
131

Specifying and Testing GPUWorkgroup Progress Models

TYLER SORENSEN, UC Santa Cruz, USA

LUCAS F. SALVADOR, Princeton University, USA

HARMIT RAVAL, Princeton University, USA

HUGUES EVRARD, Google, UK

JOHN WICKERSON, Imperial College London, UK

MARGARET MARTONOSI, Princeton University, USA

ALASTAIR F. DONALDSON, Imperial College London, UK

As GPU availability has increased and programming support has matured, a wider variety of applications are

being ported to these platforms. Many parallel applications contain fine-grained synchronization idioms; as

such, their correct execution depends on a degree of relative forward progress between threads (or thread

groups). Unfortunately, many GPU programming specifications (e.g. Vulkan and Metal) say almost nothing

about relative forward progress guarantees between workgroups. Although prior work has proposed a

spectrum of plausible progress models for GPUs, cross-vendor specifications have yet to commit to any model.

This work is a collection of tools and experimental data to aid specification designers when considering

forward progress guarantees in programming frameworks. As a foundation, we formalize a small parallel

programming language that captures the essence of fine-grained synchronization. We then provide a means of

formally specifying a progress model, and develop a termination oracle that decides whether a given program

is guaranteed to eventually terminate with respect to a given progress model. Next, we formalize a set of

constraints that describe concurrent programs that require forward progress to terminate. This allows us to

synthesize a large set of 483 progress litmus tests. Combined with the termination oracle, we can determine

the expected status of each litmus test – i.e. whether it is guaranteed to eventually terminate – under various

progress models. We present a large experimental campaign running the litmus tests across 8 GPUs from 5

different vendors. Our results highlight that GPUs have significantly different termination behaviors under our

test suite. Most notably, we find that Apple and ARM GPUs do not support the linear occupancy-bound model,

an intuitive progress model defined by prior work that has been hypothesized to describe the workgroup

schedulers of existing GPUs.

CCS Concepts: • Computing methodologies→ Parallel programming languages; • Theory of compu-
tation → Program semantics.

Additional Key Words and Phrases: liveness, semantics, GPU, model checking, test case synthesis

ACM Reference Format:
Tyler Sorensen, Lucas F. Salvador, Harmit Raval, Hugues Evrard, John Wickerson, Margaret Martonosi,

and Alastair F. Donaldson. 2021. Specifying and Testing GPUWorkgroup Progress Models. Proc. ACM Program.
Lang. 5, OOPSLA, Article 131 (October 2021), 35 pages. https://doi.org/10.1145/3485508

Authors’ addresses: Tyler Sorensen, UC Santa Cruz, USA, tyler.sorensen@ucsc.edu; Lucas F. Salvador, Princeton University,

USA, ls24@alumni.princeton.edu; Harmit Raval, Princeton University, USA, hraval@alumni.princeton.edu; Hugues Evrard,

Google, UK, hevrard@google.com; John Wickerson, Imperial College London, UK, j.wickerson@imperial.ac.uk; Margaret

Martonosi, Princeton University, USA, mrm@princeton.edu; Alastair F. Donaldson, Imperial College London, UK, alastair.

donaldson@imperial.ac.uk.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2021 Copyright held by the owner/author(s).

2475-1421/2021/10-ART131

https://doi.org/10.1145/3485508

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 131. Publication date: October 2021.

ar
X

iv
:2

10
9.

06
13

2v
1

 [
cs

.P
L

]
 1

3
Se

p
20

21

https://doi.org/10.1145/3485508
https://doi.org/10.1145/3485508

131:2 T. Sorensen, L. F. Salvador, H. Raval, H. Evrard, J. Wickerson, M. Martonosi, and A. F. Donaldson

1 INTRODUCTION
Since its inception nearly a decade ago in frameworks such as CUDA and OpenCL, general-purpose

computing on graphics processing units (GPGPU computing) has seen two trends: more and more

applications are offloading computations to GPU devices, and the diversity and availability of GPU

architectures has increased dramatically. Almost all major chip designers, e.g. Nvidia, Intel, AMD,

ARM, Qualcomm, and Apple, provide their own GPU, and nearly every mainstream computing

device contains a programmable GPU.

While some GPU vendors provide programming frameworks specific to their devices (notably

Nvidia with CUDA and Apple with Metal), the diversity of the modern computing landscape

motivates cross-vendor GPU programming frameworks. Indeed, OpenCL has recently launched a

overhauled version 3.0 with many modern features, including support for C++17 and integration

with Clang [Khronos Group 2020a]. And at a lower level, Vulkan [Khronos Group 2020b] was

released in 2016, is supported by most vendors, and has had considerable uptake by users.

Independent forward progress on GPUs. Given implementation differences across GPUs, cross-

vendor GPU frameworks differ from those of classic CPU programming. In particular, independent
forward progress (henceforth referred to as progress) between threads of execution is not always

guaranteed on a GPU. This means that it is not safe—in general—to write a GPU program (often

called a kernel) where one thread relies on another thread making progress. Full progress guarantees

are difficult to provide for two main reasons. First, a GPU computation is split into sub-tasks, each of

which is assigned to a subset of threads called a workgroup. If there are too many workgroups, they

might not all execute concurrently. The GPU scheduler might delay execution of some workgroups

until others have finished. If a thread from an early workgroup spins, waiting for a thread from a

later, delayed, workgroup, this will lead to starvation and execution will not terminate. Second, the

threads of a workgroup are usually organized into subgroups where each thread in a subgroup is

really a lane in a stream of SIMD vector instructions. The threads in a subgroup share a program

counter and thus do not progress independently.

A case for supporting progress. Given this, many GPGPU framework specifications do not commit

to any progress guarantees. Even the Nvidia-specific CUDA framework has only recently provided

progress guarantees, requiring specialized hardware support [Nvidia 2017, p. 26]. The lack of

cross-vendor progress guarantees severely limits the kinds of concurrent programs that can be

safely offloaded onto GPUs, so that even fundamental synchronization idioms, such as mutexes and

execution barriers, are not supported in principle and have been shown to lead to non-terminating

behavior in practice [ElTantawy and Aamodt 2016; Sorensen et al. 2016]. We argue that GPU

programming specifications should provide progress guarantees in some form, for several reasons:

• Current devices empirically provide progress. Prior work has empirically shown that

today’s GPUs appear to guarantee a limited form of progress between workgroups [Sorensen

et al. 2016, 2019]. The putative progress model, Occupancy-Bound Execution (OBE), states that

any workgroup that starts execution will be fairly scheduled until it finishes execution.

• Developers already rely on empirical guarantees. Examples of developers relying on

unofficial progress models for GPUs goes back to 2010, when a limited execution barrier was

proposed [Xiao and Feng 2010]. Many examples followed, e.g. mutexes and workstealing,

that rely on some progress model, typically OBE [Cederman and Tsigas 2008; Maleki et al.

2016; Nelson and Palmieri 2019; Tzeng et al. 2010]. These folklore assumptions have had a

decade to take root, but cross-vendor GPU programming frameworks still do not provide a

means of querying whether such assumptions hold for a given device.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 131. Publication date: October 2021.

Specifying and Testing GPU Workgroup Progress Models 131:3

• Progress guarantees can enable significant performance. These GPU folklore progress

models are required for several high-performance GPU programs. For example, a graph

application optimization requiring OBE progress properties has been shown to drastically

improve performance across many devices [Sorensen et al. 2019]. Additionally, the high-

performance prefix sum implementation [Blelloch 1989; Merry 2015] in the CUB CUDA

library [Nvidia 2021a] also requires inter-workgroup progress support; it was recently ported

to Vulkan and shown to have high performance across a range of devices [Levien 2020].

• Progress guarantees are inconsistent across frameworks. Nvidia’s CUDA framework

recently introduced a progress model that legitimises some of these folklore assumptions.

There is a risk that developers familiar with CUDA may wrongly assume that its guarantees

apply more broadly, especially when using compilation flows that translate from CUDA

into other frameworks for the explicit purpose of porting CUDA code to other devices [Kim

and Kim 2019; Martinez et al. 2011]. Bringing non-trivial notions of progress guarantees to

cross-vendor frameworks would help to close this gap and avoid such problems.

Despite being aware of these considerations, designers of GPGPU frameworks have reasons not
to impose blanket progress guarantees: doing so might be costly or infeasible on some architectures,

or may have unanticipated consequences for future architectures. Yet, progress guarantees do not

have to be all-or-nothing. Previous research on semi-fair schedulers [Sorensen et al. 2018] defines

a hierarchy of progress models that offer a range of progress guarantees. Furthermore, progress

guarantees could be incorporated as queryable features of a programming framework, allowing

devices to advertise the particular forward progress models that they support.

Contributions
Tomake informed decisions about progressmodels, framework designersmust be able to: (1) describe
forward progress models, (2) ask questions about the subtle concurrent interactions that a given
model allows, and (3) test whether an implementation satisfies the chosen forward progress model.

Our contributions, which aim to support designers in these regards, are as follows:

A simple programming language for progress reasoning (§3). We define a small concurrent pro-

gramming language designed specifically for expressing progress model litmus tests: small unit tests

that are guaranteed to terminate under a strongly fair progress model, but that have the potential for

non-termination under more restrictive models. Featuring just one type of instruction—an atomic

instruction that encodes a read, an optional write, and an optional branch—the language is simple

enough to allow reasoning and test synthesis using off-the-shelf tools, yet is rich enough to express

concurrent idioms such as producer-consumer, mutexes, and barriers; the kinds of examples that

inform discussion of progress models.

Executable semantics for progress models (§4). We show that a progress model can be rigorously

described in a process-algebraic formalism over the programming language of §3. For the user, i.e.

the specification designer, this involves specifying the set of threads that are guaranteed eventual

execution at various points in the program execution.

We provide an implementation in the CADP model checker [Garavel et al. 2013] that can be used

to answer questions about whether concurrent programs written in our language are guaranteed

to terminate under various progress models. We provide a library of 6 progress models of interest,

including all that we were able to find in prior work. Of these 6 progress models, 5 are influenced

by the fairness being weak or strong, which brings the total to 11 distinct progress models.

Synthesising progress litmus tests (§5). We formalize a set of constraints that progress litmus tests

must satisfy; i.e. constraints ensuring that a program will terminate under a fair progress model but

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 131. Publication date: October 2021.

131:4 T. Sorensen, L. F. Salvador, H. Raval, H. Evrard, J. Wickerson, M. Martonosi, and A. F. Donaldson

Starvation and
Livelock Program

Constraints

Formal Progress
Models

CADP
(model checker)

Alloy Analyzer
(test case synthesis)

Progress
Litmus Tests

Per-model Test
Results

CUDA Tests

Metal Tests

Vulkan Tests

GPU Test
Compiler

Specifications Tool/Framework/Platform

GPU
Devices

Empirical Test
Results

Test Suites Test Results

Fig. 1. A flowchart detailing our approach. We present two types of specifications: one to describe our

progress models, and one that defines constraints over programs that contain potential non-termination due

to starvation or livelock. The program constraint specification can be fed to the Alloy Analyzer for progress

litmus test synthesis. The progress litmus tests can take two routes: they can be executed in the CADP model

checker under any of our formal progress model specifications, providing formal per-model test outcomes.

They can also be input into our GPU test compiler, which outputs executable test cases for three common

GPGPU frameworks. The formal test results can be cross-referenced with the empirical test to explore which

(if any) formal progress model(s) describe the observed behavior across different GPUs.

is not guaranteed to terminate in the absence of progress guarantees. By expressing these constraints

in the Alloy modeling language [Jackson 2012] and feeding them to the Alloy Analyzer we are able

to synthesize a large set of progress litmus tests. Combined with the executable semantics, this

facilitates exploration of progress models, e.g. discovering interesting and unexpected programs

that are not guaranteed to terminate under a particular model, or that show subtle differences

between two similar models. Our approach allows us to synthesize a set of conformance tests for a
given progress model, which a correct implementation of the model should be expected to pass.

We have used this to automatically synthesise a suite of 483 progress litmus tests. Inside this

test suite we have identified tests that correspond to common synchronization constructs such

producer-consumer and mutex idioms. Our test suite is able to distinguish 10 out of our 11 example

progress models; i.e. the set of correct/incorrect progress litmus tests are different for each model.

Evaluating the progress models of GPUs in the field (§6). We have developed three back-ends that

transform a high-level progress litmus test generated by the Alloy-based approach of §5 into an

executable GPU program, supporting the Vulkan, CUDA and Metal programming frameworks. We

present a large experimental campaign running our suite of 483 progress litmus tests against 8 GPU

devices from 5 vendors, including discrete, integrated andmobile GPUs. Similar to prior works [Dutu

et al. 2020; Sorensen et al. 2018], our testing efforts focus on inter-workgroup scheduling. Our

results confirm a hypothesis from prior work [Sorensen et al. 2018] that all current GPUs support

the OBE progress model, as well as an incomparable progress model associated with the HSA GPU

programming framework [Hwu 2015]. Interestingly our results refute a stronger hypothesis from
this prior work: that current GPUs support a progress model known as LOBE, a natural combination

of the OBE and HSA models. On GPUs from Apple and from ARM, we observe non-termination

behavior for tests that are guaranteed to pass under the LOBE model.

By providing a practical toolchain (detailed in Figure 1) to help inform the design of progress

models in future GPGPU programming frameworks, our work is a compelling example of how

programming language semantics and practical formal methods tools (CADP and Alloy) can be

brought to bear effectively on an important emerging domain.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 131. Publication date: October 2021.

Specifying and Testing GPU Workgroup Progress Models 131:5

Paper structure and auxiliary material. We start by presenting an illustrative example that is used

throughout the paper, and by providing necessary background on GPU programming (§2). We then

devote a section to each of the contributions described above (§3–§6).

Our work focuses principally on cross-vendor inter-workgroup progress; however, we describe

preliminary results on testing intra-subgroup behaviors and some specialized progress models

provided by the vertically-integrated CUDA framework (§6.4). We conclude with a discussion of

related work (§7) and conclusions (§8). All software and data for this paper is archived and available,

including: the Alloy and CADP models; the progress litmus test suites (in pseudo code and in

executable formats for C++, CUDA, Metal, and Vulkan); and the data obtained from running these

tests on our various GPU platforms [Sorensen et al. 2021].

2 RUNNING EXAMPLE AND BACKGROUND
2.1 GPGPU programming frameworks
There are now many GPGPU programming frameworks, e.g. CUDA, OpenCL, Vulkan, and Metal.

We largely use the Vulkan terminology because Vulkan is a well-supported cross-vendor framework,

which is one of our main focus areas. We note the equivalent CUDA terminology, as CUDA parlance

is common in academic literature, and for certain cases where the Vulkan term is cumbersome we

use the CUDA term throughout the paper.

The GPGPU concurrency model is hierarchical. A GPGPU program is called a compute shader in
Vulkan, and a kernel in CUDA; we use kernel throughout the paper. A kernel is programmed in a

single program multiple data (SPMD) manner: a single entry point function is executed by many

compute invocations (Vulkan terminology), which we shall refer to more conveniently as threads
(CUDA terminology). The threads that execute a kernel are partitioned into workgroups of equal,
programmer-specified sizes (called thread blocks in CUDA). Threads in the same workgroup are

generally mapped to the same hardware compute unit (e.g. to a single streaming multiprocessor
on an Nvidia GPU) and thus, can communicate efficiently using fast memory shared across the

workgroup. Threads in the same workgroup are further partitioned into subgroups (known as warps
in CUDA). Threads in the same subgroup are often mapped to the same vector processing unit in

which case they can communicate and synchronize extremely efficiently. Different architectures

provide different subgroup sizes depending on their architecture. For example, AMD GPUs feature

a subgroup size of 64 (or 32 on newer architectures) [AMD 2019], while Intel GPUs can have

subgroup sizes of 8, 16 or 32 [Intel 2021, ch. 5]. Each thread can query ids for their global id (unique

per thread), workgroup id, and subgroup id. Threads can additionally query the total number of

threads, and the size of workgroups and subgroups.

