
IEEE TRANSACTIONS ON SERVICES COMPUTING 1

Realizability of Choreographies using Process
Algebra Encodings

Gwen Salaün, Tevfik Bultan, and Nima Roohi

Abstract— Service-oriented computing has emerged as a new
software development paradigm that enables implementation of
Web accessible software systems that are composed of distributed
services which interact with each other via exchanging messages.
Modeling and analysis of interactions among services is a crucial
problem in this domain. Interactions among a set of services
that participate in a service composition can be described from
a global point of view as a choreography. Choreographies can
be specified using specification languages such as Web Services
Choreography Description Language (WS-CDL) and visualized
using graphical formalisms such as collaboration diagrams. In
this article, we present an encoding of collaboration diagrams
into the LOTOS process algebra for choreography analysis.
This encoding allows us to (i) check the temporal properties
of choreographies using a LOTOS verification tool set called
the Construction and Analysis of Distributed Processes (CADP)
toolbox, (ii) check the realizability of choreographies for both
synchronous communication and bounded asynchronous com-
munication, and (iii) automate the peer generation process. Re-
alizability indicates whether peers can be generated from a given
choreography specification in such a way that the interactions of
the generated peers exactly match the choreography specification.
If a collaboration diagram is unrealizable, our approach extends
the peer generation process by adding extra communication that
guarantees that the peers behave according to the choreography
specification.

Index Terms— Service protocols, choreography, realizability,
process algebra, asynchronous communication, verification, tools.

I. I NTRODUCTION

Specification and analysis of interactions among distributed
components play an important role in service oriented com-
puting. In order to facilitate integration of independently
developed components (i.e., peers) that may reside in different
organizations, it is necessary to provide a global contractthat
the peers participating in a composite service should adhere
to. Such a contract is called achoreography, and specifies
interactions among a set of services from a global point of
view. In addition to development of choreography specification
languages such as the Web Services Choreography Description
Language (WS-CDL), there have been efforts in formalizing
semantics of choreography specifications based on various
formalisms such as conversation protocols [1], collaboration
diagrams [2], process algebras [3], and Petri Nets [4]. These
formal models enable the use of formal verification and
analysis techniques to address problems that arise in chore-
ography analysis. One important problem in choreography
analysis is figuring out if a choreography specification can

G. Salaün is with Grenoble INP, INRIA, France.
T. Bultan is with University of California, Santa Barbara, USA.
N. Roohi is with Sharif University of Technology, Iran.

be implemented by a set of peers that communicate via
message passing. Given a choreography specification, it would
be desirable if the local implementations, namelypeers, could
be automatically generated via projection,i.e., by projecting
the global choreography specification to each peer by ignoring
the messages that are not sent or received by that peer.
However, generation of peers that precisely implement a
choreography specification is not always possible,i.e., there
are choreographies that are not implementable by a set of
distributed peers (if no additional messages are allowed).This
problem is known asrealizability.

Recent results on choreography realizability problem [2],
[5]–[8] advocate techniques to check the realizability of a
choreography after the choreography specification has been
written, or define well-formedness rules to be applied while
writing the choreography specification in order to ensure its
realizability. To the best of our knowledge, no solution has
been proposed yet to generate peers realizing any choreogra-
phy without adding rules or constraints on the choreography
language or on the specifications written with it. In this article
we focus on analyzing choreography specifications expressed
as collaboration diagrams. For this class of choreography
specifications, our new contributions with respect to earlier
results are the following:

• our solution generates peers for any choreography spec-
ification by extending them with additional messages if
the choreography is unrealizable;

• our approach is supported by tools for (i) verification of
choreographies, (ii) realizability analysis, and (iii) peer
generation in a completely automated way;

• we consider both synchronous and asynchronous com-
munication models, and present results on the effect of
the queue size on realizability.

As mentioned above, in this article, we use collabora-
tion diagrams as the choreography specification language.
We propose an encoding of collaboration diagrams into the
LOTOS process algebra (see Figure 11 for an overview of our
approach). We chose LOTOS because it provides the neces-
sary level of expressiveness to describe all the collaboration
diagram interaction constraints, and is equipped with a rich
tool set called the Construction and Analysis of Distributed
Processes (CADP) toolbox [9] which offers state-of-the-art
tools for state space exploration and verification. The LOTOS
encoding allows us to generate the Labelled Transition System
(LTS) corresponding to the choreography specification as well
as an LTS for each service peer. We can take advantage
of this encoding to verify choreography specifications using

1Numbers on this figure will be used later on in this article.

IEEE TRANSACTIONS ON SERVICES COMPUTING 2

CADP. As far as realizability is concerned, we use equivalence
checking techniques to check realizability of collaboration
diagrams for both synchronous communication and bounded
asynchronous communication. If the collaboration diagramis
not realizable, we generate peers using an alternative technique
which adds new messages in order to make them respect the
initial choreography. The steps of our approach are completely
automated by several tools. For some steps of our approach
we could have used Promela, the input language of the SPIN
model checker [10], as an alternative to LOTOS, since Promela
supports both synchronous and asynchronous communication
whereas asynchronous communication is expressed in LOTOS
by explicitly encoding queues. However, SPIN does not pro-
vide the behavioral equivalence checking functionality that we
use in our approach.

Fig. 1. Overview of our approach

A preliminary version of this work has been published
in [11], and is extended here in several aspects: In this
article (i) we give a formalization of the LOTOS encoding,
(ii) we present a different encoding of the dependency relation
among the message send events than the one used in [11]
which unnecessarily restricted the possible behaviors, (iii) we
discuss how our new LOTOS encoding preserves the original
semantics of the choreography specifications expressed as
collaboration diagrams, (iv) we show that realizability results
for queue size one can be generalized to unbounded queues,
(v) we present a minimization technique for the number of
additional messages generated for making peers compliant
to a given choreography specification, (vi) we apply our
verification and analysis techniques to a larger set of examples,
and (vii) we present an extended discussion comparing our
approach with the related work.

The rest of this article is organized as follows. Section II
introduces collaboration diagrams and the problem of their
realizability. Section III presents our encoding of collaboration
diagrams into LOTOS. Section IV shows how this encoding is
extended to generate corresponding peers. Section V presents
our realizability test for both communication models. Sec-
tion VI proposes a solution to enforce the realizability of peers.
Section VII sketches the tools that support our approach, and
discusses some experimental results. Section VIII compares
our proposal to related work, and Section IX ends the article
with some concluding remarks.

II. COLLABORATION DIAGRAMS

A. Syntax and Semantics

A collaboration diagram [2] (called communication diagram
in UML 2) consists of a set of peers, a set of links between
peers, and a set of message send events associated with links.
A message send event (which we will simply call an event) is
a tuple that consists of a set of predecessor events, a (unique)
label, a message, and a recurrence type. Labels (e.g., 1, 2,
3, ..., A1, A2, A3, ..., B1, B2, B3, ...) consist of a prefix
(e.g., ǫ, A, B) that organizes events into different threads and
a sequence number (e.g., 1, 2, 3, ...) that gives the ordering
of the events in each thread. All messages in one thread
share the same prefix and execute based on the numerical
order defined by their sequence number. Events from different
threads execute concurrently, and can be interleaved in any
order that respects the dependency relation that is defined by
the sets of predecessor events and sequence numbers. An event
can only execute after 1) all the events in its predecessor set
have been executed, and 2) the events that are in the same
thread and that have smaller sequence numbers have also been
executed. We assume that the event ordering relation defined
by the sequence numbers and the predecessor sets do not
cause any cyclic dependencies. A recurrence type is either
“1” (default type) meaning that the associated event happens
exactly once, “?” for a conditional event meaning that the
event may occur once or it may not occur at all, or “*” for an
iterative event meaning that the event may not occur at all or
it may occur one or more times.

Events are written using the following syntax: The list of
predecessor event labels followed by “/”, followed by the event
label, followed by “:”, followed by the message, followed by
the recurrence type. For example,1/A1:info is an event
with the predecessor set{1}, event labelA1, messageinfo
and the default recurrence type (i.e., recurrence type is 1).

The semantics of collaboration diagrams is formally defined
in [2] based on the above rules. We summarize the formal
model below.

Definition 1 (Collaboration Diagram):Formally, we define
a collaboration diagram as a tuple(P, E, M) where:P is a
set of peers,E is a set of events andM is a set of messages.
For each messagem ∈ M , send(m) ∈ P denotes the sending
peer andrecv(m) ∈ P denotes the receiving peer. Each event
e ∈ E is a tuplee = (B, l, m, r) whereB ⊆ E is the set of
predecessor events that should execute beforee, l is an event
label,m is a message, andr is a recurrence type (i.e., one of
1, ?, or *). Given an evente, we usee.B, e.l, e.m ande.r to
refer to different components of the event tuple.

We do not represent links in our formal model explicitly
since they can be inferred from the set of events and messages,
i.e., if there exists an event that sends a messagem from peer
send(m) to recv(m), then there is a link betweensend(m)
andrecv(m).

Given a collaboration diagram, an event sequence of that
collaboration diagram is a sequence of events that respectsthe
predecessor set and sequence number ordering and recurrence
type of each event. Given an event sequence, the sequence
of messages generated by that event sequence is called a

IEEE TRANSACTIONS ON SERVICES COMPUTING 3

conversation. The conversation set for a collaboration diagram
is the set of conversations generated by all the event sequences
of that collaboration diagram. We demonstrate these concepts
on a running example below.

