. Computers & Mathematics with Applications, 64(5):833
– 839, 2012. Advanced Technologies in Computer, Consumer and Control.

[164] M. B. Yassein, W. Mardini, and A. Khalil. Smart Homes Automation Using Z-Wave
Protocol. In 2016 International Conference on Engineering MIS (ICEMIS), pages
1–6, Sep. 2016.

[165] A. Zanella, N. Bui, A. Castellani, L. Vangelista, and M. Zorzi. Internet of Things
for Smart Cities. IEEE Internet of Things Journal, 1(1):22–32, 2014.

[166] Ben Zhang, Nitesh Mor, John Kolb, Douglas S. Chan, Nikhil Goyal, Ken Lutz, Eric
Allman, John Wawrzynek, Edward Lee, and John Kubiatowicz. The Cloud is Not
Enough: Saving IoT from the Cloud. In Proceedings of the 7th USENIX Conference
on Hot Topics in Cloud Computing, HotCloud’15, pages 21–21. USENIX Association,
2015.

[167] Sen Zhou, Kwei-Jay Lin, Jun Na, Ching-Chi Chuang, and Chi-Sheng Shih. Support-
ing Service Adaptation in Fault Tolerant Internet of Things. In Proc. of SOCA ’15,
pages 65–72. IEEE, 2015.

174 BIBLIOGRAPHY

[168] Zbigniew Zieliski, Jan Chudzikiewicz, and Janusz Furtak. An Approach to Inte-
grating Security and Fault Tolerance Mechanisms into the Military IoT. Springer
International Publishing, 2019.

	Introduction
	The Cloud and the Internet of Things
	The Fog and the Internet of Things
	The Fog Infrastructure
	Specificities of the Fog-IoT Ecosystem

	Motivations and Scope of this Thesis
	Failure Management Approach
	Contributions
	Thesis Structure

	I Failure Management in Distributed Applications
	Failure Management Concepts
	Terminology
	Automating Failure Management
	Failures
	Failure Models
	Consequences of Failures
	Detection of Failures

	Fault Tolerance based on Redundancy
	Types of Redundancy
	Replication
	Maintaining a Consistent Behaviour of the Application

	Reconfiguration
	Types of Reconfiguration
	Challenges of Implementing Dynamic Reconfiguration

	Summary

	Existing Fault Tolerance Approaches
	Comparison and Evaluation Criteria
	Fault Tolerance based on Replication
	Fault Tolerance based on State Restoration
	Checkpoint
	Event logging
	Tools For Fault Tolerance based on State Restoration

	Fault Tolerance based on Dynamic Reconfiguration
	Solutions based on Dynamic Reconfiguration
	Dynamic Reconfiguration in the Fog-IoT Ecosystem

	Fault Tolerance in the Fog-IoT Ecosystem
	Smart Home / City
	Healthcare
	Miscellaneous IoT Application Domains

	Summary

	II Autonomic Failure Management Approach For IoT Applications in the Fog
	Fog-IoT Model
	Behavioural Model
	Physical World Model
	Application Model
	Infrastructure Model
	Failure Model
	Running Example
	Summary

	Resilience Approach Overview
	Application Lifecycle
	Infrastructure Lifecycle
	Autonomic Failure Management
	Failure Management Architecture
	Local Failure Managers
	Global Failure Managers

	Summary

	State Saving Approach
	Motivation
	State Saving Policy
	State Saving Approach
	Frequency of Checkpoint
	Optimistic and Pessimistic Logging Strategies
	Uncoordinated Checkpoint Combined with Logging
	Validity Time

	Summary

	Failure Detection and Notification Propagation
	Monitoring
	Software Elements
	Appliance
	Physical Node and Fog Node
	Summary

	Failure Notification Propagation
	Failure Decision
	Propagation of Failure Notifications
	Recovery Notifications

	Summary

	Recovery Approach
	Recovery Policy
	Reconfiguration
	Cyber-Physical Consistency
	Issues in CP-Inconsistency
	State Restoration and CP-Consistent Recovery

	Ensuring Service Continuity of Replacement Appliances
	Motivation
	Adaptation of State Data
	Adaptation and Redirection of Events

	Summary

	III Validation of the Failure Management Approach
	Model Checking
	Specification
	LNT
	Specification of the Failure Management Approach

	Properties to Verify
	Evaluation
	Detected Issues
	Summary

	F3ARIoT - Implementation and Evaluation
	Implementation of F3ARIoT
	Experimental Environment
	Smart Home Testbed
	Use Case Application
	Deployment of F3ARIoT

	Evaluation Methodology
	Evaluation Tools
	Functional Evaluation
	Performance Evaluation
	Conclusion

	Conclusion
	Summary of Contributions
	Future Work
	Full Autonomicity
	Inferring Parameters
	Predictive Maintenance
	Scalability
	Extension to Other IoT Application Domains