A well-written GPGPU program will prioritize local interactions (e.g. at the subgroup level) over

global interactions (e.g. across workgroups). To support this, different mechanisms are provided for

synchronization between threads at different levels of the execution hierarchy. For example, there

are two distinct execution barriers provided as primitives: one is limited to synchronizing threads in

the same subgroup; another extends the width of the barrier across the entire workgroup. It is thus

reasonable that threads interacting at different levels of the hierarchy might be subject to different

progress models. The main concern of this work is to detail progress models for interactions of

threads across workgroups.

2.2 Fairness Properties and Semi-fair Progress Models
Program correctness can be described in terms of safety properties, which state that nothing ‘bad’

will happen (commonly expressed as assertions in programs), and liveness properties, which state

that something ‘good’ will eventually happen. In concurrent programs, liveness properties are often

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 131. Publication date: October 2021.

131:6 T. Sorensen, L. F. Salvador, H. Raval, H. Evrard, J. Wickerson, M. Martonosi, and A. F. Donaldson

Thread 0 Thread 1

while(Exch(m,1)==1); while(Exch(m,1)==1);
Store(m,0); Store(m,0);

(a) C-style pseudo code for an exchange-lock progress lit-

mus test. Exch atomically stores the argument and returns

the value that was at m. Initially *m == 0.

H

G

F

E

D

C

B

AT0:acq
AXB(m,1,0,true,1)

T1:acq
AXB(m,1,0,true,1)

T0:rel
AXB(m,0,2,true,0)

T1:acq
AXB(m,1,0,true,1)

T1:rel
AXB(m,0,2,true,0)

T1:acq
AXB(m,1,0,true,1)

T1:rel
AXB(m,0,2,true,0)

T0:acq
AXB(m,1,0,true,1)

T0:acq
AXB(m,1,0,true,1)

T0:rel
AXB(m,0,2,true,0)

0 1

01

(b) State space LTS containing all possible execution paths.

In states where the mutex is acquired, a gray square in-

dicates which thread is currently holding the mutex. Cy-

cles on states B and E may or may not pose a risk of non-

termination, depending on the progress model.

// Mutex value is at global memory location m,
// and it is initially set to 0. Program location 2
// implicitly corresponds to the end of the program
Thread 0: [

0: AXB(m, 1, 0, true, 1) // acquire
1: AXB(m, 0, 2, true, 0) // release

]
Thread 1: [

0: AXB(m, 1, 0, true, 1) // acquire
1: AXB(m, 0, 2, true, 0) // release

]
(c) Our DSL with its AXB instruction.

Fig. 2. A mutex progress test, where m is a pointer
to an integer mutex, 0 represents unlocked and 1

represents locked. Two threads T0 and T1 contend

for acquiring m and then immediately release it.

dependent on an assumption that threads are

fairly executed: if thread 𝑋 waits for another

thread 𝑌 and if 𝑌 is not fairly scheduled, then 𝑋

might wait indefinitely, leading a starvation cycle,
which can cause the program to fail to terminate.

Throughout the execution of a kernel, threads

are said to be enabled or disabled. In classic con-

currency theory, threads can be disabled at vari-

ous points, e.g. while waiting at a mutex. Because

GPUs do not have primitive mutexes, the notion

of enabled and disabled GPU threads is simple:

threads are enabled at the start of kernel execu-

tion, and become disabled when they finish kernel

execution. GPU frameworks often provide an inter-

workgroup barrier primitive. Because our work is

largely constrained to inter-workgroup behaviors,

we do not consider these instructions (nor their

effect on whether a thread is enabled or not) in this

work, although we believe this is an interesting

avenue for future work.

We say that a scheduler is unfair if it nondeter-
ministically chooses any enabled thread for exe-

cution, regardless of whether other threads are en-

abled for execution. Despite a given thread always

being ready to make progress, this scheduler can

continuously select other threads for execution,

leading to the thread being starved. Classically,

there are two main notions of fair schedulers [Gab-

bay et al. 1980]. A scheduler is weakly fair if when-
ever a given thread is continuously enabled, the

thread will eventually be scheduled. A scheduler is

strongly fair if whenever a given thread becomes

enabled infinitely often (without necessarily being

continuously enabled), the thread will eventually

be scheduled. We refer to these notions of fairness

as (forward) progress models.
To illustrate the difference between strong and

weak fairness, consider a program in which two

threads take turns executing, but each execution

step by one thread blocks the other thread (this

is illustrated in some formulations of the classic

“dining philosophers” problem). This type of cycle

is called a livelock. If there exists some interleaving of transitions that would free the threads from

their livelock, then strong fairness would ensure that the interleaving would eventually happen;

weak fairness provides no such guarantees. Any program that is guaranteed to terminate under

weak fairness is also guaranteed to terminate under strong fairness, but not the other way around.

We now show an example to illustrate how to reason about termination for a program under a

particular progress model. The pseudo-code of Figure 2(a) represents a program where two threads

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 131. Publication date: October 2021.

Specifying and Testing GPU Workgroup Progress Models 131:7

Table 1. The semi-fair progress models we consider in this paper.

Name Threads for which fair execution is guaranteed

OBE (Occupancy-Bound Execution) Threads that have made at least one execution step

HSA (Heterogeneous System Architecture) The thread with the lowest id that has not yet terminated

LOBE (Linear OBE) Threads that have made at least one step, and any thread with a lower

id than a thread that has made at least one step

compete to acquire and then release a shared mutex. The mutex, represented by a memory location

m, is acquired by a thread when the thread atomically exchanges the current value of m with 1 and

finds that the old value of the mutex was 0. It is released by a thread by storing 0 to m.
The state-space of all possible execution paths for the program is shown in Figure 2(b) in the

form of a labelled transition system (LTS). Each transition is labeled by the thread that takes a step,

and with acq or rel depending on whether the step involves acquiring or releasing the mutex. We

discuss the code of Figure 2(c), and the AXB instructions that label the edges of the LTS when we

introduce our simple programming language in §3.

The LTS contains cycles that indicate potential starvation cycles (i.e. non-termination), depending

on progress guarantees. For instance, consider the execution path 𝐴 → 𝐵 → 𝐵 → 𝐵 This is a

potential starvation cycle that can occur if Thread 0 (T0) acquires the mutex (action 𝐴 → 𝐵) and

then T0 is starved by T1 (the 𝐵 → 𝐵 action repeated indefinitely).

Under a (weakly or strongly) fair scheduler there is no risk of starvation in the mutex example

since we can rely on the scheduler to eventually execute T0. This would allow T0 to release the

mutex (action 𝐵 → 𝐶) and thus unblock T1, allowing the program to terminate in state 𝐻 . In

contrast, an unfair scheduler offers no such progress guarantees, so that one thread can acquire the

mutex, then the spinning thread can execute indefinitely.

Because cross-vendor GPU programming frameworks do not mention progress guarantees, the

safest option is to assume an unfair progress model. This is sufficient for many common GPU use-

cases, such as matrix-multiplication, as these applications are embarrassingly parallel and require

only infrequent bulk synchronization operations. However, as the diversity of GPU applications

increases, so does the need for finer-grained synchronization.

Recent work [Sorensen et al. 2018] used linear-time temporal logic to define semi-fair progress
models that provide more fairness than the unfair progress model, but less fairness than the weak

or strong fairness models. These models provide progress on a per-thread basis throughout the

execution and are summarized in Table 1. For each of these progress models, there is a strong and

weak variant. In the weak variant, starvation-cycle non-termination behaviors are prohibited. In

the strong variant, livelock non-termination behaviors are additionally prohibited. We now provide

a brief overview of the models.

Heterogeneous System Architecture (HSA) is a heterogeneous programming framework, with

targets that include GPUs [HSA Foundation 2017]. While cross-vendor support for this framework

is limited, the HSA specification provides a clear and intuitive progress model, which states: out of

the currently executing threads, the thread with the lowest id is guaranteed eventual execution.

Thus, while we do not target the HSA framework directly in our experimental campaign, we

consider its progress model an interesting candidate to formalize and test. On the other hand, the

occupancy-bound execution (OBE) progress model was never officially supported, but proposed in

academic works [Gupta et al. 2012; Sorensen et al. 2016]: it states that a thread that has started

executing will continue to be fairly executed. There are many instances of kernels that rely on this

progress model [Cederman and Tsigas 2008; Tzeng et al. 2010].

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 131. Publication date: October 2021.

131:8 T. Sorensen, L. F. Salvador, H. Raval, H. Evrard, J. Wickerson, M. Martonosi, and A. F. Donaldson

Interestingly, the OBE and HSA progress models are incomparable (as we will show in §2.3). To

provide a natural unification of the HSA and OBE models, the Linear Occupancy-Bound Execution
(LOBE) progress model was proposed [Sorensen et al. 2018]. This model guarantees eventual

execution to any thread that has taken a step, along with any thread with an id lower than a thread

that has taken a step. Additionally, [Sorensen et al. 2018] proposes a unified progress model, named

HSA+OBE, which is a direct combination of the HSA and OBE models that has no intuitive mapping

to a real design; thus, while we are able to provide executable semantics for this model, we do not

consider it in our empirical evaluation.

2.3 Progress Litmus Test Examples
Here we show two examples of progress litmus tests, simple unit tests that characterize various

progress properties. These tests have two outcomes: pass (guaranteed termination) and fail (potential

non-termination). Tests may fail for two reasons: starvation, in which the scheduler does not give

a thread the chance to execute, or livelock, in which a set of threads execute indefinitely, but their

execution steps continually block each other.

one-way ProdCons (increasing id)

Thread 0 Thread 1

Store(flag,1); while(Load(flag==0));

Fig. 3. A one-way (only 1 thread spins)

producer-consumer (ProdCons) progress lit-

mus test. The test is described as “increasing

id” because the thread with the higher id

waits on the thread with the lower id.

The behavior is determined with respect to a given

progress model. Figure 3 shows a producer-consumer

idiom where T1 waits for T0 to write a flag. Under an

unfair progress model, this test might not terminate, as

T1 might execute indefinitely, while T0 starves. In a fair

progress model (strong or weak), T0 is guaranteed to

eventually execute, and thus T1 will eventually be un-

blocked, and thus, this test is guaranteed to terminate (i.e.

it passes) under a fair progress model. Our second exam-

ple is the mutex progress litmus test shown in Figure 2,

which we analyzed similarly in §2.2.

While these two tests behave similarly under classic

progress models, they behave differently under semi-fair schedulers. One such scheduler, OBE,

states that once a thread starts executing, i.e. has executed an instruction, it will continue to be

fairly executed. The producer-consumer test fails under this model as T0 is not guaranteed to be

fairly scheduled until it starts executing, thus T1 might spin indefinitely. However, the mutex test

will pass, because any thread that has acquired the mutex will be fairly scheduled, and thus will

eventually release it. The two tests have the opposite behaviors under HSA: The producer-consumer

test is guaranteed to terminate under HSA as T0 is guaranteed progress, which will unblock T1.

However, the mutex test is not guaranteed to terminate under HSA, as T1 could acquire the mutex,

and then starve while T0 spins. This is because HSA does not guarantee eventual execution to any

thread except the thread with the lowest id that has not terminated.

2.4 A Motivating Applications Use-case
In §1, we reference several examples where existing GPU programs use progress model assumptions

to achieve high performance that otherwise would not have been possible. We will discuss one

such example in more detail here: the GPU graph applications presented in [Sorensen et al. 2019].

This work discusses an OpenCL backend for IrGL, a DSL for GPU graph processing. IrGL can

be used to express many common graph algorithms, including breadth-first search, single-source

shortest path, and PageRank.

The DSL has a vertex-centric approach in which all graph vertices are processed in parallel. Each

vertex either pulls in updates from its neighbors, or pushes out updates to its neighbors. A complete

pass through all the vertices is known as an epoch. The algorithms iterate over epochs until a fixed

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 131. Publication date: October 2021.

Specifying and Testing GPU Workgroup Progress Models 131:9

point is reached, i.e. an epoch is computed in which no vertices are updated. Global synchronization

is required between each epoch as the vertex computation requires up-to-date values from the

previous epoch. This approach to graph computation has been shown to be competitive on both

CPUs [Beamer et al. 2015] and GPUs [Wang et al. 2016].

The OpenCL compiler for IrGL can be configured to make no assumptions about the GPU

progress model, in which case, the global synchronization between epochs must be implemented

via rendezvous with the CPU host, i.e. by ending the GPU kernel every epoch, and relaunching the

GPU kernel from the CPU, until the fixed point is reached. This rendezvous with the CPU (and

as such, through the GPU driver) can be costly. To address this, the compiler allows the user to

specify that they wish to make (officially unsupported) assumptions about the progress model.

Under this direction, the compiler will emit code that uses a limited global synchronization barrier

(as described in [Sorensen et al. 2016; Xiao and Feng 2010]), and thus the synchronization between

epochs can occur entirely on the GPU, without cross-device rendezvous.

This optimization, enabled by the assumption of an unsupported progress model, was shown to

have significant performance improvements. The paper discusses a large evaluation consisting of 6

GPUs (from Nvidia, Intel, AMD, and ARM), 17 graph applications, and 3 idiomatic graph inputs:

a total of 306 benchmarks. Across these benchmarks, the global barrier optimization achieved a

statistically significant speedup in 57% of the benchmarks. In 20% of the cases, the speedup was

over 2×. At the extreme end, GPUs from AMD and Intel both had benchmarks for which the

optimization provided over a 10× speedup. In these cases, the graphs were high diameter (requiring

many epochs) with very small amounts of computation per epoch.

While we do not extend our reasoning to full application use-cases as described here, this

section shows that progress model assumptions (and hopefully someday official support) can enable

significant performance in fundamental applications.

3 PROGRAMMING LANGUAGE
Our eventual goals in this work are two-fold: using model checking as a termination oracle for

progress litmus tests under various progress models, and for synthesis of progress litmus test

cases. In both settings, scalability is a known issue. Thus, we strive to provide the simplest possible

programming language that allows us to capture interesting progress litmus tests. To do this, we

define a simple goto language with a single atomic instruction. Later, in §6.2 we will show how to

compile this language into executable programs in various GPGPU frameworks.

GlobalMemory. Ourmodel ofmemory is a sharedmonolithicmapping from locations (of type loc)
to values (of type val). Memory locations can be dereferenced, similar to C-style pointers. Although

GPUs have hierarchical memory regions, our goal is to model inter-workgroup interactions. Thus,

this memory region will correspond to the global memory region on GPUs, shared across all threads.

Threads. A thread is described by a sequence of instructions. Thread-local storage consists only

of a program counter (pc) that determines the next instruction to execute. We opt not to include

any thread-local registers (or variables) to aid in the scalability of our test-case synthesis (§5).