B. Running Example: Train Station Service

Figure 2 presents a collaboration diagram for a train station
service that we will use as a running example throughout
this article. This diagram contains four peers:Customer,
TrainStation, Availability, and Booking. It in-
volves three threads: 1) The main thread with prefixǫ and
events1 and 2; 2) The A thread with prefixA and events
A1, A2 and A3; and 3) TheB thread with prefixB and
eventsB1, B2 and B3. The collaboration diagram starts by
sending of a request message from the peerCustomer to the
peerTrainStation (event1). Next, theTrainStation
checks ticket availability by exchanging messages with the
peerAvailability which is a component that is responsi-
ble for keeping track of the ticket availability (eventsA1, A2,
and A3). After the availability check, theTrainStation
exchanges messages with the peerBooking to reserve tick-
ets (eventsB1 and B2). If the booking is successful the
Booking sends an invoice to theCustomer (event B3).
TheTrainStation sends the final result to theCustomer
(event2).

:Customer

:TrainStation

:Booking

:Availabil ity

1:request

B2/2:result

1/A1:info

A2:infoAvail

A3/B1:book

B2:ack

B3:invoice ?

A3:it inerary *

Fig. 2. Train station service collaboration diagram

Let us focus on the threadA. It contains three events.
The first one,1/A1:info, indicates that the messageinfo
should be sent by the peerTrainStation to the peer
Availability only after the execution of the event1. I.e.,
1 is in the predecessor set of the eventA1, meaning that
the eventA1 is executable only after the event with label1
(namely1:request) has been executed. Formally, the event
tuple for the event1/A1:info is e = ({1},A1,info, 1),
where e.B = {1}, e.l = A1, e.m = info, and e.r = 1.
The third event of threadA is A3:itinerary*. This event
must be executed after the eventA2 (due to the sequential
ordering of the events within a thread), and can be executed
multiple times (due to the recurrence type *). The event tuple
for the eventA3:itinerary* is (∅,A3,itinerary, *).
A possible event sequence for the diagram shown in Figure 2
is: 1, A1, A2, B1, B2, 2, B3. The conversation corresponding
to this event sequence is:request, info, infoAvail,
book, ack, result, invoice.

C. Peer Model

Before illustrating the realizability problem for collabora-
tion diagrams, let us introduce thepeer model. A peer is

described as a Labeled Transition System (LTS). An LTS is
a tuple (M, S, I, F, T) where:M is the set of messages,S
is a set of states,I ∈ S is the initial state,F ⊆ S are final
states, andT ⊆ S × M × S is the transition relation. In the
peer transition systems, we annotate the messages with the
direction information,i.e., the messagem is written asm!
in the transition system of the peerp if p = send(m) (send
transition), and it is written asm? if p = recv(m) (receive
transition). Peers interact using binary communication onsame
message names with opposite directions. In this article, wewill
consider both synchronous and asynchronous communication
models. In the later case, each peer is equipped with a FIFO
queue which stores the input messages received from the other
peers, and from which the current peer can consume messages.

It is worth noting that taking interaction protocols (mes-
sages and their application order) into account in the peer
model, and therefore in choreography specification languages,
is essential. This allows one to avoid erroneous behaviours
such as unexpected results or deadlock when executing a set
of services together. Imagine for instance a trip planner system
which is supposed to organize a trip for a client (booking flight
tickets and hotel) given a set of constraints provided by the
client (dates, city, price limit, etc). One ordering requirement
for such a system could be that the the system must start
by first interacting with the flight service, otherwise a hotel
might be booked even if no flight tickets could be found for
the provided dates. The role of the choreography specification
and modeling is to make such ordering requirements explicit.
However, as we describe below, specification of such global
interaction requirements can be difficult and error prone.

D. Realizability of Collaboration Diagrams

One of the main problems in choreography specification is
realizability. Two unrealizable collaboration diagrams are pre-
sented in Figure 3. The first one (left-hand side) is unrealizable
because it is impossible for the peerC to know when the peer
A sends itsrequest message since there is no interaction be-
tweenA andC. Hence, the peers cannot respect the execution
order of messages as specified in the collaboration diagram.
The second diagram is realizable for synchronous commu-
nication, and unrealizable for asynchronous communication.
Indeed, in case of synchronous communication, the peerC
can synchronize (rendez-vous) with the peerA only after the
request message is sent, so the message order is respected.
This is not the case for asynchronous communication since
A cannot blockC from sending theupdate message if
asynchronous communication is used. Hence,C has to send
the update message toA without knowing if A has sent
the request message or not. Therefore, the correct order
between the two messages cannot be satisfied. We also show
in Figure 3 (right-hand side) the LTS generated for peerA by
projection.

Although realizability can be easily determined for these
simple examples, it is more difficult to determine if the col-
laboration diagram presented in Figure 2 is realizable or not.
We present in the rest of this article an approach to automate
the realizability check, and show that the train service collab-
oration diagram is realizable for synchronous communication

IEEE TRANSACTIONS ON SERVICES COMPUTING 4

:A

1:request

:B

:C

2:update

:D

:A

1:request

:B

:C

2:update
peer A

request!
update?

Fig. 3. Examples of unrealizable collaboration diagrams

and it is unrealizable for asynchronous communication. We
also show that this collaboration diagram can be converted
to a realizable choreography specification for asynchronous
communication if extra messages are allowed and we show
how to generate such extra messages.

III. E NCODING COLLABORATION DIAGRAMS IN LOTOS

The backbone of our approach is an encoding of collab-
oration diagrams into the LOTOS process algebra [12]. We
chose LOTOS because it provides a rich notation that allows
specification of complex concurrent systems. Furthermore,the
LOTOS encoding allows (i) choreography verification by using
model checking tools available in the CADP toolbox [9],
(ii) realizability analysis and (iii) generation of service peer
implementations. The SVL scripting language [13] is also
used to automate parts of the approach by calling the different
CADP tools we use. The steps of our approach are completely
automated using several tools we present in Section VII.

A. LOTOS and SVL in a Nutshell

Here we present a simplified grammar for the LOTOS
notation (see [12] for a detailed presentation of the LOTOS
notation). The behavior of a processB in LOTOS is specified
using termination, communication, sequence (action prefixor
sequential composition), choice, parallel composition, inter-
leaving, hide, and process call (to express a looping behavior):

B ::= exit correct termination
| A;B action prefix
| B1>>B2 sequential composition
| B1[]B2 choice
| B1|[a1, . . . , an]|B2 parallel composition
| B1|||B2 interleaving
| hide a1, . . . , an in B hide
| P[a1, . . . , an] process call

A ::= i internal action
| a communication ona

The parallel composition operator denotes that processes
B1 andB2 evolve in parallel and synchronize on the actions
a1, . . . , an. The interleaving operator corresponds to a concur-
rent evolution ofB1 andB2 without synchronization between
these two processes.

An SVL script is a sequence of statements, which describe
verification operations (such as comparison modulo various
equivalence relations, deadlock and livelock detection, verifi-
cation of temporal logic formulas, etc.) performed on behav-
iors. Basic behaviors are LTSs obtained here from LOTOS
descriptions. Behaviors can be combined and handled using

operations such as parallel composition, label hiding, label
renaming, minimization, etc. SVL has also meta-operations
implementing higher-order strategies for compositional veri-
fication. In this work we only need basic operators for real-
izability verification purposes, namely a parallel composition
and an interleaving operator:

B ::= "ID.bcg" LTS
| B1|[a1, . . . , an]|B2 parallel composition
| B1|||B2 interleaving

B. LOTOS Encoding for Collaboration Diagrams

In this section, we discuss how to encode a collaboration
diagram as a LOTOS process. The LOTOS process encoding a
collaboration diagram is split up in as many parts (referredas
thread behavior below) as there are threads in the collaboration
diagram. Each thread behavior encodes all the events in the
corresponding thread in the order in which they must be
executed (this ordering is achieved using the LOTOS action
prefix operator). Each message is encoded using sender and
receiver peer names as prefixes. The conditional recurrence
type “?” is encoded as a choice between the actual execution
of the send event meaning that the condition is true, and a
termination (exit) meaning that the condition is false and
the event is not executed (i.e., the message is not sent). The
iterative recurrence type “*” is translated into LOTOS using
an intermediate looping process whose behavior is specified
as:message;loop process[message] [] exit.

Each thread behavior evolves independently, and they syn-
chronize together to respect dependency constraints that are
explicitly specified in the predecessor sets at the beginning of
some events (e.g., 1/A1:info) using new messages prefixed
by “SYNC ”. These messages are inserted in the LOTOS speci-
fication in two cases: (i) before executing an event, if that event
has a predecessor set and, hence, depends on event executions
in other threads, (ii) after executing an event, if that event
appears in the predecessor set of another event in the diagram.
In the second case, the synchronization message should not
block the thread execution, accordingly it is interleaved with
the rest of the thread behavior. In both cases, if an event
execution influences the execution of several other events (i.e.,
the event is in the predecessor set of several other events),
or if an event should be executed after several other events
(i.e., the event has more than one event in its predecessor set),
we generate as many (interleaved) binary synchronizationsas
needed. In [11], we encoded such dependencies using a single
n-ary synchronization and restricted the behavior of the LO-
TOS model more than necessary according to the collaboration
diagram semantics [2]. The n-ary synchronization encoding
enforcesn threads to synchronize at the synchronization
point which is not necessary according to the collaboration
diagram semantics. Hence, some possible behaviors of the
collaboration diagram specification were being ignored in
the LOTOS encoding given in [11]. The encoding given in
this article resolves this problem by using multiple binary
synchronizations instead of a single n-ary synchronization.