Instructions. There is a single kind of instruction called ATOMIC_EXCH_BRANCH, or AXB for short.
An AXB instruction consists of: a location checkLoc (of type loc) to be checked, a value checkVal
(of type val) against which the contents of checkLoc should be compared, and an integer program

location jumpInst to which control should jump if the compared values are equal. An instruction

also includes a boolean, doExch. If the value of doExch is true then the instruction causes the

contents of checkLoc to be replaced with a new value, exchVal (of type val), which also forms

part of the instruction. If doExch is false then the exchVal component is unused.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 131. Publication date: October 2021.

131:10 T. Sorensen, L. F. Salvador, H. Raval, H. Evrard, J. Wickerson, M. Martonosi, and A. F. Donaldson

The semantics of an AXB instruction is given by the following C-like pseudocode, executed in an

atomic fashion, where thread refers to the state of the calling thread:

void ATOMIC_EXCH_BRANCH(loc checkLoc , val checkVal , int jumpInst , bool doExch , val exchVal) {

thread.pc = (* checkLoc == checkVal) ? jumpInst : thread.pc + 1;

if (doExch) *checkLoc = exchVal;

}

Intuitively, the AXB instruction combines the functionality of an atomic exchange and a conditional

branch. There is no reason to return any value as our language does not provide any thread-local

storage to manage a return value.

While this language may seem simple, it is expressive enough to capture many interesting

progress litmus tests. It can mimic a plain memory store (if jumpInst is set to refer to the next

instruction in program order). It can perform an atomic exchange, necessary for a spin-lock. For

example, Figure 2(c) illustrates our mutex example using AXB. Our language can perform a spin-loop

on a plain load, e.g. as seen in the producer consumer test of Figure 3, when doExch is set to false.

For ease of exposition, for the remainder of the paper, we provide our progress litmus tests using

C-style syntax, including: if statements, goto statements, atomic exchange instructions (Exch),
and memory accesses (using “*” to dereference the memory location). We use this presentation

with the understanding that AXB is expressive enough to capture these behaviors, and that the

model checking and programming synthesis is built on this single, yet expressive, instruction.

4 EXECUTABLE SEMANTICS OF PROGRESS MODELS
The programming language of §3 lets us write progress litmus tests, i.e. small concurrent programs

that are guaranteed to terminate under strong fairness, but might not terminate in the absence of

progress guarantees. Now we are interested in checking whether these tests pass—are guaranteed

to terminate—with respect to a given progress model. We achieve this by expressing progress models

through executable semantics and using model checking to look for potential non-termination.

These executable semantics are written in the LNT formal language [Champelovier et al. 2021],

which has associated labeled transition system (LTS) semantics—for a formal treatment of LTSs

see [Baier and Katoen 2008]. Verification is done with the CADP tool suite, which can check

properties of the LTS expanded from an LNT specification, where properties are expressed using

Model Checking Language MCL [Mateescu and Thivolle 2008]. The LNT and MCL code excerpts

presented here are slightly edited for ease of exposition.

4.1 Progress Model Specification
Our LNT specification is made up of two parts: (1) an interpreter for our programming language,

which takes as input a list of AXB instructions for each thread; and (2) a progress model. The

progress model monitors each thread’s execution steps and whether the thread has terminated or

not (i.e. the progress model is signaled when a thread has completed execution of its own program),

and at each step it must report the current set 𝐹 of threads for which fair execution, i.e. eventual

execution, is guaranteed. So in our framework, a single execution step contains the following

information: (a) the id of the thread taking this step, (b) the AXB instruction that it executes, and (c)

the set 𝐹 of thread ids that are guaranteed fair execution at the point before this step is executed.

At each step, a progress model monitors (a) and (b), and is responsible for defining (c).

Figure 4 shows the specification of the OBE semi-fair progress model that we introduced in §2.2

and Table 1, which guarantees fair execution to threads that have made at least one execution

step. Step and Terminate are synchronization primitives between the progress model and the

language interpreter (specified by another LNT process and not presented here). On Step (line 10),

the progress model receives (operator ?) the thread id and the AXB instruction (the specific AXB

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 131. Publication date: October 2021.

Specifying and Testing GPU Workgroup Progress Models 131:11

1 process OBE [Step: ExecutionStep, Terminate: Natural] is
2 var
3 tid: Nat, -- thread ID

4 axb: AxbInst, -- AXB instruction

5 F: NatSet -- set of threads guaranteed fair execution

6 in
7 F := {}; -- At the beginning, no thread is guaranteed fair execution

8 loop
9 select -- non -deterministic choice operator

10 Step(?tid, ?axb, F); -- thread tid executes an instruction

11 F := insert(tid, F) -- thread tid is now guaranteed fair execution

12 []
13 Terminate (?tid); -- thread tid has terminated its own program

14 F := remove(tid, F) -- thread tid will not be executed anymore

15 end select
16 end loop
17 end var
18 end process

Fig. 4. Specification of the OBE progress model in the LNT formal language.

z

y

d3

d1

d0

d2

b

c

g

a Step !1 !AXB(0, 1, 1, true, 1) !{}Step !0 !AXB(0, 1, 1, true, 1) !{}

Step !1 !AXB(0, 1, 1, true, 1) !{0} Step !0 !AXB(0, 0, 3, true, 0) !{0}

Terminate !0

Step !1 !AXB(0, 1, 1, true, 1) !{0}

Terminate !0

Step !1 !AXB(0, 1, 1, true, 1) !{}

Step !1 !AXB(0, 1, 1, true, 1) !{0,1}

exit

Fig. 5. A portion of the full LTS generated by CADP from the LNT model of our mutex example (Figure 2)

with the OBE progress model. Transitions can either be a Step, where a thread executes an AXB instruction, or
a Terminate, where a thread ends execution. The step label syntax is defined in §4.2. Because the complete

LTS is too big to be presented here, some parts are abstracted with gray diamonds and dotted arrows. We

highlight the path where thread 0 obtains the mutex (𝑎 −→ 𝑏). The actions between states 𝑑0, 𝑑1, 𝑑2 and 𝑑3

represent the concurrent termination of T0 with the mutex acquisition by T1. The LTS ends with a special

exit action generated by CADP.

instruction being executed is not relevant for the OBE progress model, so we don’t make use of the

value received in the axb local variable).

Moreover, the OBE progressmodel provides 𝐹 , the set of threads that are guaranteed fair execution

before this step.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 131. Publication date: October 2021.

131:12 T. Sorensen, L. F. Salvador, H. Raval, H. Evrard, J. Wickerson, M. Martonosi, and A. F. Donaldson

H

G

F

E

D

C

B

AT0:acq {0}

T1:acq {0}

T0:rel {0}

T1:acq {1}

T1:rel {1}

T1:acq {0}

T1:rel {0}
T0:acq {0}

T0:acq {0}

T0:rel {0}

10

01

(a) Mutex under HSA.

F K

HC

GB

JE
D

L

AT0:acq {}

T1:rel {1}

T1:acq {}

T0:rel {0}

I

T1:rel {1}
T1:acq {0}

T1:acq {0,1}

T0:rel {0,1}

T1:acq {1} T1:acq {}

T0:acq {1}

T0:acq {0,1}

T0:acq {}

T1:rel {0,1}

T0:acq {0}

T0:rel {0}

0

1

0

0

1

1

(b) Mutex under OBE.

B

T0 {0,1}

T1 {0,1}

T0 {0,1}

T1 {0,1}

A

C

(c) Livelock sensitive to

weak/strong fairness.

Fig. 6. Abstracted LTSs from our executable semantics for our mutex example, where only Step transitions
are showed and abbreviated by its thread id, instruction shorthand (acq/rel) and its set 𝐹 of fairly executed

threads (noted with thread ids inside braces, with “{}” denoting the empty set). 6(c) illustrates a livelock

cycle that is sensitive to weak and strong fairness: the T1 transition that escapes the cycle is guaranteed to be

eventually taken under strong fairness, but not under weak fairness.

After the execution step (line 11), the semantics of OBE are implemented by adding the thread id

to 𝐹 . On Terminate (line 13), the progress model receives the terminating thread’s id, and then

(line 14) updates 𝐹 accordingly.

Using a similar approach, we wrote progress model specifications for the 6 progress models

we found in prior work, namely: unfair (no thread is ever guaranteed fair execution), fair (all
threads are always guaranteed fair execution until they terminate), HSA, OBE and LOBE (see

Table 1). We also wrote a progress model for the HSA+OBE model of prior work. This model states

that a thread is guaranteed fair execution if it has the lowest id of non-terminated threads, or if it

has made at least one execution step. However, its original presentation admits that this model

exists as a logical exercise and does not have an intuitive implementation. Thus we do not consider

it further in this work, i.e. to characterize our progress litmus tests or empirical results.

4.2 Checking Whether a Test Passes or Fails Under a Progress Model
To determine whether a test passes (i.e. is guaranteed to terminate) we check for the absence of

non-termination cycles in the LTS. Depending on the progress model, not all cycles correspond to

potential non-termination. Intuitively, a cycle that may lead to non-termination is one that fairly
executed threads are not guaranteed to escape.

CADP can explore the LTS it generates from our LNT specification of a litmus test under a given

progress model. For instance, Figure 5 illustrates parts of the LTS obtained for our mutex example

with the OBE progress model. These LTSs have three kinds of transitions: Step and Terminate
transitions, which represents a thread executing an instruction and terminating, respectively, and a

special exit transition that CADP generates to indicate that all threads have terminated.

In order to clarify the presentation of our verification approach, Figure 6 presents abstracted LTSs

for our mutex example under the HSA and OBE progress models, where only Step transitions are

kept and renamed. Terminate and exit transitions are omitted (to be precise, Terminate actions

are coalesced with the previous Step of the terminating thread) since they are never present inside

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 131. Publication date: October 2021.

Specifying and Testing GPU Workgroup Progress Models 131:13

a cycle, as the termination of a thread or of all threads is not something that can be repeated.

Instead, we focus on the Step transitions, which in the figure are abbreviated by their thread id,

instruction shorthand and 𝐹 components, e.g. “Step !0 !AXB(m, 1, 0, true, 1) !{1})” (which reads

as: “a step by thread 0, executing the AXB(m, 1, 0, true, 1) instruction, while 𝐹 contains thread

1”) is abbreviated to “T0:acq {1}.” We can first observe that different progress models can lead to

different shapes of LTSs, due to the fact that they set 𝐹 in different ways depending on which steps

have been executed so far.

Let’s focus on the cycle that happens when T0 loops on trying to acquire the mutex when it is

held by T1. Only a step from T1 can release the mutex and thus escape the cycle. Now, whether T1

is guaranteed fair execution or not depends on the progress model. Under HSA (Figure 6(a)) this

cycle is on state E. In both outgoing transitions from E, the set 𝐹 of fairly-scheduled threads is {0},
i.e. T1 is not guaranteed fair execution. Under OBE (Figure 6(b)) this cycle is on state H, and we

have 𝐹 = {0, 1} for both outgoing transitions so that T1 is guaranteed fair execution. Accordingly,

this cycle represents non-termination (by starvation of T1) under HSA, but not under OBE.

In general, whether a cycle indicates potential non-termination is also influenced by weak vs.

strong fairness (see §2.2). Consider the LTS in Figure 6(c) under a progress model that guarantees

fair execution of both T0 and T1. Here we focus on the livelock cycle 𝐴 → 𝐵 → 𝐴 → 𝐵 → ...

where both T0 and T1 make progress. To break this cycle, we need more than eventual execution

of T0 and T1: we need T1 to take two steps in a row; this breaks the livelock cycle and allows the

test to terminate. While threads loop in this cycle, the T1 transition that escapes the cycle can

infinitely often be taken 𝐵, so under strong fairness we have the guarantee that it will eventually be

taken, and thus the cycle cannot cause a non-terminating livelock. However, the escaping transition

cannot be taken from 𝐴, so while threads loop the cycle it is not always possible to escape, and

therefore the escaping transition is not guaranteed to be eventually taken under weak fairness.

This illustrates how, for the same progress model, a livelock cycle can represent non-termination

under weak fairness but not under strong fairness.

Listing 1. MCL formula to match non-

termination cycles under weak fairness.

< true* . {Step ... ?F:NatSet
where is_in(tid ,F)} >

< for tid:Nat from 0 to MAX_ID do
if is_in(tid , F) then

true* . {Step !tid ...}
end if

end for
> @

Listing 2. MCL formula to check for absence of non-termination

cycles under strong fairness.

[(not "exit ")*]
< ({Step ?tid:Nat ... ?F:NatSet where is_in(tid ,F)}

or {Terminate ...}
)* . (

"exit"
or {Step ... ?F:NatSet where is_empty(F)}

)
> true

We check the presence or absence of non-termination cycles using MCL formulas. MCL is an

expressive value-passing modal 𝜇-calculus [Kozen 1983] language, and we only describe the subset

we use (see [MCL 2008] for more details). To match paths in the LTS, MCL offers operators to

match a transition’s label, and on top of that operators to match paths made of such transitions.

At the label level: true matches any label, "foobar" matches exactly “foobar”, and "foo" or "bar"

matches either “foo” or “bar”. Curly brackets do regular-expression matching on a label, with the

possibility to skip over some parts of the label and to capture data value, e.g. {Foo ... ?n:Nat} would

match “Foo !bar !baz !42”, skipping “!bar !baz” and capturing the natural value 42 in variable n.

Moreover, such matching can be conditioned with a where clause, e.g. {?n:Nat where n < 10} would

not match “42”.
At the path level: transitions can be concatenated with “.”, grouped with parentheses, and

repeated with “*”, such that e.g. "a".("b"."c")* matches a path made of transitions labelled “a, b, c,
b, c, . . . ”. At the top level, we can check “for all paths” with [], “there exists a path” with < >, and

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 131. Publication date: October 2021.

131:14 T. Sorensen, L. F. Salvador, H. Raval, H. Evrard, J. Wickerson, M. Martonosi, and A. F. Donaldson

“the path repeats infinitely in a cycle” with < > @. The paths inside these operator can be constructed

with for loops and if conditionals, e.g.:

< for n:Nat from 0 to 4 do if is_odd(n) then {Foo !n} end if end for >

is equivalent to: < {Foo !1} . {Foo !3} >.

Weak fairness: we detect non-termination by looking for livelock cycles where all fairly executed

threads make progress. The progress model guarantees that all these threads should keep on being

scheduled, and that is the case in such cycles. Even if there exist transitions of fairly executed

threads that escape the livelock cycle, weak fairness does not guarantee that they will eventually

be taken. To check for these livelock cycles, we use the formula of Listing 1 that can be read as:

there exists a path (< >) that starts with zero or more transitions of any kind (true*) followed by a

Step transition where we capture a non-empty set 𝐹 of threads which are currently guaranteed

fair execution ({Step ... ?F:NatSet where not(is_empty(F))}). This path is followed by a cycle (< > @)

where each thread that is in 𝐹 takes at least one step, with zero or more transitions of any kind

between these steps (the true* . {Step !tid ...} inside the for loop).

We note that this formula assumes that 𝐹 stays the same during the cycle. To ensure this, we

request progress models to not remove threads from 𝐹 until they terminate, which is the case

for all progress models we consider. With this hypothesis, in a cycle, no thread can be removed

then added back in 𝐹 , and therefore 𝐹 is stable over a cycle. Also, we notice that the for loop

imposes an order on thread ids in the livelock cycle transitions, yet this is not an issue here since

the < > @ operator matches over the “unrolled path” of a cycle. For instance, consider a cycle

made of transitions labelled by thread ids 1, 3, 2, in this order. If all three threads are in 𝐹 , then

< true*.1.true*.2.true*.3 >@ matches the cycle’s unrolled path: 1, 3, 2, 1, 3, 2, 1, . . .

Strong fairness: we detect the absence of non-termination cycles by checking that from any state,

there exists a path made of steps by fairly executed threads that reaches either termination of the

whole program, or a state where no thread is guaranteed fair execution. In particular, from states

visited infinitely often by a cycle, if there is a step by a fairly executed thread that can escape the

cycle, then this cycle does not represent non-termination since strong fairness guarantees that this

escaping step will eventually be executed. Note that paths of steps by fairly executed threads may

reach states where no thread is guaranteed fair execution, but not all threads are terminated: this is

for instance the case of states A, D and I in Figure 6(b). In such states, given that there is still work

to do, at least one thread is eventually scheduled to take an execution step.

To check for such paths, we use the formula of Listing 2 that can be read as: for all paths

([]) made of zero or more transitions that are not the final transition ((not "exit")*)—i.e. from

all non-final states—there exist a path (< >) made of: zero or more (()*) transitions which are

either: a step by a fairly executed thread ({Step ?tid:Nat ... ?F:NatSet where is_in(tid, F)}), or

the termination of a thread ({Terminate ...}); followed by a single transition which is either:

the termination of all threads ("exit"), or a step where no thread is guaranteed fair execution

({Step ... ?F:NatSet where is_empty(F)}).

5 AUTOMATIC SYNTHESIS OF PROGRESS LITMUS TESTS
We now turn our attention to test-case synthesis for progress litmus tests. To do this, we encode the

semantics of our programming language in the Alloy modeling framework [Jackson 2012] as LTSs.

We then develop constraints that characterise the LTSs that we are interested in: those that are

well-formed, guaranteed to terminate under a fair progress model, and prone to non-termination

under an unfair progress model. We invoke Alloy in an iterative manner, following Lustig et al.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 131. Publication date: October 2021.

Specifying and Testing GPU Workgroup Progress Models 131:15

[2017] and Chong et al. [2018], with the aim of finding as many LTSs as possible that satisfy those

constraints. From the LTS, we can derive a concurrent program, i.e. a progress litmus test.

5.1 LTS Constraints for Synthesis
As a foundation, we encode the notion of a program to consist of 𝑁 distinct sub programs, where

𝑁 is the total number of threads. Each sub program is a sequence of AXB instructions. The global
memory state is implemented as a relation from a memory location to a value. Thread local states

are implemented as 𝑁 program counters, each of which point to an instruction in a program. A

state contains one global memory and 𝑁 local states. We implement the semantics of AXB as a state
transition relation, which updates the global and local state.

The following constraints ensure that only well-formed LTSs are synthesized, i.e. LTSs that

correspond to concurrent programs that are guaranteed to terminate under strong fairness:

• Start state: There is a unique ‘start’ state in the LTS, and every state is reachable from it.

Memory is initialized to 0 and thread program counters are initialized to the first instruction

of their respective program.

• Always enabled: At every state, if a thread 𝑡 has not terminated, i.e. the program counter

points to a valid AXB instruction 𝑖 , then there exists an action out of that state that corresponds
to 𝑡 executing 𝑖 . Our programming language does not include the ability for threads to be

disabled, and thus, our synthesis should not generate tests that require this feature either.

• End state: There is at least one distinguished ‘end’ state in the LTS. An end state represents

the successful termination of the program. No transitions are possible from an end state.

• Possible termination: From every non-end state in the LTS, there exists a path to an end

state. This ensures that termination is possible from any point in the LTSs, but it may not be
guaranteed depending on the progress model.

While the above constraints describe a valid LTS, we would like to further specialize our synthesis

to generate interesting tests. For example, the current constraints would synthesize a program

consisting of a single thread, executing a single AXB instruction. This is a valid program but it does

not yield any insight into progress models.

To synthesize interesting tests, we encode the following constraint:

• Non-termination cycle: There must be a cycle in the LTS corresponding to a possibility of

non-termination. Combined with the possible termination constraint above, this generates

tests that always have a chance to terminate (i.e. there is always a path to the end state), but

the guarantee to escape the non-termination cycle will depend on the progress model.

5.2 LTS Minimality Constraints
The above constraints synthesize interesting tests, but the tests are not guaranteed to non-redundant.
That is, we could imagine synthesizing an interesting test 𝑡 , then synthesizing another test 𝑡 ′

which is exactly the same as 𝑡 , except it adds an extra AXB instruction that targets a new memory

location. Test 𝑡 ′ cannot characterize any meaningful progress model features additional to those

characterized by 𝑡 , and thus 𝑡 ′ is redundant. Constraints that avoid redundant tests such as 𝑡 ′ are
called minimality constraints.

While prior works have precisely encoded minimality constraints [Lustig et al. 2017], we were

unable to derive practical minimality contraints for this domain; any constraints we tried to

implement completely stalled the synthesis process. Instead, we rely on three heuristics, that were

developed through iterations of manual inspection and abstraction.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 131. Publication date: October 2021.

131:16 T. Sorensen, L. F. Salvador, H. Raval, H. Evrard, J. Wickerson, M. Martonosi, and A. F. Donaldson

• Inter-thread influence:A store from one threadmust be loaded by and influence the control

flow of another thread. This constraint ensures that tests that differ only by thread-local

behavior (and thus do not say anything meaningful about progress models) are not generated.

• All branches possible: There must exist executions through the LTS that take both branches

of every conditional. This constraint removes tests that have differ only by control flow targets

in dead branches.

• Meaningful comparisons: for some AXB instructions, the branch target is the same as the

next instruction (in which case the AXB instruction mimics a vanilla store instruction). In

such cases, we restrict the comparison to only one value; otherwise redundant tests could

be generated that simply change the comparison value, while the control flow (i.e. paths

through the LTS) remains the same.

5.3 Synthesis Example
To illustrate our synthesis constraints with a concrete example, we now show how the mutex

progress test (Figure 2) satisfies each of the constraints, and thus, could be automatically generated

by our approach.

• Start state (well-formed): As shown in the LTS, there is a unique start state, A.
• Always enabled (well-formed): It is always possible to execute a thread until it terminates.

Notice in the LTS that there are two paths out of states A, B, and E, corresponding to executing
thread 0 or 1. All other states represent points in the execution where one of the threads has

terminated.

• End state (well-formed): In this case, there is a single end state: H; however, it is possible to
have more than one.

• Possible termination (well-formed): From every state, except for the end state H, there is
a path to the end state.

• Non-termination cycle (interesting): Examining the LTS, there are two non-termination

cycles: B−→B and E−→E. These correspond to the situation where one thread is spinning, waiting
for the other to release the mutex.

• Inter-thread influence (minimality): We will describe the inter-thread influence (i.e. how

stores from one thread influence the other thread) by showing how the stores in thread 0

influence thread 1. The reasoning for how thread 1 influences thread 0 is similar. In thread

0, both program instructions perform a store to the mutex: instruction 0 stores a 1 and

instruction 1 stores a 0. In thread 1, program instruction 0 performs a branch depending on

whether the mutex value is 0 or 1. Thus, both stores of thread 0 can influence the control

flow of thread 1.

• All branches possible (minimality): When examining the AXB code, consider the acquire

instructions (at program location 0 for both threads). This constraint states that both branches

specified in these instructions must be possible in an execution, i.e. we do not allow unreach-

able branches in our tests. From the LTS, we can see that it is possible for both branches to

be taken: for example, in the case of thread 1, the branch when the comparison succeeds (i.e.

the mutex acquire fails), which occurs in the action: B−→B. The other branch occurs when the

comparison fails (i.e. the mutex acquire succeeds) occurs in the action: C−→D.
• Meaningful comparisons (minimality): When examining the AXB code, notice the release
instructions (at program location 1 for both threads) do not have meaningful control flow, i.e.

the branch location is the same as the next instruction in program order. Thus, the comparison

value (the argument at index 1) is constrained to be 0. Otherwise the synthesis would generate

redundant tests, changing only this comparison value.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 131. Publication date: October 2021.

Specifying and Testing GPU Workgroup Progress Models 131:17

5.4 Synthesis Results
We now report on our experience using the Alloy analyzer to synthesize progress litmus tests.

We performed 5 different synthesis runs, each configured so that tests would feature a particular

number of threads and total number of instructions (across all threads). Each synthesis run was

allowed to execute for 7 days on a machine with a 20-core Intel Xeon Gold 6230 CPU (2.10 GHz),

with 1 TB of RAM. Our synthesis runs were performed in sequence so that each run could have

sole access to the machine’s resources.

Table 2. Overview of the 5 synthesis runs: each

row shows the bounds of each run and how

many tests were synthesized; they differ only

by the number of threads and the total num-

ber of instructions (Instrs), distributed across

all threads. The Actions and States are upper-

bounds, while the threads and instructions are

exact constraints.

Threads Instrs Actions States # Tests

2 2 8 8 8

2 3 14 12 176

2 4 16 24 173

3 3 16 24 21

3 4 16 24 105

Table 2 shows the test synthesis bounds on each of

our 5 runs. Our synthesis constraint requires cycles

consisting of at least two threads, and each thread

must execute at least one instruction in the cycle, thus

the smallest configuration it was possibly to use for

synthesis required 2 threads and 2 instructions. The

largest configuration for which synthesis was feasible

required 3 threads and 4 instructions; pilot runs with

higher bounds did not produce any tests, even though

they ran for longer than 24 hours. All synthesis runs

are constrained to 2 memory locations and consider

only boolean values.

The number of actions and states were selected

based on a conservative upper-bound computed as

follows: Given each memory location has a 0/1 value,
and the program counter can range from zero to the

number of instruction per thread plus one, we multiply the possible values of each to obtain the

bound on states (which is tight). Then, for each state we consider that each non-terminated thread

contributes one outgoing action, giving us a bound on actions as well. We were able to use this

upper-bound for the first three configurations, however we were unable to scale the number of

actions and states higher for the last two configurations, as the synthesis run would not produce

any results.

0 2 4 6

0

50

100

days

u
n
i
q
u
e
t
e
s
t
s
f
o
u
n
d

Fig. 7. The number of unique tests found over

the 7 days. A total of 105 tests were found.

Our experiments are run with Alloy’s symmetry

breaking option, which heuristically aims to remove

duplicate tests. However, we found that many dupli-

cate tests were still generated. To address this, we

wrote a script to perform a textual diff after tests were

converted into pseudo code; any tests found to be

duplicates were discarded.

All synthesis runs (except the first) timed out, with a

limit of 7 days. Figure 7 shows the number of tests syn-

thesized during this time for the 3-thread 4-instruction

synthesis run.

The rate of test synthesis appears to be slightly

reducing after Day 4, which may suggest that the process is nearing completion, but we cannot

know this with any certainty. It is also noteworthy that tests tend to be found in small bursts, with

long periods of inactivity.

Timeouts and small bounds are typical in SAT-based synthesis work [Wickerson et al. 2017].

Still, our synthesized tests are able to provide meaningful conformance test suites and provide

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 131. Publication date: October 2021.

131:18 T. Sorensen, L. F. Salvador, H. Raval, H. Evrard, J. Wickerson, M. Martonosi, and A. F. Donaldson

Table 3. The 5 tests that we manually identified in our synthesized test suite that correspond with classic

idioms. We show the test (number of threads and instructions) as well as the LTS (number of actions and

states). We also give the id, a sequentially increasing number given for each test in each synthesis run.

Test Name Threads Instructions ID Actions States

one-way producer-consumer (increasing id) 2 2 5 3 3

one-way producer-consumer (decreasing id) 2 2 4 3 3

bidirectional producer-consumer 2 4 64 7 5

simplified mutex 2 3 14 7 6

simplified dining philosophers 2 2 0 8 8

one-way ProdCons (decreasing id)

Thread 0 Thread 1

0: if (Mem[0] == 0) 0: Mem[0] = 1
goto 0

bidirectional ProdCons

Thread 0 Thread 1

0: Mem[0] = 1 0: if (Mem[0] == 0)
1: if (Mem[0] == 1) goto 0

goto 1 1: Mem[0] = 0

simplified mutex

Thread 0 Thread 1

0: if (Mem[0] == 1) 0: Mem[0] = 1
goto 0 1: Mem[0] = 0

simplified dining philosophers

Thread 0 Thread 1

0: if (Exch(Mem[0],0) == 1) 0: if (Exch(Mem[0],1) == 0)
goto 0 goto 0

Fig. 8. Examples of synthesized tests that relate to idioms discussed in prior work on forward progress. The

one-way producer-consumer test with increasing ids is shown in Figure 3 and thus omitted from this figure.

In all cases, memory locations are initialized to 0.

illustrative examples (which we dub distinguishing tests) for all-but-one of the progress models.

Combined with testing heuristics, they are able to reveal interesting properties on real GPUs (§6.1).

5.5 Qualitative Analysis of Synthesized Tests
Here we examine our synthesized test suite for qualitative properties. That is, we gather interesting
tests from prior works and search our synthesized tests for matches. We collect 5 tests, summarized

in Table 3 and shown explicitly in Figure 8. The one-way producer-consumer test with increasing

id was shown earlier in Figure 3, and is thus ommited from Figure 8. Briefly, these five tests are:

• Three variants of Producer-Consumer (or ProdCons) in which one thread spins, waiting on

a value from another thread. Prior work [Sorensen et al. 2018] discussed that the thread

ids associated with the producer and consumer thread determined whether the idiom was

guaranteed to terminate under progressmodels like HSA and LOBE, as thesemodels guarantee

fair execution to threads with lower ids. We are able to synthesize ProdCons idioms where

the producer has a larger id than the consumer, and vice versa. The third variant encodes

bidirectional ProdCons, where the two threads wait on each other in sequence.

• A simplified dining philosophers test, in which each thread tries to store their id value to

a memory location using an atomic exchange. If the thread sees the id of other thread was

previously in the memory location, the it loops until it sees its own id. The two threads can

livelock (taking turns storing their id), and thus this test requires a strongly fair scheduler

for termination to be guaranteed.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 131. Publication date: October 2021.

Specifying and Testing GPU Workgroup Progress Models 131:19

• a simplified mutex test, in which T1 locks a location (by writing the value 1) and then unlocks

the location (by writing the value 0). T0 will spin on a load instruction, waiting for the lock to

be released (by observing 0). Of course, a robust mutex could not be written using the regular

load/store sequences here, e.g. it would requre a read-modify-write instruction, however, the

blocking behavior is similar to the blocking behavior seen in a mutex.

This manual inspection of the tests, and relating them to common idioms in the literature, shows

that our synthesis campaign was able to produce interesting tests.

bidirectional ProdCons #2

Thread 0 Thread 1

0: if (Mem[0] == 0) 0: Mem[0] = 1
goto 0 1: if (Mem[0] == 1)

1: Mem[0] = 0 goto 1

Fig. 9. Bidirectional ProdCons #2 has simi-

lar blocking as bidirectional ProdCons #1,

i.e. both threads wait for each other, just

in a different order. We consider this test

redundant.