Given a collaboration diagramCD = (P, E, M), we gen-
erate the LOTOS process encoding the collaboration diagram
CD, by calling cd2l(CD), as follows:

IEEE TRANSACTIONS ON SERVICES COMPUTING 5

process cd [alpha(M), SY NC] : exit :=

cd2lt(Th1, SY NC)

|[SYNC X1, . . . ,SYNC Xm]|

(

cd2lt(Th2, SY NC)

|[SYNC Y1, . . . ,SYNC Yq]|

. . .

)

endproc

where {Th1, . . . , Thn} = sort by thread(E),
SY NC = compute sync(E), {X1, . . . , Xm} = gen sync

(Th1, {Th2, . . . , Thn}, SY NC), and {Y1, . . . , Yq} =

gen sync(Th2, {Th3, . . . , Thn}, SY NC). We will explain
these functions below.

Functionalpha transforms the message names by prefixing
each messageM with sender and receiver peers, respectively:

alpha(M) = {send(m) recv(m) m | m ∈ M}

Functionsort by thread traverses the set of eventsE of
the collaboration diagram, and builds a set of event lists where
each list keeps the events for only one thread. In these lists,
the events are ordered with respect to their sequence numbers:

sort by thread(E) = {sort tuples(ThX) | ∀(B, l, m, r) ∈ E :

X = pre(l) ⇔ (B, l, m, r) ∈ ThX}
where the functionpre returns the prefix of an event label,
identifying the thread for that event (ǫ, A, B, etc.). The event
list ThX contains the events that are part of the threadX .
The functionsort tuples(ThX) sorts the events in the event
list ThX by their sequence numbers.

Functioncompute sync accepts as input a set of eventsE,
and extracts “SYNC ” messages from the predecessor sets of
all events:

compute sync(E) = {l′ l | (B, l, m, r) ∈ E ∧ l′ ∈ B}

Functionextract sync computes the “SYNC ” messages for
a given thread and functiongen sync returns synchronizations
between a thread and other threads by computing the intersec-
tion of “SYNC ” messages used in its behavior and in the other
thread behaviors:

extract sync(ThX , SY NC) = {l′ l | (B, l, m, r) ∈ ThX ∧
l′ l ∈ SY NC} ∪ {l l′ | (B, l, m, r) ∈ ThX ∧ l l′ ∈ SY NC}

gen sync(Th1, {Th2, . . . , Thn}, SY NC) =

extract sync(Th1, SY NC) ∩ (extract sync(Th2, SY NC) ∪
. . . ∪ extract sync(Thn, SY NC))

Function cd2lt translates a thread into LOTOS. It takes
the ordered list of thread events for a threadX as its first
input: ThX = [(B1, l1, m1, r1), . . . , (Bn, ln, mn, rn)], and
recursively translates one event after the other in the order
they appear in the input list, that is in the order in which they
must be executed (the function stops when the list is empty):

cd2lt([(B1, l1, m1, r1), . . . , (Bn, ln, mn, rn)], SY NC) =

add pre sync(B1, l1) >> cd2lm(send(m1) recv (m1) m1, r1)

(add post sync(l1, SY NC) >> add exit(n))

cd2lt([(B2, l2, m2, r2), . . . , (Bn, ln, mn, rn)], SY NC)

Functioncd2lm translates a message send event into LOTOS
taking into account the recurrence type:

cd2lm(m,r) =

8

>

<

>

:

m; if r = 1

(m;exit [] exit) >> if r =?

loop process[m] >> if r = ∗
Function add pre sync and add post sync respectively

generate additional messages used to synchronize thread be-
haviors in order to make them respect the dependency relation
defined by the predecessor sets specified in the collaboration
diagram:

add pre sync({e1, . . . , en}, l) =

(SYNC Y1 l;exit ||| . . . ||| SYNC Yn l;exit)

whereYi = ei.l and
add post sync(l, SY NC) =

(SYNC X1;exit ||| . . . ||| SYNC Xk;exit)

where{X1, . . . , Xk} = {l l′ | l l′ ∈ SY NC}.

Last, functionadd exit adds a finalexit to terminate a
thread behavior:

add exit(n) =

(

exit if n = 1

ǫ otherwise

Our encoding preserves the collaboration diagram semantics
formalized in [2]. We claim that, given a collaboration diagram
CD, CD and its corresponding LOTOS encodingcd2l(CD)
are trace equivalent,i.e., [[CD]]t = [[cd2l(CD)]]t where[[CD]]t
is the set of conversations generated by the collaboration
diagramCD. Recall that a conversation is the sequence of
messages that are sent (recorded in the order they are sent)
during an execution of the collaboration diagram that respects
the ordering of events defined by the predecessor sets and the
sequence numbers. The conversation set for the LOTOS en-
coding[[cd2l(CD)]]t is defined by collecting the conversations
generated by all possible executions of the LOTOS encoding.
Each execution ofcd2l(CD) generates a conversation which
is defined by recording only the message send transitions
(in the order they are executed) that correspond to messages
in the message setM of the collaboration diagramCD =
(P, E, M). I.e., all transitions except message send transitions
are ignored and all the send transitions corresponding to
“SYNC ” messages are also ignored. For these remaining
transitions, in order to make messages in both models match,
we need to remove the peers names appearing as prefixes in
the messages generated by our translation.

Below, we argue that based on the above definitions, the
conversation sets ofCD and cd2l(CD) are the same,i.e.,
[[CD]]t = [[cd2l(CD)]]t, and we assume that messages are not
prefixed with peers names. We show this equivalence in three
parts, by discussing the encoding of a thread, a message send
event, and the dependency relation between events.

1) Given a set of threadsT1, . . . , Tn in a collaboration
diagram CD, each thread executes its events sequentially
according to the sequence numbers of the events, and events
of different threads can be interleaved arbitrarily assuming
that there are no dependencies among the events of different
threads (i.e., if all predecessor sets are empty). In this basic
case,cd2l(CD) generates a set of concurrent processes with-
out any interactions where each thread of the collaboration
diagram corresponds to one concurrent processcd2l(CD) =
T1||| . . . |||Tn such that[[CD]]t = [[Rτ (lts(T1||| . . .

IEEE TRANSACTIONS ON SERVICES COMPUTING 6

|||Tn))]]t whereRτ corresponds toτ reductions (see Sec-
tion III-D for more explanations aboutτ transitions and their
suppression) andlts is the function compiling the LOTOS into
LTS2.

2) Messages send events are encoded differently depending
on their recurrence type:

• “m 1” is encoded simply as “m”
• “m ?” produces the set of traces{m, ε}. This is encoded

in LOTOS asm;exit [] exit and the corresponding
LTS consists of three transitions{(s0, m, s1), (s1,

√
, s2),

(s0,
√

, s2)} wheres0 is the initial state,s2 is the final
state, and both transitions labeled with

√
indicate proper

termination3. Consequently, corresponding traces are the
same as in the original collaboration diagram, namely
{m, ε}.

• “m ∗” produces the set of traces{ε, m, mm, mmm, . . .}.
This is encoded in LOTOS using a looping process
whose behavior ism;loop process[m] [] exit
and the corresponding LTS consists of two transitions
{(s0, m, s0), (s0,

√
, s1)} where s0 is the initial state,

and s1 is the final state. Traces are therefore the same:
{ε, m, mm, mmm, . . .}.

3) Threads evolve concurrently and respect explicit ordering
of messages specified in the predecessor sets. To obtain the
same traces as in the input collaboration diagram we need
to preserve the same dependencies between messages in the
LOTOS specification. For each event “l1, . . . , ln/l : m” in the
collaboration diagram, in the LOTOS specification generated,
the send eventli with messagemi is followed by a message
SYNC li l, and the send eventl for messagem appears only
after theseSYNC li l messages following the pattern:

. . . m1; SYNC l1 l; . . .||| . . .||| . . . mn; SYNC ln l; . . .
|[SYNC l1 l, . . . ,SYNC ln l, . . .]|

. . .(SYNC l1 l;exit||| . . .|||SYNC ln l;exit) >> m; . . .

The corresponding LTS consists of first an interleaving of
message send transitionsmi and SYNC li l (for each given
i, mi is executed beforeSYNC li l). When all these transi-
tions have been executed, and in particular all theSYNC li l
transitions that act as pre-condition to the execution of the
event l have been executed, then the send transition form
can be executed by the LTS. Thus, the dependencies defined
in the predecessor set ofl ({l1, . . . , ln}) are preserved in the
generated LOTOS specification.