 0

 20

 40

 60

 80

 100

All Weak Strong

to
ta
l
%

 o
f
te
st
s

Weak
Strong
HSA
OBE
LOBE
Full

Fig. 10. The distribution of tests across

strong/weak schedulers

Limitations and shortcomings. Out of the set of tests

we hoped to see in our synthesized test suite, there was

one that we could not find: a traditionally implemented

mutex, where each thread acquires the mutex properly

(e.g. spinning on an atomic exchange) and then releases

the mutex, by writing 0 to the mutux. This test was illus-

trated earlier in the paper in Figure 2. We were unable

to find this test although it should have been possible to

synthesize under 2 threads and 4 instructions. Indeed if

we work backwards from this test and supplement our

Alloy model with constraints that match the mutex test,

we were able to eventually synthesize it. Specifically, we

added were precise constaints on the bounds (8 states, 10

actions); a constraint that said each thread needed exactly

2 instructions; and a constraint that the first instruction

(per-thread) must branch to itself, and the second instruc-

tion (per-thread) had no branch target.

Secondly, although we eliminate exact duplicates, our

synthesis campaign can generate tests that might be re-

dundant in the blocking synchronization they capture.

For example, we synthesize two variants of the bidirec-

tional ProdCons test (the first variant is shown in Figure 8,

the second variant is shown in Figure 9). The only dif-

ferences between the two tests is the order in which the

two threads wait for each other. We cannot imagine a

scheduler that would cause these two tests to behave dif-

ferently, and thus we believe the tests are redundant. These two examples demonstrate that our

technique does not have perfect precision (i.e. some generated tests are not useful), nor does it have

perfect recall (i.e. some useful tests are not generated). However, we believe our results show that

our technique is nonetheless useful in practice.

5.6 Running Tests on Formal Models
We now analyze the behavior of our synthesized test suite under our executable formal models. To

do this, we run each of the tests through each of our formal progress models implemented in the

CADP model checker. For each test and progress model, we record whether the test passes or fails.

The time to execute the CADP model checker across all these tests is short, as the tests are small

and do not have large state spaces.

Using the results of the model checking, we can examine how our tests distribute over the formal

schedulers. Our first analysis splits the tests into strong and weak tests: strong tests are guaranteed

to terminate under a strongly fair scheduler, but may might not terminate under a weakly fair

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 131. Publication date: October 2021.

131:20 T. Sorensen, L. F. Salvador, H. Raval, H. Evrard, J. Wickerson, M. Martonosi, and A. F. Donaldson

scheduler (i.e. due to a livelock). Weak tests are guaranteed to terminate under the weak scheduler.

The percentage of our tests that are strong and weak are shown in the left most bar of Figure 10:

about 65% of our tests are weak, while the remaining are strong.

In order to examine how our tests behave under semi-fair variants of the strong and weak fairness

models, we first provide some definitions. A test 𝑡 for a progress model𝑚 is a conformance test if
𝑡 is guaranteed to terminate under𝑚. A conformance test suite 𝑆 for model𝑚 is useful because

it can be run on an implementation 𝑖 of𝑚 to check violations: any 𝑡 in 𝑆 that does not terminate

would indicate that 𝑖 does not correctly implement𝑚. Next we say that a test 𝑡 is distinguishing for

a model𝑚 if 𝑡 is guaranteed to terminate under𝑚, but 𝑡 is not guaranteed to terminate under all

models that are strictly less fair than𝑚. Thus, distinguishing tests are a subset of the conformance

tests; and conformance tests are the union of distinguishing tests for𝑚 and any progress model

less fair than𝑚. Distinguishing tests are useful in documenting the boundary of a progress model.

We note that we implicitly include the unfair scheduler in our analysis: by construction, none of

our tests are guaranteed to terminate under the unfair model.

Table 4. The number of distinguishing tests (D)

and conformance tests (C) for each progress

model. We split each model by its strong and

weak variants. The only model for which our

synthesis approach did not produce any distin-

guishing tests is the strong variant of OBE.

Weak Fairness Strong Fairness

Model D. Tests C. Tests D. Tests C. Tests

HSA 90 90 94 94

OBE 12 12 0 0

LOBE 20 122 16 110

full 201 323 50 160

Figure 10 shows the percentage of tests that are

distinguishing for each of our semi-fair schedulers,

broken down between the strong and weak tests. Ta-

ble 4 shows the concrete numbers,

as well as the number of conformance tests: e.g.

90 tests are guaranteed to terminate under the weak

variant of HSA (henceforth called weak HSA), but not

under the next less fair model in our hierarchy (i.e. the

unfair model).Thus, these are distinguishing tests for

the weak HSA. Because there are no distinguishing

tests for a scheduler less fair than weak HSA, these

90 tests are also the conformance tests for weak HSA.

As another example, the weak LOBE model has 20

distinguishing tests, i.e. tests that are guaranteed to

terminate under weak LOBE, but not under weak HSA or weak OBE. The conformance tests for

weak LOBE are the distinguishing tests for weak LOBE plus the conformance tests for weak HSA

and weak OBE.

We were able to gather distinguishing tests for all of our formal models, except for strong OBE.

That is, while we have a formal specification of the strong OBE progress model, the synthesis

did not provide any distinguishing tests for strong OBE (hence the 0 values in the strong OBE

locations of Table 4). In future work, we hope to provide some distinguishing tests for this progress

model, either by improving the efficiency of our test synthesis to automatically generate tests, or

by constructing tests by hand and validating their behaviors using our executable models.

6 EMPIRICAL TESTING
Now we transition into our empirical observations of running our tests on a variety of GPU

hardware. Our main focus is testing the inter-workgroup scheduling behavior on GPUs, i.e. when

threads are in different workgroups. This level of the GPU execution hierarchy is of particular

importance because although there exists very little official support or documentation for inter-

workgroup synchronization, GPU programmers frequently write off-spec code that depends on

forward progress properties. This code is typically reported to work on the GPUs used for evaluation,

but there is no guarantee that it is portable across GPUs (or even that it will continue to work on the

same GPU when the compiler or runtime environment changes). One of our key results highlights

this: through intensive testingwe show that the Apple andARMGPUs in our experimental campaign

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 131. Publication date: October 2021.

Specifying and Testing GPU Workgroup Progress Models 131:21

Table 5. The GPUs we consider in this study. We did not find more driver information for Apple devices apart

from the iOS version. Due to an experimental error, we did not retrieve the driver version for the g77.

Name Short Name Framework Vendor Type OS Driver Version

GeForce 940m gf940m CUDA 9.1 Nvidia Discrete Unbutu 18.04 440.100

Quadro RTX 4000 rtx4k CUDA 11.2 Nvidia Discrete Ubuntu 20.04 460.32.03

A12 GPU a12 Metal Apple Mobile iOS 14.4 NA

A14 GPU a14 Metal Apple Mobile iOS 14.4 NA

HD620 hd620 Vulkan 1.2 Intel Integrated Ubuntu 20.04 Mesa 20.3.4

Adreno 620 a620 Vulkan 1.1 Qualcomm Mobile Android 11 RD1A.201105.003.C1

Mali-G77 MP11 g77 Vulkan 1.1 ARM Mobile Android 11 Missing

Tegra X1 tx1 Vulkan 1.1 Nvidia Mobile Android 9 1753219072

do not support the LOBE progress model at the inter-workgroup level, refuting a hypothesis made

in prior work [Sorensen et al. 2018].

6.1 Heuristics for Provoking Interesting Behaviours
Our progress tests are small, consisting of only a small number of threads and instructions. Prior

work on GPU memory model testing using similarly small tests showed that interesting behaviors

(relaxed memory behaviors) were extremely rare unless executed in a noisy environment, e.g. in

the presence of additional threads that cause memory stress e.g. by repeatedly accessing memory

using irregular access patterns [Sorensen and Donaldson 2016].

Analogously, we have found it necessary to devise noisy environments as heuristics to help

provoke interesting scheduler behaviours. Prior work on inter-workgroup scheduling has shown

that whether schedulers can cause non-terminating behaviours is dependent on the number of

threads that are required to synchronize [Gupta et al. 2012; Sorensen et al. 2016; Xiao and Feng 2010].

For example, a barrier synchronization across all workgroups will hang due to a starvation cycle on

a GPU if executed with too many workgroups. Inspired by this, we propose introducing scheduler
stress by having every kernel invocation execute many instances of a progress test simultaneously.

Every instance of the test executes on its own set of disjoint workgroups and disjoint memory

locations. If the progress test specifies threads with ids 𝑖 and 𝑗 , with 𝑖 < 𝑗 , our heuristics ensure

that in each test instance, these threads will map to workgroups𝑤𝑖 and𝑤 𝑗 with𝑤𝑖 < 𝑤 𝑗 – i.e. our

stress heuristics preserve the relative id ordering in the progress test.

An 𝑁 -thread progress test 𝑡 can be executed in one of three configurations:

(1) Plain: We launch a kernel with 𝑁 workgroups and map thread 𝑖 of the progress test 𝑡 to

workgroup id 𝑖 (0 ≤ 𝑖 < 𝑁).

(2) Round-robin:We launch a kernel with 𝑁 ·𝑀 workgroups, for some𝑀 > 1, containing𝑀

distinct instances 𝑡0, . . . , 𝑡𝑀−1 of the progress test 𝑡 . Test instance 𝑡𝑚 (0 ≤ 𝑚 < 𝑀) operates

on a distinct region of memory, indexed by𝑚. Thread 𝑖 (0 ≤ 𝑖 < 𝑁) of test 𝑡𝑚 is mapped to

workgroup id 𝑁 ·𝑚 + 𝑖 . That is, threads are assigned to workgroups in a round-robin fashion:
threads for progress test 𝑡0 run on the first 𝑁 workgroups; threads for progress test 𝑡1 run on

the next 𝑁 workgroups, etc. In general, a workgroup with id𝑤 can determine its progress

test id via ⌊𝑤/𝑁 ⌋, and its thread id within the progress test via𝑤 mod 𝑁 .

(3) Chunked: As with round-robin, we launch 𝑀 distinct instances of the progress test via

𝑁 ·𝑀 workgroups, for some 𝑀 > 1. This time thread 𝑖 (0 ≤ 𝑖 < 𝑁) of test 𝑡𝑚 is mapped to

workgroup id𝑀 · 𝑖 +𝑚. That is, threads are organised into chunks according to which thread

of the progress test they correspond: the threads that correspond to thread 0 of each copy

of the progress test run on the first 𝑀 workgroups; the threads that correspond to thread

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 131. Publication date: October 2021.

131:22 T. Sorensen, L. F. Salvador, H. Raval, H. Evrard, J. Wickerson, M. Martonosi, and A. F. Donaldson

1 run on the next𝑀 workgroups, etc. In general, a workgroup with id𝑤 can determine its

progress test id𝑚 via𝑤 mod 𝑀 and its thread id within the progress test via ⌊𝑤/𝑀⌋.

Our chunked heuristic was designed specifically to tease out behaviors that distinguish LOBE

from the fair model. For intuition, consider the producer-consumer with decreasing id shown in

Figure 8. This test is not guaranteed to terminate under LOBE as there are no guarantees that thread

1 will execute when thread 0 is spinning. When executing this test under the chunked heuristic,

the kernel will have𝑀 test instances and require 2 ∗𝑀 workgroups.

Workgroups 0 through 𝑀 will spin, waiting for the workgroups with ids 𝑀 to 2 ∗ 𝑀 to be

executed. The LOBE progress model hypothesizes a GPU scheduler that: (1) is non-prememptive,

i.e. restricted to executing at most 𝑂 workgroups concurrently; and (2) schedules workgroups in

linear id order. If𝑂 < 𝑀 , then the GPU will initially schedule𝑂 workgroups, with ids 0 to𝑂 . These

workgroups will all spin, waiting for starved workgroups that will not be eventually executed,

because the scheduler is non-preemptive.

Our round-robin heuristic does not have as much of a targeted intuition; it is simply a straight-

forward heuristic to implement. However, in the end, it was the key heuristic to observing our most

surprising result: i.e. that Apple and ARM GPUs do not provide the LOBE progress model (§6.3.2).

6.2 Methodology
As summarized in Table 5, we tested 8 GPUs, spanning 5 different GPU makers, including discrete,

integrated and mobile GPU devices, under Linux, Android and iOS. Our tests cover the CUDA,

Metal and Vulkan GPU programming frameworks. We abandoned testing on devices from AMD

because

repeated test time-outs led to unrecoverable failures that sporadically required hard reboots.

For our CUDA GPUs, the rtx4k was run on Ubuntu 20.04 using CUDA v. 11.2, the most recent.

The gf940m was run on Unbutu 18.04 using CUDA v. 9.1. The a12 was run on an iPad Air 3 and the

a14 was run on an iPhone 12, both running iOS 14.4. The hd620 was run on a Debian Linux with

Mesa drivers v. 20.3.4. The a620 was run on a Pixel 5 and the g77 on a Galaxy S20-Exynos, both

running Android 11. The tx1 was run on an Nvidia Shield running Android 9.

We say that a test did not terminate if it times out. For CUDA, we use the Linux timeout
command, using 20 seconds as our limit. For Vulkan we launch tests using the Amber testing

framework [Google 2020], which allows a timeout to be set; this time we use a timeout of 5 seconds.

For Metal, we could not find an iOS equivalent to the timeout feature, however, iOS implements

a watchdog that kills non-terminating tests automatically. We could not find documentation

specifying the timeout length, but visually, the display appears to freeze for 1-2 seconds.

For each test, and each test variant (plain, round-robin, chunked), we run 20 iterations. The time

to run our test suite varies substantially across devices.

We selected an iteration count that allowed all of our devices to finish running the test suite over

night (e.g. within 12 hours), while still revealing interesting behaviors.

Kernels are launchedwith 1 thread per workgroup, thus all threads will be in different workgroups.

When the plain configuration is used, 𝑁 workgroups are launched, where 𝑁 is the number of

threads participating in the test. When the round-robin or chunked heuristics are used, ⌊65, 535/𝑁 ⌋
instances of the test are launched so that up to 65,532 workgroups execute. The Vulkan specification

requires devices to support at least this many workgroups [Khronos Group 2020b, Table 53], CUDA

allows an even larger number of thread blocks (the CUDA equivalent of a workgroup) [Nvidia

2021b, App. I.1], and while we could not find any Metal documentation about allowed number of

threadgroups (theMetal equivalent of a workgroup) we have found that this number of threadgroups

is supported in practice.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 131. Publication date: October 2021.

Specifying and Testing GPU Workgroup Progress Models 131:23

Mapping AXB to GPU frameworks. Our mapping from the AXB language of §3 to the various

GPU frameworks was not always straightforward. To target Vulkan, we used the OpenGL shading

language (GLSL) frontend for Amber [Google 2020]. The GLSL language does not provide support

for goto; instead we implemented a program counter as a simple integer and emulated a goto
environment using a while loop (one iteration per instruction) a switch statement (one case per

instruction). We kept this mapping for the rest of our languages.

1 int pc = 0;

2 while (pc != 2) {

3 switch(pc) {

4 case 0:

5 if (atomicExchange(m,1)) {

6 pc = 0;

7 }

8 else {

9 pc += 1;

10 }

11 break;
12 case 1:

13 atomicExchange(m,0);

14 pc += 1;

15 break;
16 }

17 }

Fig. 11. Snippet of the shader code (GLSL) of a

thread of the mutex progress test (Figure 2)

AXB instructions map naturally to an atomic ex-

change instruction, which are available in all the back-

ends we target. In the case where the exchange value

is omitted (recall that this argument is optional), we

use an atomic add of 0. This is an attempt to en-

sure all of our values make it to a point of coher-

ence. Prior works on older GPUs showed that this was

not always the case if only vanilla loads and stores

were used [Alglave et al. 2015]. We provided memory

model synchronization as-available, however many

frameworks provide only limited support. For exam-

ple, Metal is documented only to support relaxed con-

sistency [Apple 2020, p. 97]. GLSL does not provide

atomic annotations that map to Vulkan’s synchroniza-

tion operations by default; although there is an ex-

tension to enable more synchronization annotations

(GL_KHR_memory_scope_semantics), we opted not to
use it to increase portability of our test suite.

The vast majority of our tests contain only a single

memory location, thus coherence properties (supported even by relaxed atomic operations) should

sequentialize memory accesses. For all of our surprising results (e.g. in §6.3.2), we have manually

confirmed that memory consistency is not to blame.

To illustrate this compilation approach, Figure 11 shows an snippet from the mutex progress test

of Figure 2, where both threads execute the same instructions. In this snippet, notice that control

flow is implemented as a while loop over a switch statement, where each case corresponds to an

instruction. The program counter (pc) is updated once per instruction. In cases where there is

branching (e.g. instruction 0), the pc is updated conditionally based on the result of the atomic

exchange. In cases where there is no branching (e.g. instruction 1), the pc is simply incremented.

The thread terminates (i.e. the while loop terminates) when the pc is incremented to one past the

last instruction; in this example that value is 2, as there are 2 instructions.

6.3 Empirical Testing Results for Inter-workgroup Schedulers
6.3.1 Inter-workgroup Schedulers are Empirically Less Fair Than CPU Schedulers. It has been well-

documented that GPU inter-workgroup schedulers are less fair than CPU schedulers, e.g. see [Gupta

et al. 2012; Sorensen et al. 2016; Xiao and Feng 2010]. Thus, a good initial experiment is to see if we

observe non-terminating tests in our test suite when executed on GPU platforms, and if all of our

tests terminate when executed on a CPU platform. To do this, we wrote a C++ backend for our test

suite using atomic operations and std threads.

We executed the three variants (plain, round-robin and chunked) of our 483 tests across all GPUs

in Table 5 and a CPU (an 8-core i7-9700K). For the CPU, we ran two configurations: fully-subscribed

with as many threads as cores (i.e. 8) and over-subscribed with 100× as many threads as cores (i.e.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 131. Publication date: October 2021.

131:24 T. Sorensen, L. F. Salvador, H. Raval, H. Evrard, J. Wickerson, M. Martonosi, and A. F. Donaldson

 1

 2

 4

 8

 16

 32

 64

 128

 256

GF940m RTX4 A14 A12 HD620 G77 A620 TX1

N
um
be
r
of

 n
on
-t
er
m
in
at
in
g
 t
es
ts

plain-det
plain-nd
rr-det
rr-nd

chunk-det
chunk-nd

Fig. 12. Summary of non-terminating test observations across our GPU devices.

800). The over-subscribed configuration is intended to assess the fairness provided by CPU sched-

ulers when cores are over-occupied. On the other hand, GPUs have been conjectured to guarantee

fair scheduling only up to the number of threads that occupy their hardware resources [Sorensen

et al. 2018]. We set the CPU timeout to the same as the CUDA tests: 20 seconds.

For all variants of all tests, the tests executed on the CPU terminated within the time limit.

These results are in-line with CPU programming folklore and the recommended progress model

provided by the C++ specification [ISO/IEC 2017, Sec. 4.7.2]. Specifically, the specification states that

implementations are encouraged (but not required) to provide std threads with “concurrent forward

progress,” which we read to be equivalent to weak fairness. While the C++ specification says

nothing about strong fairness, the CPU execution environment provides enough timing variation

(e.g. due to background processes) that all actions are eventually taken.

The GPU test results were more varied: Figure 12 summarizes our results, shown per-GPU (on

the x-axis), per variant, and whether or not the non-termination observation was deterministic (i.e.

all 20 iterations did not terminate). The results are shown on a log axis as there were some variants

with a high number of non-terminating instances, while others variants exhibited non-terminating

behavior on far fewer tests. Each GPU has slightly different behavior across our test suite: The

Apple GPUs and g77 deterministically exhibit non-termination across roughly the same number of

tests. The older Nvidia GPUs (gf940m and tx1) had very few non-terminating tests on the plain

variants. The rtx4k, a620, and hd620 have very similar profiles, despite all 3 being from different

vendors. We will examine these results in more detail in the next two subsections.

6.3.2 Do Inter-workgroup Schedulers Conform to the LOBE Progress Model? We now check whether

our GPUs conform to the LOBE progress model, as has been hypothesized [Sorensen et al. 2018],

i.e. we check whether LOBE conformance tests terminate across our GPUs. We consider the

conformance tests for weak LOBE; we do not consider strong progress here because it seems

unlikely that it will be included in a language specification. From Table 4, we see there are 122

tests conformance tests for weak LOBE, for which we have 3 variants each: plain, chunked, and

round-robin. This is a combination of 366 tests, each executed for 20 iterations.

Our analysis shows that all GPUs pass all weak LOBE tests, with the exception of the a12

and g77. There are 11 weak LOBE conformance tests for which both of these GPUs exhibit non-

termination. Interestingly it is the same set of 11 tests across the three GPUs; however, the a12 is

more deterministic, exhibiting non-termination deterministically on 10 out of the 11 tests. The g77

does not deterministically exhibit non-termination on any of these tests, but it does occur on over

half of the runs on all 11 tests. We did not have intuitions that round-robin would be an effective

heuristic, but all the violating 11 tests have the round-robin heuristic enabled. The reason for this is

that LOBE violations require that threads with a higher id have a chance to execute before threads

with a lower id. One scenario that violates LOBE is this: (1) a thread with a high id executes a step;

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 131. Publication date: October 2021.

Specifying and Testing GPU Workgroup Progress Models 131:25

(2) this promises eventual execution for all threads with lower ids; (3) one of the threads with the

lower id isn’t fairly scheduled. Step (1) requires a workgroup with a high id to be initially scheduled.

With the chunked heuristic this may not happen, as GPUs are likely schedule workgroups in some

kind of ascending order, but round-robin maps all threads of a progress test to workgroups with

adjacent ids, giving workgroups with a higher id the chance to initialize this scenario.

Apart from our large experimental campaign, we have also observed rare LOBE violations when

experimenting informally with the a14 GPU: this occurs when running only the LOBE conformance

tests. We could not reproduce these results when running the entire testing suite. We hypothesize

that the larger testing suite causes the GPU to lock up more frequently, putting the GPU in a

constant state of recovery, which inhibits some of the behavior we might observe. Furthermore,

our contacts at Apple provided an additional test that is able to show a violation of OBE on the A12

and A14. This test consists of threads repeatedly acquiring and releasing a mutex using a custom

spin-lock (implemented using an atomic compare-and-swap). In future work, we hope to examine

this test in depth. Specifically, we aim to decouple the idiomatic blocking behavior from the system

stress caused by the mutex contention. At that point, we could apply the stress as a testing heuristic

across all of our tests to more robustly test many more progress behaviors.

Thus, the hypothesis of prior work [Sorensen et al. 2018] does not hold for these devices, which

span two frameworks: Metal and Vulkan, hence these frameworks will both need to consider how

to address these violations when specifying forward progress properties: it may be that LOBE could

be provided as an optional extension, as it appears to be empirically supported on many devices.

We have informed representatives from both Apple and ARM about these behaviors.

We did not observe any violations of the weak variant of HSA or OBE on any devices, which

suggests that it may be possible for a specification to minimally require one of the less fair models

(e.g. HSA or OBE), with an optional extension for schedulers that are more fair (e.g. LOBE).

6.3.3 Uniform Behaviors Under the Chunked Heuristic. We now discuss the clear uniform result

across our GPUs: roughly 256 tests deterministically fail using the chunked heuristic. We hypothe-

size that this is because GPU workgroup schedulers are non-preemptive and assign workgroups to

compute units in linear order. As described in §6.1, this is exactly the type of scheduler that the

chunked heuristic was designed to provoke non-terminating behaviors from. Because LOBE was

developed to describe such a scheduler, we imagine that these empirically failing tests correspond

to tests that distinguish fair schedulers (i.e. fail under LOBE but pass under fair). From Table 4

there are 251 tests that distinguish the fair from LOBE (combining strong and weak variants). Our

analysis shows that the chunked variants of these tests have non-terminating behavior across all

GPUs for the same subset of 246 of these tests.

Further examination of the 5 tests that distinguish full fairness from LOBE, but that deterministi-

cally terminate across all our GPUs, reveals an interesting pattern: these tests all have 3 threads

and they require threads 0 and 1 to execute in parallel in order to get in the endless starvation cycle,

which consists of thread 2 being starved in favor of thread 0. However, our chunked heuristic is

designed so that none of the testing threads will execute in parallel on non-preemptive systems;

thus we do not observe non-termination for these tests. A hybrid or randomized mapping strategy,

e.g. that maps the first two threads in a round-robin style, and the third thread in a chunked style,

might be capable of revealing non-terminating behavior for these tests.

6.3.4 Inter-workgroup Strong Fairness. The remaining failing tests are strong tests, including for

less fair schedulers, e.g. strong HSA and strong OBE. While programming languages do not (and

perhaps should not) provide strong fairness guarantees, it is interesting that the strong tests

terminate reliably when executed on a CPU, even when heavily oversubscribed. Our results show

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 131. Publication date: October 2021.

131:26 T. Sorensen, L. F. Salvador, H. Raval, H. Evrard, J. Wickerson, M. Martonosi, and A. F. Donaldson

that GPUs are more prone to livelock, likely due to the absence of background processes or a

complex OS scheduler to introduce timing jitters that break threads out of livelock.

6.4 Limitations and Additional Results
The main focus of this work is inter-workgroup progress. As such, we consider progress in a

Multiple Instruction, Multiple Data (MIMD) context. This may seem counter-intuitive, as GPUs are

programmed in a Single Program,Multiple Data (or SPMD)manner. However, aMIMDprogramming

model can be implemented in a SPMD model by using a set of conditionals that branch on thread

ids; thus we regard the difference, for the purpose of this work, as superficial. Furthermore, to the

best of our knowledge, GPU threads that are in different subgroups do execute in a MIMD fashion,

i.e. containing independent program counters with execution that is not lock-step synchronous.

The techniques in this work may not be appropriate for all levels of the GPU execution hierarchy.

For example, threads in the same subgroup might execute in a synchronous, lock-step manner,

also known as Single Instruction, Multiple Thread (SIMT). Threads that don’t execute the same

instruction, i.e. they have control flow divergence, are sequentialized. Thus, our tests and models,

which are control flow agnostic, are not suitable for describing interactions at this level.

To the best of our knowledge, CUDA is the only framework that provides documentation for

progress, and its guarantees are limited to situations out of our main focus: intra-subgroup, and a

special cooperative groups API. Nonetheless, because it is straightforward, we did run our tests in

these configurations and we now provide a high-level overview of the results:

CUDA cooperative kernels. CUDA’s cooperative kernel launch [Nvidia 2021b, App. C.7] claims

to allow workgroups to “cooperate and synchronize as they execute”, which we believe provides

sufficient progress across workgroups to support common synchronization idioms such as mutexes

and barriers. We validated this claim by executing our test suite on the rtx4k (our only GPU

that supports this feature), observing termination for all weak tests. However, we did not observe

termination for all strong tests. Thus, the cooperative kernel launch remains empirically weaker

than our observations on a traditional CPU, due to livelocks.

Independent warp scheduler. Nvidia GPUs document an independent warp scheduler (IWS) since

the Volta architecture [Nvidia 2017]. Similar to the cooperative kernel launch, we hypothesize

that this scheduler provides a weak progress model. To test this hypothesis, we created a suite of

our plain variation tests that target intra-warp threads on the rtx4k GPU, which supports the

independent warp scheduler. We empirically validate our hypothesis by observing termination for

all weak tests. However, we did not observe termination for all strong tests.

In a final experiment, we ran the intra-warp tests on the same device (rtx4k) under the SIMT

warp scheduler (toggled with a compiler flag). These test results show failures on some weak tests

(as expected due to SIMT execution), however the sequentialized execution is able to break some

livelock cycles found in strong tests. We found several tests that reliably pass under the SIMT warp

scheduler, but not the IWS, and vice versa. Thus, empirically, the two schedulers are incomparable.

7 RELATEDWORK
GPU progress models. Several prior works have suggested progress models for GPUs. Early work

discussed a maximal launch, in which CUDA kernels would be launched as many workgroups as

the device could concurrently execute [Gupta et al. 2012].

As discussed throughout the paper, Sorensen et al. [2018] proposed a family of semi-fair schedulers
to describe inter-workgroup schedulers and hypothesized that current GPUs implement the linear

occupancy-bound executionmodel; a hypothesis we refute with empirical evidence in §6. A different

approach discusses architectural and compiler techniques that could make it easier for GPUs to

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 131. Publication date: October 2021.

Specifying and Testing GPU Workgroup Progress Models 131:27

provide fair progress models for workgroups [Dutu et al. 2020]. Although it is not the main focus

of this work, other works have formalized SIMT-style semantics to intra-subgroup threads [Betts

et al. 2015, 2012; Collingbourne et al. 2013; Habermaier and Knapp 2012; Li et al. 2012], which

provide a predicated execution model. To avoid specifying less fair models for intra-subgroup

threads, ElTantawy and Aamodt [2016] propose architecture and compiler techniques to provide

fair models to these threads.

Demystifying GPU behaviors through testing. There is precedence for using large testing cam-

paigns to demystify system behaviors, especially GPU systems. Most closely related is Alglave

et al. [2015], who performed a large testing campaign to understand the semantics of Nvidia GPU

memory models. In a different dimension, there is a line of work, starting with Wong et al. [2010],

that aims to discover performance-critical architectural details through microbenchmarks.

Conformance test generation for GPU programming frameworks. The GLFuzz project [Donaldson
et al. 2017] generates compiler tests for a variety of GPU frameworks, some of which are now

incorporated into Khronos Group conformance tests [Donaldson et al. 2020]. However, GLFuzz

does not consider fine-grained synchronization behaviors, as we do in this work. Other works

have generated tests for memory model conformance [Lustig et al. 2017; Wickerson et al. 2017],

including for Nvidia GPUs and OpenCL. Along these lines, [Ta et al. 2019] describes a random test

generator for coherence on AMD GPUs.

Model checking concurrent program termination. There is vast literature on model checking

for concurrent program termination. Mateescu and Serwe [2010] provides an extensive study of

termination, analyzing the performance of various shared memory mutual exclusion protocols,

taking both weak and strong fairness into account. In another vein, Lahav et al. [2021] discuss

liveness properties in the context of relaxed memory models, exploring how to specify that memory

values eventually propagate through the memory system and become visible to other threads.