C. Running Example: The Train Station in LOTOS

Let us give the body of the LOTOS process generated by
the functioncd2l for our running example:

((* -- thread A encoding -- *)
SYNC_1_A1; ts_a_info; a_ts_infoAvail;

loop_process [a_ts_itinerary] >>
SYNC_A3_B1; exit

)

2This can be computed by usingCaesar.adt and Caesar compilers
belonging to the CADP toolbox.

3LTSs generated from LOTOS in CADP do not have final states, therefore
such

√

transitions are used to distinguish proper termination from deadlocks.

|[SYNC_1_A1, SYNC_A3_B1]|
((* -- thread B encoding -- *)

(
SYNC_A3_B1; ts_b_book; b_ts_ack;
(

SYNC_B2_2; exit
|||
(b_c_invoice; exit [] exit) >>

exit
)

)
|[SYNC_B2_2]|
((* -- main thread’s encoding -- *)

c_ts_request;
(

SYNC_1_A1; exit
|||
SYNC_B2_2; ts_c_result; exit

)
)

)

We can distinguish the three threads, respectively for events
starting by A, B, and numbers (the main thread). Thread
A for instance contains three events (for messagesinfo,
infoAvail, anditinerary) which are encoded sequen-
tially based on their sequence numbers and the messages
are prefixed with peers participating in these interactions
(only peer initials are shown). The last event (for message
a ts itinerary) has an iterative recurrence type and is
therefore translated using aloop process. An example of
“?” recurrence type is given at the end of threadB where
the choice ([]) is used to express the execution of message
invoice (b c invoice) or not (exit).

With regards to the synchronization between thread be-
haviors, we can see for instance that threadA synchronizes
with the two other threads using messagesSYNC 1 A1 and
SYNC A3 B1. The messageSYNC 1 A1 is used to synchro-
nize the threadA and the main thread in order to make sure
that the event labeledA1 with the messagets a info is
executed after the execution of the event labeled1 with the
messagec ts request. Execution ofSYNC 1 A1 acts as a
pre-condition to the execution ofts a info guaranteeing the
correct ordering of the events. In threadB, the eventB1 can
only occur after the eventA3, therefore the execution of the
eventA3 with the messagea ts itinerary is followed by
a messageSYNC A3 B1 in order to enable the execution of
the eventB1 with the messagets b book after the execution
of A3. Note that the synchronization messageSYNC A3 B1
should not block the thread execution. Accordingly it is
interleaved with the rest of the thread behavior (exit in this
case, since it is at the end of the thread behavior).

D. Compilation into LTS and Verification

After generating the LOTOS encoding of a collabora-
tion diagram using the functioncd2l, we can generate the
corresponding LTS using the state space generation tools
in the CADP toolbox, and verify temporal logic properties
of the input choreography specification using theEvalua-
tor model-checker [14]. For instance, for our running ex-
ample, we checked the liveness property stating that each

IEEE TRANSACTIONS ON SERVICES COMPUTING 7

c ts request is eventually answered (ts c result):

[true*."CUSTOMER_TRAINSTATION_REQUEST"]
<true*."TRAINSTATION_CUSTOMER_RESULT"> true

We show in Figure 4 the LTS obtained for the collaboration
diagram from the LOTOS encoding. This LTS was obtained
by hiding “SYNC ” messages, and by minimizing the result-
ing LTS using reduction techniques available in the CADP
toolbox. In this article, these minimizations (determinization,
removal ofτ transitions, and suppression of similar paths) are
achieved using weak trace, safety and strong reductions. The
τ transitions stand for internal actions. These transitionsare
generated while compiling the LOTOS code. For example, the
LOTOS sequential composition operator “>>” inserts such aτ
transition in the corresponding state space. As a consequence,
they are completely removed during LTS generation and do
not appear at the collaboration diagram (and peer) level.

c_ts_request ts_a_info

a_ts_itinerary

a_ts_infoAvail

ts_b_book

b_ts_ack

ts_c_result

b_c_invoice

ts_c_result

b_c_invoice

Fig. 4. Train station service: collaboration diagram LTS

IV. PEER GENERATION

Peers are generated by projection from the LOTOS pro-
cess encoding the collaboration diagram. This is achieved by
generating a LOTOS process for each peer whose body is an
instance of the collaboration diagram process, and hiding in
this process all the messages that the peer does not send or
receive, as well as messages prefixed by “SYNC ” which were
used only to preserve message dependencies in the encoding.

process cd peer p [alpha peer(p,M), SY NC] : exit :=

cd peer p aux[alpha peer(p,M), SY NC]

where

process cd peer p aux [alpha peer′(p,M), SY NC]

hide gen hide(p,M), SY NC in

cd[alpha(M), SY NC]

endproc

endproc

Functiongen hide generates a subset of the collaboration
diagram alphabet consisting of messages where peerp is not
involved:

gen hide(p, M) = {send(m) recv (m) m | m ∈ M ∧
send(m) 6= p ∧ recv(m) 6= p}

Functionalpha peer′ generates a subset of the collabora-
tion diagram alphabet consisting of messages where peerp is
involved:

alpha peer′(p, M) = {send(m) recv(m) m | m ∈ M ∧
(send(m) = p ∨ recv(m) = p)}

Functionalpha peer generates the same subset of messages
returned byalpha peer′, but also adds a suffix for the mes-
sage direction, namely “SEN” if the peer is the sender of
the message and “REC” if the peer is the receiver of the
message. These suffixes are necessary since transitions require
a direction at the peer level indicating either a receive or asend
action.

alpha peer(p,M) = {send(m) recv(m) m SEN | m ∈ M ∧
send(m) = p} ∪ {send(m) recv(m) m REC | m ∈ M ∧
recv(m) = p}

Once all the peer LOTOS processes are generated, cor-
responding LTSs are obtained automatically using CADP
state space generation tools. Figure 5 gives a graphical
view of peers generated for our running example from their
LOTOS descriptions. For instance, peerBooking (Fig. 5,
(b)) starts by receiving a booking request (ts b book?)
from the train station, sends back an acknowledgement
(b ts ack!), and either stops or sends an invoice to the
customer (b c invoice!). We recall that peers interact
on same message names with opposite directions,e.g., the
request message is represented asc ts request! in
the customer peer LTS and asc ts request? in the train
station peer LTS.

c_ts_request!

ts_a_info?

a_ts_itinerary!

ts_b_book? b_ts_ack!

ts_c_result?

b_c_invoice?

ts_c_result?

b_c_invoice!

a_ts_infoAvail!

c_ts_request? ts_a_info! a_ts_infoAvail?
a_ts_itinerary?

ts_b_book!

b_ts_ack?ts_c_result!

(a)

(b)

(c)

(d)

b_c_invoice?

Fig. 5. Peers generated from the collaboration diagram: (a)customer,
(b) booking, (c) train station, (d) availability

Once peers are generated, it is difficult to say if their
execution respect the interaction constraints specified inthe
collaboration diagram (order of messages within a thread
defined by the sequence numbers, and the inter-thread message
dependencies defined by the predecessor sets). In the next
subsection, we propose automated techniques for answering
this question and checking realizability.

V. REALIZABILITY

In this article, we consider aprojectionrealizability because
this is one of the most widely used realizability definitions,
see for instance [6], [7], [15]. Intuitively, a choreography

IEEE TRANSACTIONS ON SERVICES COMPUTING 8

is realizable if the set of interactions specified in the col-
laboration diagram and those executed by the interacting
peers (obtained by projection from the collaboration diagram)
are the same. This realizability definition does not constrain
the internal actions of peers but preserves the ordering of
their interactions. Weaker realizability notions have also been
investigated [6]. Another alternative would have been to say
that a choreography is realizable if there exist peers which
realize it and these peers do not have to be projections, see
for instance [2].

We propose to compute realizability by comparing the
collaboration diagram LTS with the system composed of inter-
acting peers using behavioral equivalences and more precisely
using strong equivalence or bisimulation [16]. If these two
systems are equivalent, it means that the peer generation
exactly preserves the collaboration diagram constraints.If
they are not, it is because peers do not generate the same
interactions than those specified in the diagram, thereforeit is
unrealizable.

Therefore, computing realizability is achieved in three steps:
(i) generation of the collaboration diagram LTS, (ii) generation
of the system composed of interacting peers, and (iii) equiva-
lence checking between LTSs resulting from step (i) and (ii).
In the following, we consider both synchronous and bounded
asynchronous communication models.

Definition 2 (Projection realizability):A collaboration dia-
gramCD with n peers and queue lengthq ∈ N+ is realizable
iff CDLTS is strongly bisimilar to the peer composition
W = (PLTS1|| . . . ||PLTSn), where CDLTS is the col-
laboration diagram LTS obtained fromCD as presented in
Section III, andPLTSi are the peer LTSs obtained fromCD
as formalised in Section IV. In the rest of this article, this
test is notedRealizable(CD, W q) whereW q stands for the
compositionW of peers interacting using queues of sizeq.

A. Synchronous Communication

LOTOS relies on synchronous communication, therefore
from the LOTOS code obtained previously, we generate an
LTS for each peer process, and compose all peers in parallel
explicitly stating the messages on which they synchronize.
This system is generated using SVL [13], which is a scripting
language that complements the LOTOS encoding, and auto-
mates parts of the approach by calling the different CADP
tools we use. Moreover, these scripts were used to circumvent
the state explosion problem (see a discussion on this issue in
Section VII). Bcg files (delimited by double quotes and with
extensionbcg below) are internal state/transition representa-
tions computed (by CADP) from the LOTOS peer processes.
Message directions “!” and “?” that are shown in Figure 5
for readability reasons, have a different meaning in LOTOS
(they are used for value passing). Since we do not need value
passing here, we have encoded messages without any direction
for the synchronous case as they appear in the synchronization
sets (noted between|[..]|) below.

From a collaboration diagramCD = (P, E, M) involving
n peers, first, peer LTSs inBcg format are obtained from
their LOTOS encoding presented in Section IV, and then the
distributed system is generated as follows:

"distributed system.bcg"=

"peer p1 lts.bcg"

|[alpha peer′(p1, M) ∩
(alpha peer′(p2, M) ∪ . . . ∪ alpha peer′(pn,M))]|

(

"peer p2 lts.bcg"

|[alpha peer′(p2, M) ∩
(alpha peer′(p3, M) ∪ . . . ∪ alpha peer′(pn,M))]|

. . .

)

Let us go back to our running example: here is the SVL
code generated for the train station service. Note that if two
peers do not have to synchronize, they are composed using
the interleaving operator (|||).

"distributed_system.bcg" =
"peer_Customer_lts.bcg"
|[c_ts_request, ts_c_result, b_c_invoice]|
(

"peer_TrainStation_lts.bcg"
|[ts_a_info, a_ts_infoAvail, a_ts_itinerary,

ts_b_book, b_ts_ack]|
(

"peer_Availability_lts.bcg"
|||
"peer_Booking_lts.bcg"

)
)

Once this system is generated and reduced, we compare
it to the collaboration diagram LTS (generated as explained
in Section III) using a strong equivalence relation [16]. This
check either says that both systems are equivalent and the
collaboration diagram is then realizable, or returnsfalsewhich
means that the diagram is unrealizable. As far as our running
example is concerned, the equivalence test returnstrue for
synchronous communication.

B. Asynchronous Communication

This case is slightly more complicated because asyn-
chronous communication is not directly supported by LOTOS.
To simulate how the system evolves with an asynchronous
communication model, we generate some LOTOS code to
implement bounded FIFO queues. Each peer is associated
with a queue (a LOTOS process) from which it can consume
messages received beforehand (see Fig. 6). This also means
that a peer which wants to send a message to another one,
will actually interact (synchronously) with the other one’s
queue. A queue process needs a bounded queue datatype
(BQueue below) to store received messages. This datatype is
implemented using algebraic specification facilities provided
by LOTOS. The datatype encoding queues defines several
operations:bisfull tests if the queue is full,binsert
appends a message to the end of the queue,bishead tests
if a message appears at the head of the queue, andbremove
suppresses the message at the head of the queue.

A queue process can either interact with other peers on
messages that can be received by its own peer (m1 in queue p
below), or synchronizes with its own peer if that peer wants
to evolve by consuming a message available in its own queue
(m1 REC in queue p). Note that a local communication

IEEE TRANSACTIONS ON SERVICES COMPUTING 9

P1

Q1

P2

Q2

input port

legend:

output port

communicat ion

Fig. 6. System architecture: communication between peers and queues

between a peer and its queue has the suffix “REC”, whereas
a communication between a peer (sender) and a queue does
not have a suffix.

process queue p [m1, m1 REC, . . . , mn, mn REC]

(q:BQueue) : exit :=

[not(bisfull(q))] -> m1;

queue p[m1, m1 REC, . . .](binsert(m1,q))

[] . . . []

[bishead(m1,q)] -> m1 REC;

queue p[m1, m1 REC, . . .](bremove(q))

[] exit

endproc

where{m1, . . . , mn} = alpha peer′(p, M).

Next, a process for each pair(peer, queue)is generated in
LOTOS. A peer and a queue interact together on all messages
(with suffix “ REC”) that can be received by the peer. From
an external point of view, these messages are not of interest
while checking realizability (collaboration diagrams show the
global ordering of message send events), and that is why they
are hidden. We show below such a LOTOS process for a peer
p. Notice that the processqueue p below is instantiated with
a size set toB and an empty queue (nil). The queue size is
an input parameter of the LOTOS encoding.

process peer queue p [m1, . . . , mn, SY NC] : exit :=

hide m1 REC, . . . , mn REC in

(

peer p[m1, . . . , mn, SY NC]

|[m1 REC, . . . , mn REC]|

queue p[m1, m1 REC, . . .](queue(B,nil))

)

endproc

where{m1, . . . , mn} = alpha peer′(p, M).

Finally, the distributed system (in SVL below) is obtained
by compiling all LOTOS processes encoding pairs(peer,
queue)into Bcg files, and making all these pairs synchronize
correctly on messages exchanged among peers, that is all
messages sent from peers to corresponding queues.

"distributed system async.bcg"=

"peer queue p1.bcg"

|[alpha peer′(p1, M) ∩
(alpha peer′(p2, M) ∪ . . . ∪ alpha peer′(pn, M))]|

(

"peer queue p2.bcg"

|[alpha peer′(p2, M) ∩
(alpha peer′(p3, M)∪. . .∪alpha peer′(pn, M))]|

. . .

)

Once the distributed system is computed, realizability is
checked similar to the synchronous case, by comparing if the
collaboration diagram LTS obtained as presented in SectionIII
is strongly equivalent to the distributed system.

As far as our running example is concerned, first the
distributed system is generated as follows:

"distributed_system_async.bcg"=
"peer_queue_Customer.bcg"
|[c_ts_request, ts_c_result, b_c_invoice]|
(

"peer_queue_TrainStation.bcg"
|[ts_a_info, a_ts_infoAvail, a_ts_itinerary,

ts_b_book, b_ts_ack]|
(

"peer_queue_Availability.bcg"
|||
"peer_queue_Booking.bcg"

)
)

The equivalence check returnsfalse, and indicates that the
trace consisting of messagesc ts request, ts a info,
a ts infoAvail, ts b book appears in both systems, but
a ts itinerary is then present in the distributed system
(it should not be), and not in the collaboration diagram
LTS. The problem here is that the train station peer has
no way to know whether the availability peer will send a
a ts itinerary or not because the recurrence type is
“*” which means zero or one or more times. So, what
happens is that the train station peer sendsts b book to the
booking peer (assuming the availability peer will never send
a ts itinerary), and after this emission, the availability
peer finally sendsa ts itinerary, thus the dependency
relation A3/B1:book is not respected. We show in Sec-
tion VI how such unrealizable collaboration diagrams can be
implemented without modifying the collaboration diagram.

C. Relating Realizability Results with Queue Sizes

The cost of the realizability check increases exponentially
when queues’ length increases. In [5], Fuet al. showed that
asynchronous messaging leads to state space explosion for
bounded message queues and undecidability of the model
checking problem for unbounded message queues. Collabo-
ration diagrams in combination with the projection method
(introduced in Section IV) have an interesting property: it
is possible to generalize results of the realizability check
for queues with size one to queues with any size. More
precisely, if the parallel composition of the projected peers
with queue length one realizes a collaboration diagram, this
parallel composition also realizes the collaboration diagram
when peers have a queue lengthq > 1 or unbounded queues.
Also, if the parallel composition of the projected peers with
queue length one does not realize a collaboration diagram, this
parallel composition does not realize the collaboration diagram
when peers have queue lengthq > 1 either. Theorem 1
formalizes this property (formal proof of this theorem can be
found in Appendix).

Theorem 1:Given a collaboration diagramCD, a queue
length q ∈ N+, and the parallel composition of thepro-
jected peersW , W q realizesCD if and only if W 1 re-

IEEE TRANSACTIONS ON SERVICES COMPUTING 10

alizes CD: ∀CD, W, q ∈ N+
� Realizable(CD, W q) ⇔

Realizable(CD, W 1)
Intuitively, there are three main reasons for this property:

1) The equivalence check involves only sent messages,
and received messages can be run at any moment without
any control (it is not important when peers dequeue received
messages or in what order these messages are dequeued).
Therefore, in compositions with larger queues, while preserv-
ing realizability, peers can postpone receiving messages and
send their own messages first.

2) Peer specifications are obtained from the collaboration
diagram by projection. This guarantees that being realizable
or not,W 1 always strongly simulatesCDLTS. Also, the only
difference betweenW q andW 1 is thatW q has larger queues.
This means thatW q always strongly simulatesW 1. Using
these two properties, the forward direction of Theorem 1 can
be proved.

3) Each collaboration diagram defines a partial order on
the occurrence of its events (see Appendix for more details).
As a consequence, a message can be sent if and only if
sending that message does not violate the defined order for
message send events. On the other hand, by definition, there
is no deadlock situation in a collaboration diagram (nor
in a realizable composition of peers). Thus, in a realizable
composition of peers, when a message is sent, it means: i) it
will be eventually received, ii) time of receiving a message
does not change the possible occurrence orders of events which
have not occurred yet, and thus iii) while preserving observable
behaviors, a message can be received right after it has been
sent. Using the last property, without changing observable
behavior ofW 1, it can receive (dequeue) a message right after
it has been sent (enqueued). Therefore,W 1 can keep its queues
empty, and this property makes peers inW 1 able to send any
message that peers inW q are capable of sending (it proves
the backward direction of Theorem 1).