8 CONCLUSION
This work presents techniques, tools, and experimental results to aid programming language

designers in thinking about progress models. Our individual contributions allow developers to

specify progress models in executable semantics, synthesize test suites, and explore behaviors on

existing GPU implementations. When combined, these contributions allow synthesized tests to be

partitioned into conformance test suites, which, in turn, can be used to analyze empirical results to

determine if certain GPUs experimentally conform to a given progress model. Our results highlight

the power of this synergy by showing that Apple and ARM GPUs do not implement a progress

model hypothesized in prior work. We are in discussion with industrial representatives about how

to incorporate progress models into official specifications and how the corresponding test suites

might be incorporated into conformance tests. Our hope is that this work inspires other areas of

specification design to embrace formal methods, both for executable semantics and for test-case

synthesis, to explore design decisions and obtain rigorous conformance test suites.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their feedback, which greatly improved the clarity of the

paper. We give special thanks to Alan Baker (Google) who provided detailed support for the Amber

framework and gave many valuable comments on a draft of the paper. We thank the Khronos SPIR

Memory Model TSG, especially Rob Simpson (Qualcomm), David Neto (Google), Jeff Bolz (Nvidia),

Nicolai Hähnle (AMD), Graeme Leese (Broadcom), Brian Sumner (AMD), Tobias Hector (AMD),

and Mariusz Merecki (Intel) for their support and feedback on this work over several years.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 131. Publication date: October 2021.

131:28 T. Sorensen, L. F. Salvador, H. Raval, H. Evrard, J. Wickerson, M. Martonosi, and A. F. Donaldson

We also thank the Inria Convecs team that maintains CADP for their support, especially Radu

Mateescu for his feedback on our MCL formulas. This work was partially supported by the EP-

SRC via the IRIS Programme Grant (EP/R006865/1) and the HiPEDS Doctoral Training Centre

(EP/L016796/1).

REFERENCES
Jade Alglave, Mark Batty, Alastair F. Donaldson, Ganesh Gopalakrishnan, Jeroen Ketema, Daniel Poetzl, Tyler Sorensen, and

John Wickerson. 2015. GPU Concurrency: Weak Behaviours and Programming Assumptions. In Architectural Support for
Programming Languages and Operating Systems, ASPLOS. ACM. https://doi.org/10.1145/2694344.2694391

AMD. 2019. RDNA Architecture. Whitepaper, https://www.amd.com/system/files/documents/rdna-whitepaper.pdf.

Apple. 2020. Metal Shading Language Specification v2.3. https://developer.apple.com/metal/

Christel Baier and Joost-Pieter Katoen. 2008. Principles of model checking. MIT Press.

Scott Beamer, Krste Asanovic, and David A. Patterson. 2015. The GAP Benchmark Suite. CoRR abs/1508.03619 (2015).

arXiv:1508.03619 http://arxiv.org/abs/1508.03619

Adam Betts, Nathan Chong, Alastair F. Donaldson, Jeroen Ketema, Shaz Qadeer, Paul Thomson, and John Wickerson. 2015.

The Design and Implementation of a Verification Technique for GPU Kernels. ACM Trans. Program. Lang. Syst. 37, 3
(2015), 10:1–10:49. https://doi.org/10.1145/2743017

Adam Betts, Nathan Chong, Alastair F. Donaldson, Shaz Qadeer, and Paul Thomson. 2012. GPUVerify: a verifier for GPU

kernels. In Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA. ACM. https://doi.org/10.1145/

2384616.2384625

G. E. Blelloch. 1989. Scans As Primitive Parallel Operations. IEEE Trans. Comput. 38, 11 (1989), 1526–1538. https:

//doi.org/10.1109/12.42122

Daniel Cederman and Philippas Tsigas. 2008. On Dynamic Load Balancing on Graphics Processors. In SIGGRAPH. Euro-
graphics Association, 57–64. https://doi.org/10.5555/1413957.1413967

David Champelovier, Xavier Clerc, Hubert Garavel, Yves Guerte, Christine McKinty, Vincent Powazny, Frédéric Lang,

Wendelin Serwe, and Gideon Smeding. 2021. Reference Manual of the LNT to LOTOS Translator (Version 7.0). (Aug.

2021). https://cadp.inria.fr/ftp/publications/cadp/Champelovier-Clerc-Garavel-et-al-10.pdf INRIA, Grenoble, France.

Nathan Chong, Tyler Sorensen, and John Wickerson. 2018. The semantics of transactions and weak memory in x86, Power,

ARM, and C++. In PLDI. ACM, 211–225. https://doi.org/10.1145/3192366.3192373

Peter Collingbourne, Alastair F. Donaldson, Jeroen Ketema, and Shaz Qadeer. 2013. Interleaving and Lock-Step Semantics for

Analysis and Verification of GPU Kernels. In ESOP (Lecture Notes in Computer Science), Matthias Felleisen and Philippa

Gardner (Eds.), Vol. 7792. Springer, 270–289. https://doi.org/10.1007/978-3-642-37036-6_16

Alastair F. Donaldson, Hugues Evrard, Andrei Lascu, and Paul Thomson. 2017. Automated testing of graphics shader

compilers. Proc. ACM Program. Lang. 1, OOPSLA (2017). https://doi.org/10.1145/3133917

Alastair F. Donaldson, Hugues Evrard, and Paul Thomson. 2020. Putting Randomized Compiler Testing into Production

(Experience Report). In 34th European Conference on Object-Oriented Programming, ECOOP 2020, November 15-17, 2020,
Berlin, Germany (Virtual Conference) (LIPIcs), Robert Hirschfeld and Tobias Pape (Eds.), Vol. 166. Schloss Dagstuhl -

Leibniz-Zentrum für Informatik, 22:1–22:29. https://doi.org/10.4230/LIPIcs.ECOOP.2020.22

Alexandru Dutu, Matthew D. Sinclair, Bradford M. Beckmann, David A. Wood, and Marcus Chow. 2020. Independent

Forward Progress of Work-groups. In International Symposium on Computer Architecture, ISCA. IEEE. https://doi.org/10.

1109/ISCA45697.2020.00087

Ahmed ElTantawy and Tor M. Aamodt. 2016. MIMD synchronization on SIMT architectures. In 49th Annual IEEE/ACM
International Symposium on Microarchitecture, MICRO. IEEE Computer Society. https://doi.org/10.1109/MICRO.2016.

7783714

Dov M. Gabbay, Amir Pnueli, Saharon Shelah, and Jonathan Stavi. 1980. On the Temporal Basis of Fairness. In Symposium
on Principles of Programming Languages, Paul W. Abrahams, Richard J. Lipton, and Stephen R. Bourne (Eds.). ACM Press,

163–173. https://doi.org/10.1145/567446.567462

Hubert Garavel, Frédéric Lang, Radu Mateescu, and Wendelin Serwe. 2013. CADP 2011: a toolbox for the construction and

analysis of distributed processes. International Journal on Software Tools for Technology Transfer 15, 2 (2013), 89–107.
https://doi.org/10.1007/s10009-012-0244-z

Google. 2020. Amber. https://github.com/google/amber (Accessed Aug. 2020).

Kshitij Gupta, Jeff Stuart, and John D. Owens. 2012. A Study of Persistent Threads Style GPU Programming for GPGPU

Workloads. In InPar. 1–14. https://doi.org/10.1109/InPar.2012.6339596

Axel Habermaier and Alexander Knapp. 2012. On the Correctness of the SIMT Execution Model of GPUs. In ESOP (Lecture
Notes in Computer Science), Helmut Seidl (Ed.), Vol. 7211. Springer, 316–335. https://doi.org/10.1007/978-3-642-28869-2_16

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 131. Publication date: October 2021.

https://doi.org/10.1145/2694344.2694391
https://www.amd.com/system/files/documents/rdna-whitepaper.pdf
https://developer.apple.com/metal/
https://arxiv.org/abs/1508.03619
http://arxiv.org/abs/1508.03619
https://doi.org/10.1145/2743017
https://doi.org/10.1145/2384616.2384625
https://doi.org/10.1145/2384616.2384625
https://doi.org/10.1109/12.42122
https://doi.org/10.1109/12.42122
https://doi.org/10.5555/1413957.1413967
https://cadp.inria.fr/ftp/publications/cadp/Champelovier-Clerc-Garavel-et-al-10.pdf
https://doi.org/10.1145/3192366.3192373
https://doi.org/10.1007/978-3-642-37036-6_16
https://doi.org/10.1145/3133917
https://doi.org/10.4230/LIPIcs.ECOOP.2020.22
https://doi.org/10.1109/ISCA45697.2020.00087
https://doi.org/10.1109/ISCA45697.2020.00087
https://doi.org/10.1109/MICRO.2016.7783714
https://doi.org/10.1109/MICRO.2016.7783714
https://doi.org/10.1145/567446.567462
https://doi.org/10.1007/s10009-012-0244-z
https://github.com/google/amber
https://doi.org/10.1109/InPar.2012.6339596
https://doi.org/10.1007/978-3-642-28869-2_16

Specifying and Testing GPU Workgroup Progress Models 131:29

HSA Foundation. 2017. HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming Model, Compiler

Writer, and Object Format (BRIG). (rev 1.1.1).

Wen-meiW. Hwu (Ed.). 2015. Heterogeneous System Architecture: A New Compute Platform Infrastructure. Morgan Kaufmann.

Intel. 2021. oneAPI GPU Optimization Guide. https://software.intel.com/content/dam/develop/external/us/en/documents/

oneapi-gpu-optimization-guide.pdf.

ISO/IEC. 2017. Working Draft, Standard for Programming Language C++ v. N4659. https://doi.org/jtc1/sc22/wg21/docs/

papers/2017/n4659.pdf

Daniel Jackson. 2012. Software Abstractions: Logic, Language, and Analysis. MIT Press.

Khronos Group. 2020a. Khronos Group Releases OpenCL 3.0. https://khr.io/ocl3pressrelease (visited August 2020).

Khronos Group. 2020b. Vulkan 1.2.174 - A Specification. https://www.khronos.org/registry/vulkan/specs/1.2-extensions/

html/vkspec.html (visited April 2021).

Yonghae Kim and Hyesoon Kim. 2019. Translating CUDA to OpenCL for Hardware Generation using Neural Machine

Translation. In International Symposium on Code Generation and Optimization, CGO. IEEE. https://doi.org/10.1109/CGO.

2019.8661172

Dexter Kozen. 1983. Results on the Propositional mu-Calculus. Theor. Comput. Sci. 27 (1983), 333–354. https://doi.org/10.

1016/0304-3975(82)90125-6

Ori Lahav, Egor Namakonov, Jonas Oberhauser, Anton Podkopaev, and Viktor Vafeiadis. 2021. Making Weak Memory

Models Fair. Proc. ACM Program. Lang. 6, OOPSLA (2021). https://doi.org/10.1145/3485475

Raph Levien. 2020. Prefix sum on Vulkan. https://raphlinus.github.io/gpu/2020/04/30/prefix-sum.html (visited August

2020).

Guodong Li, Peng Li, Geoffrey Sawaya, Ganesh Gopalakrishnan, Indradeep Ghosh, and Sreeranga P. Rajan. 2012. GKLEE:

concolic verification and test generation for GPUs. In Principles and Practice of Parallel Programming, PPOPP. ACM.

https://doi.org/10.1145/2145816.2145844

Daniel Lustig, Andrew Wright, Alexandros Papakonstantinou, and Olivier Giroux. 2017. Automated Synthesis of Compre-

hensive Memory Model Litmus Test Suites. In ASPLOS. ACM, 661–675. https://doi.org/10.1145/3037697.3037723

Sepideh Maleki, Annie Yang, and Martin Burtscher. 2016. Higher-order and Tuple-based Massively-parallel Prefix Sums. In

PLDI. ACM, 539–552. https://doi.org/10.1145/2908080.2908089

Gabriel Martinez, Mark K. Gardner, and Wu-chun Feng. 2011. CU2CL: A CUDA-to-OpenCL Translator for Multi- and

Many-Core Architectures. In International Conference on Parallel and Distributed Systems, ICPADS. IEEE Computer Society.

https://doi.org/10.1109/ICPADS.2011.48

Radu Mateescu and Wendelin Serwe. 2010. A Study of Shared-Memory Mutual Exclusion Protocols Using CADP. In Formal
Methods for Industrial Critical Systems FMICS (Lecture Notes in Computer Science), Stefan Kowalewski and Marco Roveri

(Eds.), Vol. 6371. Springer, 180–197. https://doi.org/10.1007/978-3-642-15898-8_12

Radu Mateescu and Damien Thivolle. 2008. A Model Checking Language for Concurrent Value-Passing Systems. In

International Symposium on Formal Methods (FM) (Lecture Notes in Computer Science), Jorge Cuéllar, T. S. E. Maibaum,

and Kaisa Sere (Eds.), Vol. 5014. Springer, 148–164. https://doi.org/10.1007/978-3-540-68237-0_12

MCL. 2008. MCL manual page. http://cadp.inria.fr/man/mcl4.html (Accessed April 2021).

Bruce Merry. 2015. A Performance Comparison of Sort and Scan Libraries for GPUs. Parallel Process. Lett. 25, 4 (2015),
1550007:1–1550007:8. https://doi.org/10.1142/S0129626415500073

Jacob Nelson and Roberto Palmieri. 2019. Don’t Forget About Synchronization!: A Case Study of K-Means on GPU. In

International Workshop on Programming Models and Applications for Multicores and Manycores, PMAM. ACM. https:

//doi.org/10.1145/3303084.3309488

Nvidia. 2017. Nvidia Tesla V100 GPU ARCHITECTURE. https://images.nvidia.com/content/volta-architecture/pdf/volta-

architecture-whitepaper.pdf Whitepaper WP-08608-001_v1.1.

Nvidia. 2021a. CUB v1.12.0. https://github.com/NVlabs/cub.

Nvidia. 2021b. CUDA C++ Programming Guide, Version 11.2.1. https://docs.nvidia.com/cuda/archive/11.2.1/cuda-c-

programming-guide/.

Tyler Sorensen and Alastair F. Donaldson. 2016. Exposing errors related to weak memory in GPU applications. In

Programming Language Design and Implementation, PLDI, Chandra Krintz and Emery Berger (Eds.). ACM, 100–113.

https://doi.org/10.1145/2908080.2908114

Tyler Sorensen, Alastair F. Donaldson, Mark Batty, Ganesh Gopalakrishnan, and Zvonimir Rakamaric. 2016. Portable

inter-workgroup barrier synchronisation for GPUs. InObject-Oriented Programming, Systems, Languages, and Applications,
OOPSLA. ACM. https://doi.org/10.1145/3022671.2984032

Tyler Sorensen, Hugues Evrard, and Alastair F. Donaldson. 2018. GPU Schedulers: How Fair Is Fair Enough?. In 29th
International Conference on Concurrency Theory, CONCUR 2018, September 4-7, 2018, Beijing, China (LIPIcs), Sven Schewe

and Lijun Zhang (Eds.), Vol. 118. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 23:1–23:17. https://doi.org/10.4230/

LIPIcs.CONCUR.2018.23

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 131. Publication date: October 2021.

https://software.intel.com/content/dam/develop/external/us/en/documents/oneapi-gpu-optimization-guide.pdf
https://software.intel.com/content/dam/develop/external/us/en/documents/oneapi-gpu-optimization-guide.pdf
https://doi.org/jtc1/sc22/wg21/docs/papers/2017/n4659.pdf
https://doi.org/jtc1/sc22/wg21/docs/papers/2017/n4659.pdf
https://khr.io/ocl3pressrelease
https://www.khronos.org/registry/vulkan/specs/1.2-extensions/html/vkspec.html
https://www.khronos.org/registry/vulkan/specs/1.2-extensions/html/vkspec.html
https://doi.org/10.1109/CGO.2019.8661172
https://doi.org/10.1109/CGO.2019.8661172
https://doi.org/10.1016/0304-3975(82)90125-6
https://doi.org/10.1016/0304-3975(82)90125-6
https://doi.org/10.1145/3485475
https://raphlinus.github.io/gpu/2020/04/30/prefix-sum.html
https://doi.org/10.1145/2145816.2145844
https://doi.org/10.1145/3037697.3037723
https://doi.org/10.1145/2908080.2908089
https://doi.org/10.1109/ICPADS.2011.48
https://doi.org/10.1007/978-3-642-15898-8_12
https://doi.org/10.1007/978-3-540-68237-0_12
http://cadp.inria.fr/man/mcl4.html
https://doi.org/10.1142/S0129626415500073
https://doi.org/10.1145/3303084.3309488
https://doi.org/10.1145/3303084.3309488
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://github.com/NVlabs/cub
https://docs.nvidia.com/cuda/archive/11.2.1/cuda-c-programming-guide/
https://docs.nvidia.com/cuda/archive/11.2.1/cuda-c-programming-guide/
https://doi.org/10.1145/2908080.2908114
https://doi.org/10.1145/3022671.2984032
https://doi.org/10.4230/LIPIcs.CONCUR.2018.23
https://doi.org/10.4230/LIPIcs.CONCUR.2018.23

131:30 T. Sorensen, L. F. Salvador, H. Raval, H. Evrard, J. Wickerson, M. Martonosi, and A. F. Donaldson

Tyler Sorensen, Sreepathi Pai, and Alastair F. Donaldson. 2019. One Size Doesn’t Fit All: Quantifying Performance

Portability of Graph Applications on GPUs. In IEEE International Symposium on Workload Characterization, IISWC. IEEE.
https://doi.org/10.1109/IISWC47752.2019.9042139

Tyler Sorensen, Lucas F. Salvador, Harmit Raval, Hugues Evrard, John Wickerson, Margaret Martonosi, and Alastair F.