VI. PEER GENERATION, EXTENDED

Collaboration diagrams are unrealizable because peers do
not respect either (i) the application order of messages in
each thread, or (ii) dependency relations of messages among
threads. To make peers respect interaction constraints of un-
realizable collaboration diagrams, we need to enforce peers
to execute messages in the same order as specified in the
diagram. To do so, we will insert additional communication
among peers. The first constraint (respecting the application
order of messages in each thread) is achieved by adding in
the collaboration diagram encoding some explicit messages
prefixed with “SEQ ” between each thread message. With
regards to the second one (respecting dependency relations),
we will use the “SYNC ” messages that have been used in the
initial encoding to respect message dependency relations.

However, all these additional messages are not necessary
to make peers realize the collaboration diagram, and adding
systematically a new message for each sequence in all threads
and for each dependency relation may lead to excessive com-
munication overhead between peers. Consequently, we want
to minimize the number of extra communication operations.

Given two eventse = (B, l, m, r) and e′ = (B′, l′, m′, r′)
to be executed in order, we state two conditions below for
synchronous and asynchronous communication, respectively,
in which these new messages are not needed:

Csync(e, e
′) = (r = 1) ∧

`

(send(m′) ∈
{send(m), recv(m)}) ∨ (recv(m′) ∈ {send(m), recv(m)})

´

Casync(e, e
′) =

`

(r = 1) ∧ (send(m′) ∈
{send(m), recv(m)})

´

∨
`

(r 6= 1) ∧ (send(m) = send(m′))
´

Then, we define both setsSEQ and SY NC containing
additional messages that must be added to realize the input
choreography.SEQ is defined using functioncompute seq
which accepts as input the list of threads computed from
the collaboration diagram using functionsort by thread pre-
sented in Section III. For each threadThi consisting of a list
of events(B, l, m, r), function compute seq keeps messages
SEQ l if condition Cx is not verified. To cover all the events
in each thread, we iterate from1 to |Thi|−1 which is the last
event considered since we compare each eventk with event
k + 1 in the list.

SEQ = compute seq(Thi = [(Bi, li, mi, ri)]i∈1..n) =

{SEQ l | ∀k ∈ 1..|Thi| − 1 : e = Thi[k] ∧ e′ = Thi[k + 1] ∧ e =

(B, l, m, r) ∧ e′ = (B′, l′, m′, r′) ∧ ¬Cx(e, e′)}
SY NC works directly on the collaboration diagramCD =

(P, E, M) and takes as input the setE of events. For each
event used in the collaboration diagram, we check all the
prefixes (d1, . . . , dq, below) and keep only those which do not
respect conditionCx (this is checked using functioncheck C).

SY NC = compute sync(E) =
{SYNC l1 l′, . . . ,SYNC lk l′ | ∀e′ = (B′, l′, m′, r′) ∈ E :
{l1, . . . , lk} = check C(B′, e′, E)}

check C({di}i∈1..q , e
′, E) = {di | ∀e = (B, di, m, r) ∈ E :

¬Cx(e, e′)}
where x in Cx is either sync or async depending on the
communication model.

Let us describe how the generated LOTOS and SVL code
presented in Sections III, IV, and V is extended to take addi-
tional synchronizations into account. First of all, the encoding
of collaboration diagram into LOTOS (Section III) should also
consider new “SEQ ” messages as specified below, and all pro-
cess alphabets have to be extended with messages belonging
to SEQ (in functionsalpha, alpha peer, alpha peer′).

cd2lt([(B1, l1, m1, r1), . . . , (Bn, ln, mn, rn)], SY NC, SEQ) =

add pre sync(B1, l1) >> cd2lm(send(m1) recv(m1) m1, r1)

add seq(l1,SEQ)

(add post sync(l1, SY NC) >> add exit(n))

cd2lt([(B2, l2, m2, r2), . . . , (Bn, ln, mn, rn)], SY NC, SEQ)

whereadd seq(l, SEQ) =

(

SEQ l; if l ∈ SEQ

ǫ otherwise

While generating peers (Section IV), the main difference
concerns thehide construct generated in the body of each
processcd peer p aux where messages “SYNC ” should not
be hidden since we need them in the forthcoming peer LTSs:

process cd peer p aux [alpha peer′(p,M), SY NC]

hide gen hide(p,M), SY NC in

cd[alpha(p,M), SY NC]

endproc

IEEE TRANSACTIONS ON SERVICES COMPUTING 11

Finally, the SVL code generated in Section V is extended
with synchronizations between peers on additional messages.
To do so, we need a function which is able to extract messages
from SEQ andSY NC in which a given peer is involved. For
each peer, functionproj peer checks each action inSY NC
(SEQ, respectively) and verifies whether the corresponding
event e involves as sender or receiver the peerp passed as
input to the function:

proj peer(p,SY NC, SEQ,E) = {SYNC X Y | SYNC X Y ∈
SY NC ∧ e = (B, l, m, r) ∈ E ∧ (X = l ∨ Y = l) ∧ p ∈
{send(m), recv(m)}} ∪ {SEQ l | SEQ l ∈ SEQ ∧ e =
(B, l, m, r) ∈ E ∧ p ∈ {send(m), recv(m)}}

proj peers({p1, . . . , pn}, SY NC, SEQ, E) =

proj peer(p1, SY NC, SEQ, E) ∪ . . . ∪
proj peer(pn, SY NC, SEQ, E)

Now, let us illustrate how the
distributed system async process is extended
for the asynchronous case (the modification is similar
for the synchronous communication model). Basically,
synchronization sets are complemented with some of the
additional actions:

"distributed system async.bcg"=

"peer queue p1 lts.bcg"

|[(alpha peer′(p1, M) ∪ proj peer(p1, SYNC,SEQ,E)) ∩
(alpha peer′(p2, M) ∪ . . . ∪ alpha peer′(pn,M)

∪ proj peers({p2, . . . ,pn},SYNC,SEQ, E))]|

(

"peer queue p2 lts.bcg"

|[(alpha peer′(p2, M) ∪ proj peer(p2, SYNC,SEQ,E)) ∩
(alpha peer′(p3, M) ∪ . . . ∪ alpha peer′(pn,M)

∪ proj peers({p3, . . . ,pn},SYNC,SEQ, E))]|

. . .

)

Let us illustrate this extension with threadA of our running
example. With respect to the sequential ordering of messages
within each thread, note that potential new messagesSEQ A1
and SEQ A2 do not appear after messagests a info and
a ts infoAvail because they are not necessary for realiz-
ing the choreography (Csync returns true when called with
the corresponding events). As far as dependency relations
are concerned, messageSYNC A3 B1 appears at the end of
the thread behavior, and this message is necessary because
peers have no other way to preserve the dependency relation
specified in the event labelled byB1 (i.e.,A3/B1:book). On
the other hand, messageSYNC 1 A1 is discarded (since it is
not needed for realizability).

((* -- thread A encoding -- *)
ts_a_info; a_ts_infoAvail;
loop_process[a_ts_itinerary] >> SYNC_A3_B1;exit

)
|[SYNC_A3_B1]|
...

From this extended collaboration diagram encoding, peers
are generated by keeping the messages in which the peer does
participate in visible, and also the additional communication
introduced above. Peers synchronize on all additional commu-
nication that they share in their alphabets.

For instance, peers generated for our running example and
extended with additional messages are shown in Figure 7.
SYNC A3 B1 is the only necessary message because message
ts b book must be run only after the message identified
by A3 (a ts itinerary) in the collaboration diagram, and
involved peers have no other ways to respect this dependency.
Notice that three peers are involved in this interaction, namely
Booking, TrainStation, andAvailability.

c_ts_request!

ts_a_info?
a_ts_itinerary!

ts_b_book? b_ts_ack!

ts_c_result?

b_c_invoice?

ts_c_result?

b_c_invoice!

a_ts_infoAvail!

c_ts_request? ts_a_info! a_ts_infoAvail?
a_ts_itinerary?

ts_b_book!b_ts_ack?ts_c_result!

(a)

(b)

(c)

(d)

b_c_invoice?

SYNC_A3_B1

SYNC_A3_B1

SYNC_A3_B1

Fig. 7. Peers with additional messages: (a) customer, (b) booking, (c) train
station, (d) availability

Once the new peers are generated, the distributed system is
built by extending the description given in Section V with ad-
ditional communication and also synchronizing peers on them.
We recall that all peers do not synchronize on all additional
communication but only on those belonging to their alphabet
and shared with the other peers. Finally, equivalence between
the collaboration diagram LTS and the distributed system in
which all additional communication has been hidden, confirms
that the extended peers realize the collaboration diagram.

VII. T OOL SUPPORT ANDEXPERIMENTS

The steps of our approach are automated by several tools.
We have implemented a prototype tool namedcd2lotos ((1)
in Figure 1) which, given a collaboration diagram, generates
the LOTOS code necessary to compute all the results we have
presented in this article. Thecd2lotos prototype also generates
some SVL scripts that complement the LOTOS encoding and
automate the rest of the process by calling the different CADP
tools we use. From this encoding, LTS generation is achieved
usingCaesar.adt andCaesar LOTOS compilers, as well as
reduction techniques available inReductor ((2) in Figure 1).
Model-checking can be performed usingEvaluator ((3) in
Figure 1). Note that model-checking is the only step which is
not fully automated. Indeed, if a designer wants to go beyond
basic checks (such as deadlock-freeness), (s)he has to man-
ually write some temporal properties that the choreography
specification is supposed to satisfy. Last,Bisimulator is used
to check that the collaboration diagram LTS is equivalent to
the distributed peer implementation ((4) in Figure 1).

Our approach, and especially the tool we implemented
(cd2lotos), was applied and validated on about 115 col-
laboration diagrams either obtained from available resources
(research papers and on-line material) or written by ourselves.

IEEE TRANSACTIONS ON SERVICES COMPUTING 12

Applying our code generator to these examples results in about
59,000 lines of LOTOS and 32,000 lines of SVL. It took about
61 minutes to check realizability for all the case studies ofour
database for both communication models: 34 examples turned
out to be unrealizable in the case of synchronous communica-
tion, and 71 in the case of asynchronous communication. All
the unrealizable ones were were verified to be realizable once
additional communication was inserted in the peer protocols,
and it took about 48 minutes to check again realizability of
the whole database.

Table I shows experimental results4 on some of the exam-
ples belonging to our database. For each experiment, the table
gives the size of the diagram in terms of number of peers,
messages, and threads. Next, the table contains the number of
lines of LOTOS and SVL generated by our prototype as well as
the size (number of states and transitions) of the LTS generated
from the collaboration diagram. Last, we give realizability re-
sults for both synchronous and asynchronous communication,
and the time needed to compute both realizability checks.
Example cd-045 corresponds to the running example used in
this article.

It takes 2.4s for our prototype to generate LOTOS and
SVL files for all the examples of our database for both
communication models (synchronous and asynchronous) and
both strategies (with and without additional communication).
For medium size examples (cd-008, cd-025, cd-045), the
generation of all intermediate LTSs and the realizability checks
are quite fast (less than 20 seconds). For bigger collaboration
diagrams (cd-059, cd-102), the computation time increases
up to several minutes. It is interesting to note that examples
involving more threads (cd-094) induce time consuming com-
putations since they generate bigger intermediate state spaces
due to the higher number of interleavings introduced due to
the number of threads.

Table II shows results obtained for the unrealizable exam-
ples presented in Table I once additional communication is
inserted. As expected, all these examples become realizable
once the additional communication is added. Notice that
realizability tests may take less time compared to Table I (cd-
059, cd-094) because adding extra communication increases
the sequentiality of the system, and therefore reduces commu-
nication interleaving.

During the experiments, we faces the state explosion prob-
lem. In a first attempt, we were computing distributed systems
in a single step, but, even for simple examples, the state space
compilation lasted several minutes. Experiments showed that
for collaboration diagrams of medium size (4/5 peers and
10/15 messages), the compilation of pairs(peer, queue)was
returning LTSs containing hundreds even thousands of states
(resp.transitions). Consequently, we decided to build first each
pair (peer, queue), minimize them individually, and compose
them to finally obtain the expected system. This technique
(known as compositional verification in CADP) allows us to
generate any step of the (distributed) system computation in a
few seconds.

4Experiments have been carried out on a Vaio VGN-FZ11Z (IntelCore 2
Duo Processor T7300 2GHz, 2GB of RAM).

VIII. R ELATED WORK

There has been earlier work on studying and defining
the realizability problem for choreography. In [17], [18],the
authors define models for choreography and orchestration, and
formalize a conformance relation between both models. These
models are given as input whereas we focus on the generation
of one from the other (generation of peers from a global
specification) while ensuring conformance. In [19], the authors
focus onLet’s dancemodels for choreographies, and define
for them an algorithm that determines if a global model is
locally enforceable, and another algorithm for generatinglocal
models from global ones. In [20], the authors show through
a simple example how BPEL stubs can be derived from WS-
CDL choreographies, but, due to the lack of semantics of both
languages, correctness of the generation cannot be ensured.

Some works define several realizability notions, and classify
them in a hierarchy [6]. However, some of these notions (the
weak ones) are questionable because by relaxing the message
ordering constraints, the choreography specification’s behavior
is not preserved. Bultan and Fu [2] tackle the realizabilityissue
in the context of asynchronous communication, and define
some sufficient conditions to test realizability of choreogra-
phies specified with collaboration diagrams. In this article, we
refine and extend this former work with tool support, some
techniques to enforce realizability, and some new results on
asynchronous communication (wrt. queue sizes).

Message Sequence Charts (MSCs), also know as sequence
diagrams, are often compared with collaboration diagrams
since they both allow the description of interactions of en-
tities being composed. The realizability problem for MSCs
has already been studied, see for instance [15], [21], [22].
Collaboration diagrams and MSCs provide a different view of
interactions: MSCs specify the local orderings of the sent and
received messages, whereas collaboration diagrams give the
global ordering of the sent messages. In particular, received
messages in collaboration diagrams can be ordered in any way
as long as the sent messages respect the order specified in the
diagram. Therefore, earlier results on realizability of MSCs are
not applicable to the realizability of collaboration diagrams.

In terms of tools that check realizability, WSAT [23] is the
only other tool we know. WSAT checks a set of realizability
conditions on conversation protocols [5].

Other works [7], [8] propose well-formedness rules to
enforce the choreography specification to be realizable. For
example, in [8], the authors rely on aπ-calculus-like language
and session types to formally describe choreographies. Then,
they identify three principles for global description under
which they define a sound and complete end-point projection,
that is the generation of distributed processes from the chore-
ography description. This solution is too restrictive since it
may prevent the designer from specifying what (s)he wants to
do. In addition, it complicates the choreography design since
the designer cannot only focus on composition issues, but has
to consider at the same time these well-formedness rules.

To the best of our knowledge, the only work which proposes
to add messages in order to implement unrealizable choreogra-
phies is [7]. To do so, the authors extend their choreography

IEEE TRANSACTIONS ON SERVICES COMPUTING 13

Collab. Size LOTOS SVL CD LTS Realizability
diagrams peers messages threads (lines) (lines) (states/transitions) sync. async. time
cd-008 5 9 4 388 148 27/46

√ √
19.56s

cd-025 4 6 3 304 130 12/15
√ √

16.20s
cd-045 5 8 3 341 130 10/13

√ × 18.69s
cd-059 10 20 3 666 238 56/175 × × 1m12.31s
cd-094 7 13 6 495 184 96/396 × × 1m46.14s
cd-102 16 30 4 959 346 220/748 × × 6m31.39s

TABLE I

REALIZABILITY RESULTS FOR SOME CASE STUDIES(NO ADDITIONAL COMMUNICATION)

Collab. Size LOTOS SVL CD LTS Realizability
diagrams peers messages threads (lines) (lines) (states/transitions) sync. async. time
cd-045 5 8 3 343 134 10/13

√ √
17.09s

cd-059 10 20 3 674 242 56/175
√ √

44.45s
cd-094 7 13 6 501 188 96/396

√ √
1m25.25s

cd-102 16 30 4 974 350 220/748
√ √

6m51.51s

TABLE II

REALIZABILITY RESULTS FOR SOME CASE STUDIES(WITH ADDITIONAL COMMUNICATION)

language with new constructs (named dominated choice and
loop). During the projection of these new operators, some ad-
ditional communication is added in order to make peers respect
the choreography specification. This solution complicatesthe
design because these new constructs are more restricting than
the original ones, and they oblige the designer to explicitly
state extra-constraints in the choreography specificationby
associatingdominant rolesto certain peers.

To sum up, most of these approaches focus on theoretical
aspects (no tool support) whereas our contribution combines
theoretical results (e.g., relation between realizability results
and message queue sizes) and tool support (the LOTOS
encoding makes possible the complete automation of realiz-
ability test, choreography verification, and peer generation).
Second, our approach allows implementation of any chore-
ography specification without adding any rule or constraint
on the choreography language or specifications written with
it. Finally, we consider in this article both synchronous and
asynchronous communication models.

IX. CONCLUDING REMARKS

In this article, we have studied the realizability question
for choreography specifications. Realizability aims at checking
whether peers involved in the choreography specification pro-
duce exactly the same behavior once they are obtained by end-
point projection and interact together in a distributed fashion.
In this article we focused on collaboration diagrams as a
choreography specification language. In order to detect realiz-
ability issues, we have presented an encoding of collaboration
diagrams into LOTOS. LOTOS is a process algebra expressive
enough to specify all the interaction constraints that can be
specified with collaboration diagrams. In addition, LOTOS is
equipped with CADP toolbox which we used to implement
the different checks required to verify the choreography real-
izability. Our approach can deal with both synchronous and

asynchronous communication, and is completely automated
with a prototype tool we implemented to generate LOTOS
code, and the use of the CADP toolbox to analyze results
generated from this code. If a collaboration diagram is not
realizable, we have proposed an alternative projection of peers
which adds some additional communication in their descrip-
tion, and makes peers realize the choreography. We have also
proved that realizability results in the case of asynchronous
communication can be checked with queue size one, and
generalized to any size of queues, possibly infinite ones.