Donaldson. 2021. Artifact for "Specifying and Testing GPU Workgroup Progress Models" (OOPSLA 2021). https://doi.org/10.

5281/zenodo.5501522 also available at: https://github.com/tyler-utah/AlloyForwardProgress.

Tuan Ta, Xianwei Zhang, Anthony Gutierrez, and Bradford M. Beckmann. 2019. Autonomous Data-Race-Free GPU Testing.

In International Symposium onWorkload Characterization, IISWC. IEEE. https://doi.org/10.1109/IISWC47752.2019.9042019

Stanley Tzeng, Anjul Patney, and John D. Owens. 2010. Task Management for Irregular-Parallel Workloads on the GPU. In

HPG. 29–37. https://doi.org/10.5555/1921479.1921485

Yangzihao Wang, Andrew A. Davidson, Yuechao Pan, Yuduo Wu, Andy Riffel, and John D. Owens. 2016. Gunrock: a

high-performance graph processing library on the GPU. In Principles and Practice of Parallel Programming (PPoPP). ACM.

https://doi.org/10.1145/2851141.2851145

John Wickerson, Mark Batty, Tyler Sorensen, and George A. Constantinides. 2017. Automatically comparing memory

consistency models. In Principles of Programming Languages, POPL. ACM. https://doi.org/10.1145/3093333.3009838

Henry Wong, Misel-Myrto Papadopoulou, Maryam Sadooghi-Alvandi, and Andreas Moshovos. 2010. Demystifying GPU

microarchitecture through microbenchmarking. In International Symposium on Performance Analysis of Systems and
Software, ISPASS. IEEE. https://doi.org/10.1109/ISPASS.2010.5452013

Shucai Xiao and Wu-chun Feng. 2010. Inter-block GPU communication via fast barrier synchronization. In IPDPS. 1–12.
https://doi.org/10.1109/IPDPS.2010.5470477

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 131. Publication date: October 2021.

https://doi.org/10.1109/IISWC47752.2019.9042139
https://doi.org/10.5281/zenodo.5501522
https://doi.org/10.5281/zenodo.5501522
https://github.com/tyler-utah/AlloyForwardProgress
https://doi.org/10.1109/IISWC47752.2019.9042019
https://doi.org/10.5555/1921479.1921485
https://doi.org/10.1145/2851141.2851145
https://doi.org/10.1145/3093333.3009838
https://doi.org/10.1109/ISPASS.2010.5452013
https://doi.org/10.1109/IPDPS.2010.5470477

Specifying and Testing GPU Workgroup Progress Models 131:31

9 APPENDIX
9.1 Proofs of non-termination detection conditions
9.1.1 Weak Fairness.

Lemma 9.1. In the case of weak schedulers, a given test case has the possibility of deadlock if and
only if it contains a cycle that has executing steps by the all threads in the UNIQUE set of fairly
scheduled threads 𝑆 shared by every step in the cycle.

Proof. The first thing we will see is that the definition is well-defined, and all actions in a cycle

must have the same set of fairly scheduled threads 𝑆 . To see this, note that for all the schedulers in

this work, the set of fairly scheduled threads only removes a thread when it terminates. Since a

terminated thread will not execute again, it follows the set cannot remove and add a thread. Thus,

the set of fairly scheduled threads 𝑆 in a cycle must be the same.

We can then note that, if the output graph for a test under a given scheduler contains a cycle

with all threads in 𝑆 at the time of the cycle, then we are in a deadlock situation. This follows from

the fact that only those threads are guaranteed to execute and, thus, no other thread that could

break execution from that cycle will run.

It follows that we must only see that the presence of a deadlock implies one of these cycles. We

will show this by contrapositive. Let us assume the lack of problematic cycles, we will then show

we can reach termination. To do this, note once again that any cycle must have a fixed 𝑆 . Let us

call the set of nodes (and edges between them) with this fixed set 𝑆 , 𝐺 . We will show now that if

we do not have a problematic cycle, then we must move on to a different part of the graph with

another 𝑆 ′ where a thread was added to 𝑆 or finished execution (and thus removed from 𝑆).

If we have no cycles, then this is clearly true because we have finite states. Else, let us take a

cycle 𝐶 that includes as many threads in 𝑆 as possible. Note because 𝐶 is not problematic, there

must be a 𝑡 ∈ 𝑆 that is not in the cycle and, eventually, 𝑡 must execute and lead us to break out of

that cycle. Two things are then possible. Either we end up in another cycle 𝐶 ′
with the same 𝑆 , or

there are no more cycles with this 𝑆 from here and we eventually add or remove a thread from 𝑆 ′

(as we wanted). If the former happens, note that we cannot reach any of the nodes in the earlier

cycle (as else 𝐶 would not be maximal as we can add 𝑡 into the cycle). But, note then 𝐶 ′
is a cycle

in a subgraph 𝐺 ′
with strictly less nodes than 𝐺 . After a finite number of steps (since 𝐺 is finite), it

must then be impossible to find a graph in 𝐺 ′
as it becomes empty. It follows then 𝑆 must change,

implying we add a node to it or a node terminates (and is removed).

Thus, we must eventually add fairly scheduled threads or terminate them. Since the number

of threads is finite and each is added and removed at most once to 𝑆 , this must mean eventually

all threads will need to terminate, giving us that we must reach program termination (as we

wanted). □

9.1.2 Strong Fairness.

Lemma 9.2. In the case of strong schedulers, a given test case is free of deadlock if and only if for
every node there exists a possible path to the termination of the fairly scheduled threads (the set is
empty) such that the path contains actions taken only by fairly scheduled threads.

Note we make the distinction that we reach a state where the set of fairly scheduled threads is

empty (instead of reaching exit) as in OBE we only fairly scheduled threads when they execute

and, in the exact moment when we finish executing the current set, the set is empty, even though

it will add a thread to the set in the next action.

Proof. For the first direction, we note that if the path does not exist then we have a possible

deadlock situation. To see this, note that means we have a node 𝑥 such that, if we explore the

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 131. Publication date: October 2021.

131:32 T. Sorensen, L. F. Salvador, H. Raval, H. Evrard, J. Wickerson, M. Martonosi, and A. F. Donaldson

graph taking only actions by fairly scheduled threads, we never reach the termination of all these

threads (and any threads that may get added).Because our set of fairly scheduled threads is empty

only when all the threads that were added to the set terminated, if the search did not reach this

state, it must mean that our search terminated because all possible interleaving ended in a cycle (as

every node has to have one action from every unfinished fairly scheduled thread). It follows that

no matter the scheduling of the fairly scheduled threads we reach a cycle. Furthermore, no other

threads are guaranteed to intervene so this deadlock could happen.

Then, for the second direction, we must now see that if this path exists for every node we can

reach termination of the current threads. We do so by contradiction. Let us assume that we still

have a cycle. Then, let us take the set of all nodes/actions which we visit/take infinitely often in the

cycle. We know there is a path to exit from any of these nodes using only fairly scheduled threads,

take one such path from a node. Note that this path has to have a first action that is not taken in the

cycle eventually (else we would have reached this exit). Because this is the first new action in the

path, we know we must reach the state from which it can happen infinitely often. Thus, this action

must happen infinitely often, which is a contradiction as then our set of infinitely often visited

nodes/actions would be larger. It follows that we must eventually reach the termination of all these

nodes if there is such an exit (the only node with no outgoing edges). □

9.2 Forward Progress Execution Models
We present the LNT specification of the HSA, HSA+OBE, LOBE, unfair and fair progress models.

1 process HSA [Step: ExecutionStep, Terminate: Natural] is
2 var
3 tid: Nat, -- thread ID

4 axb: AxbInst, -- AXB instruction

5 F: NatSet, -- set of threads guaranteed fair execution

6 smallest: Nat, -- smallest active thread

7 done: NatSet -- set of terminated threads

8 in
9 smallest := 0; -- Initially, the smallest non -terminated thread id is 0.

10 F := {smallest };

11 done := {};

12

13 loop
14 select -- non -deterministic choice operator

15 Step(?tid, ?axb, F) -- some thread executes a step

16 []
17 Terminate (?tid); -- thread tid has terminated its own program

18 done := insert(tid, done); -- remember this thread as terminated

19

20 while member(smallest, done) loop -- get next smallest non -terminated thread id

21 smallest := smallest + 1

22 end loop;
23 F := {smallest} -- F contains the smallest, non -terminated thread id

24

25 end select
26 end loop
27 end var
28 end process

Fig. 13. Specification of the HSA progress model in the LNT formal language.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 131. Publication date: October 2021.

Specifying and Testing GPU Workgroup Progress Models 131:33

1 process HSA_OBE [Step: ExecutionStep, Terminate: Natural] is
2 var
3 tid: Nat, -- thread ID

4 axb: AxbInst, -- AXB instruction

5 F: NatSet, -- set of threads guaranteed fair execution

6 smallest: Nat, -- smallest active thread

7 done: NatSet -- set of terminated threads

8 in
9 smallest := 0; -- Initially, the smallest non -terminated thread id is 0.

10 F := {smallest };

11 done := {};

12

13 loop
14 select -- non -deterministic choice operator

15 Step(?tid, ?axb, F); -- thread tid executes a step

16 F := insert(tid, F) -- thread tid is now granted fair execution guarantee

17

18 []
19 Terminate (?tid); -- thread tid has terminated its own program

20 F := remove(tid, F); -- remove thread tid (if in F) from F

21 done := insert(tid, done) -- mark thread tid as done

22

23 while member(smallest, done) loop -- get next smallest non -terminated thread id

24 smallest := smallest + 1

25 end loop;
26 F := insert(smallest, F) -- make sure this thread id is fairly executed

27

28 end select
29 end loop
30 end var
31 end process

Fig. 14. Specification of the HSA+OBE (the intersection of both) progress model in the LNT formal language.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 131. Publication date: October 2021.

131:34 T. Sorensen, L. F. Salvador, H. Raval, H. Evrard, J. Wickerson, M. Martonosi, and A. F. Donaldson

1 process LOBE [Step: ExecutionStep, Terminate: Natural] is
2 var
3 tid: Nat, -- thread ID

4 axb: AxbInst, -- AXB instruction

5 F: NatSet, -- set of threads guaranteed fair execution

6 done: NatSet, -- set of terminated threads

7 t: Nat -- iteration variable

8 in
9 F := {}; -- At the beginning, no thread is guaranteed fair execution

10 done := {};

11

12 loop
13 select -- non -deterministic choice operator

14 Step(?tid, ?axb, F); -- thread tid executes a step

15 -- All non -terminated threads with an id lower or equal to tid are

16 -- guaranteed fair execution

17 for t := 0 while t <= tid by t := t + 1 loop
18 if not(member(t, done)) then

19 F := insert(t, F)

20 end if

21 end loop
22 []
23 Terminate (?tid); -- thread tid has terminated its own program

24 F := remove(tid, F); -- remove thread tid (if in F) from F

25 done := insert(tid, done) -- mark thread tid as terminated

26 end select
27 end loop
28 end var
29 end process

Fig. 15. Specification of the LOBE progress model in the LNT formal language.

1 process UNFAIR [Step: ExecutionStep, Terminate: Natural] is
2 var
3 tid: Nat, -- thread ID

4 axb: AxbInst, -- AXB instruction

5 F: NatSet -- set of threads guaranteed fair execution

6 in
7 F := {}; -- No thread is ever guaranteed fair execution

8 loop
9 select -- non -deterministic choice operator

10 Step(?tid, ?axb, F)

11 []
12 Terminate (?tid)

13 end select
14 end loop
15 end var
16 end process

Fig. 16. Specification of the unfair progress model in the LNT formal language.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 131. Publication date: October 2021.

Specifying and Testing GPU Workgroup Progress Models 131:35

1 process FAIR [Step: ExecutionStep, Terminate: Natural] (max_tid: Nat) is
2 var
3 tid: Nat, -- thread ID

4 axb: AxbInst, -- AXB instruction

5 F: NatSet -- set of threads guaranteed fair execution

6 in
7 -- Each thread is guaranteed fair execution, until it terminates

8 F := {};

9 for tid := 0 while tid < max_tid by tid := tid+1 loop
10 F := insert(tid, F)

11 end loop;
12

13 loop
14 select -- non -deterministic choice operator

15 Step(?tid, ?axb, F); -- thread tid makes a step

16 []
17 Terminate (?tid); -- thread tid has terminated its own program

18 F := remove(tid, F) -- remove thread tid (if in F) from F

19 end select
20 end loop
21 end var
22 end process

Fig. 17. Specification of the fair progress model in the LNT formal language. This one is a bit special as it

needs to know the total amount of threads, in order to initialize 𝐹 with all thread ids at the beginning.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 131. Publication date: October 2021.

	Abstract
	1 Introduction
	2 Running Example and Background
	2.1 GPGPU programming frameworks
	2.2 Fairness Properties and Semi-fair Progress Models
	2.3 Progress Litmus Test Examples
	2.4 A Motivating Applications Use-case

	3 Programming Language
	4 Executable Semantics of Progress Models
	4.1 Progress Model Specification
	4.2 Checking Whether a Test Passes or Fails Under a Progress Model

	5 Automatic Synthesis of Progress Litmus Tests
	5.1 LTS Constraints for Synthesis
	5.2 LTS Minimality Constraints
	5.3 Synthesis Example
	5.4 Synthesis Results
	5.5 Qualitative Analysis of Synthesized Tests
	5.6 Running Tests on Formal Models

	6 Empirical Testing
	6.1 Heuristics for Provoking Interesting Behaviours
	6.2 Methodology
	6.3 Empirical Testing Results for Inter-workgroup Schedulers
	6.4 Limitations and Additional Results

	7 Related work
	8 Conclusion
	References
	9 Appendix
	9.1 Proofs of non-termination detection conditions
	9.2 Forward Progress Execution Models