For future work, a first perspective concerns implementation
issues. In this article, we focused on formal and theoreti-
cal aspects, and we have not discussed how code can be
(automatically) generated from abstract descriptions of peers
obtained using our approach. From these abstract specifica-
tions, new services can be implemented in any programming
language, in JAVA for instance as done in [24], using Pi4SOA
technologies [25], or following guidelines presented in [26]
where some BPEL code generation techniques are proposed.
An alternative solution is to reuse an implementation of a
service that already exists. In such a case, discovery tech-
niques [27] can be used to check whether some existing
services are compatible [28] with the peer LTSs at hand.
If additional messages need to be taken into account to
make peers implement the choreography, some wrappers can
be generated as presented in [29]. These wrappers would
allow us to guide the service behavior to make it respect
its specification (in particular the additional communication
appearing in the peer LTS) without changing the service
functional code. A second perspective aims at extending our
approach considering as input a set of collaboration diagrams.
Indeed, a choice construct is missing in the collaboration
diagram notation, and using a set of diagrams would allow to
fill this gap. Finally, we plan to keep studying the relationship
between queue sizes and realizability results in the case of

IEEE TRANSACTIONS ON SERVICES COMPUTING 14

asynchronous communication. In particular, we would like to
see if results presented in this article (queue size one is enough
to check realizability of collaboration diagrams) hold forother
choreography specification languages.

Acknowledgements.The authors thank Javier Cámara and
José Antonio Martı́n for fruitful discussions and interesting
comments on a former version of this article. This work has
been partially supported by US National Science Foundation
Grants CCF-0614002 and CCF-0716095.

REFERENCES

[1] X. Fu, T. Bultan, and J. Su, “Conversation Protocols: A Formalism for
Specification and Verification of Reactive Electronic Services,” Theor.
Comput. Sci., vol. 328, no. 1-2, pp. 19–37, 2004.

[2] T. Bultan and X. Fu, “Specification of Realizable ServiceConversa-
tions using Collaboration Diagrams,”Service Oriented Computing and
Applications, vol. 2, no. 1, pp. 27–39, 2008.

[3] G. Salaün, L. Bordeaux, and M. Schaerf, “Describing andReasoning
on Web Services using Process Algebra,” inProc. of ICWS’04. IEEE
CSP, 2004, pp. 43–51.

[4] W. M. P. van der Aalst, M. Dumas, C. Ouyang, A. Rozinat, andH. M. W.
Verbeek, “Choreography Conformance Checking: An Approachbased
on BPEL and Petri Nets,” inProceedings of the Dagstuhl Seminar on
The Role of Business Processes in Service Oriented Architectures, 2006.

[5] X. Fu, T. Bultan, and J. Su, “Synchronizability of Conversations among
Web Services,”IEEE Transactions on Software Engineering, vol. 31,
no. 12, pp. 1042–1055, 2005.

[6] R. Kazhamiakin and M. Pistore, “Analysis of Realizability Conditions
for Web Service Choreographies,” inProc. of FORTE’06, ser. LNCS,
vol. 4229. Springer, 2006, pp. 61–76.

[7] Z. Qiu, X. Zhao, C. Cai, and H. Yang, “Towards the Theoretical
Foundation of Choreography,” inProc. of WWW’07. ACM Press, 2007,
pp. 973–982.

[8] M. Carbone, K. Honda, and N. Yoshida, “Structured Communication-
Centred Programming for Web Services,” inProc. of ESOP’07, ser.
LNCS, vol. 4421. Springer, 2007, pp. 2–17.

[9] H. Garavel, R. Mateescu, F. Lang, and W. Serwe, “CADP 2006: A
Toolbox for the Construction and Analysis of Distributed Processes,” in
Proc. of CAV’07, ser. LNCS, vol. 4590. Springer, 2007, pp. 158–163.

[10] G. J. Holzmann, “The Model Checker SPIN,”IEEE Trans. Software
Eng., vol. 23, no. 5, pp. 279–295, 1997.

[11] G. Salaün and T. Bultan, “Realizability of Choreographies using Process
Algebra Encodings,” inProc. of IFM’2009, ser. LNCS, vol. 5423.
Springer, 2009, pp. 167–182.

[12] ISO, “LOTOS — A Formal Description Technique Based on the
Temporal Ordering of Observational Behaviour,” International Standards
Organisation, Tech. Rep. 8807, 1989.

[13] H. Garavel and F. Lang, “SVL : A Scripting Language for Compositional
Verification,” in Proc. of FORTE’01. Kluwer, 2001, pp. 377–394.

[14] R. Mateescu and M. Sighireanu, “Efficient On-the-Fly Model-Checking
for Regular Alternation-Free Mu-Calculus,” vol. 46, no. 3,pp. 255–281,
2003.

[15] R. Alur, K. Etessami, and M. Yannakakis, “Realizability and Verification
of MSC Graphs,”Theoretical Computer Science, vol. 331, no. 1, pp. 97–
114, 2005.

[16] R. Milner, Communication and Concurrency, ser. International Series in
Computer Science. Prentice Hall, 1989.

[17] N. Busi, R. Gorrieri, C. Guidi, R. Lucchi, and G. Zavattaro, “Choreog-
raphy and Orchestration Conformance for System Design,” inProc. of
Coordination’06, ser. LNCS, vol. 4038. Springer, 2006, pp. 63–81.

[18] J. Li, H. Zhu, and G. Pu, “Conformance Validation between Choreogra-
phy and Orchestration,” inProc. of TASE’07. IEEE Computer Society,
2007, pp. 473–482.

[19] J. M. Zaha, M. Dumas, A. H. M. ter Hofstede, A. P. Barros, and
G. Decker, “Service Interaction Modeling: Bridging Globaland Local
Views,” in Proc. of EDOC’06. IEEE Computer Society, 2006, pp.
45–55.

[20] J. Mendling and M. Hafner, “From Inter-organizationalWorkflows to
Process Execution: Generating BPEL from WS-CDL,” inProc. of
OTM’05 Workshops, ser. LNCS, vol. 3762. Springer, 2005, pp. 506–
515.

[21] R. Alur, K. Etessami, and M. Yannakakis, “Inference of Message
Sequence Charts,”IEEE Transactions on Software Engineering, vol. 29,
no. 7, pp. 623–633, 2003.

[22] S. Uchitel, J. Kramer, and J. Magee, “Incremental Elaboration of
Scenario-based Specifications and Behavior Models using Implied Sce-
narios,” ACM Transactions on Software Engineering and Methodology,
vol. 1, no. 13, pp. 37–85, 2004.

[23] X. Fu, T. Bultan, and J. Su, “WSAT: A Tool for Formal Analysis of
Web Services,” inProc. of CAV’04, ser. LNCS, vol. 3114. Springer,
2004, pp. 510–514.

[24] N. Roohi, G. Salaün, and S. H. Mirian, “Analyzing Chor Specifications
by Translation into FSP,” inProc. of FOCLASA’09, ser. ENTCS, vol.
255, 2009, pp. 159–176.

[25] “Pi4SOA Project.”www.pi4soa.org.
[26] R. Mateescu, P. Poizat, and G. Salaün, “Adaptation of Service Protocols

using Process Algebra and On-the-Fly Reduction Techniques,” in Proc.
of ICSOC’08, ser. LNCS, vol. 5364. Springer, 2008, pp. 84–99.

[27] A. Zisman, G. Spanoudakis, and J. Dooley, “A Framework for Dynamic
Service Discovery,” inProc. of ASE’08. IEEE Computer Society, 2008,
pp. 158–167.

[28] F. Duran, M. Ouederni, and G. Salaün, “Checking Protocol Compati-
bility using Maude,” inProc. of FOCLASA’09, ser. ENTCS, vol. 255,
2009, pp. 65–81.

[29] G. Salaün, “Generation of Service Wrapper Protocols from Choreogra-
phy Specifications,” inProc. of SEFM’08. IEEE Computer Society,
2008, pp. 313–322.

Gwen Salaünreceived the PhD degree in Computer
Science from the University of Nantes, France, in
2003. In 2003-2004, he held a post-doctoral position
at the University of Rome “La Sapienza”. In 2004-
2006, he held a second post-doctoral position at
INRIA, France. In 2006-2009, he was a research as-
sociate at the University of Malaga, Spain. He is cur-
rently an associate professor at Ensimag (Grenoble
INP) in Grenoble, France. His research interests in-
clude formal techniques and tools, process algebras,
concurrent and distributed systems, specification and

verification, software engineering, composition of components and services.

Tevfik Bultan is a Professor in the Department of
Computer Science at the University of California,
Santa Barbara. He received his B.S. in electrical
and electronics engineering in 1989 from the Middle
East Technical University, and his M.S. in computer
engineering and information science in 1992 from
the Bilkent University, both in Ankara, Turkey. He
received his Ph.D. in computer science in 1998
from the University of Maryland, College Park. He
joined the Department of Computer Science at the
University of California, Santa Barbara in 1998. His

current research interests are: service oriented computing, concurrency, model
checking, static analysis, and software engineering.

Nima Roohi received his MSc degree from Com-
puter Science department of Sharif University of
Technology, Iran, in 2008. He is interested in formal
research areas, such as formal specification and
verification, program development from formal spec-
ification, choreography and orchestration of Web
services, concurrent programming.

