
DFTCalc
Calculating DFTs using Lotos NT

Author: Van der Berg, F.I.
Date: May 25, 2012

University of Twente

CONTENTS CONTENTS

Contents

1 Introduction 1

1.1 Coral . 1

1.2 Lotos NT . 1

2 DFTCalc 2

2.1 dft2lntc . 2

2.2 dftcalc . 2

2.3 dfttest . 3

2.4 Package . 3

3 Results 4

4 Conclusions 4

A Appendix A 6

A.1 dft2lntc . 6

A.2 dftcalc . 6

A.3 dfttest . 7

i

1 INTRODUCTION

1 Introduction

And
RAID

BE
Disk 1

BE
Disk 2

Figure 1: RAID1 array1 as
an And node and Basic
Event nodes

During the design of a mission-critical component-based system one
has to take failures into account. One way to model the failure of a
component-based system is by using Dynamic Fault Trees (DFT). A
DFT describes the dependencies (edges) the components (nodes) have
on each other on multiple levels. Each leaf-node describes a basic com-
ponent or event and other nodes describe part of the system comprised
of one or more basic components or events. Which this knowledge, the
failure rate of the whole system can be calculated.

Figure 1 (Galileo format in Figure 2) illustrates a small example of a
2-disk RAID1 array1 modeled as a DFT. The basic components are the
two disks. The RAID fails when both disks fail, hence the And node.
The And node describes the RAID part of the system. This example
could be expanded to two RAIDs, joined together with for example
an Or node. The Or node would specify that the whole system fails if
either or both of the RAIDs fail.

1.1 Coral

raid.dft
toplevel "RAID";
"RAID" and "Disk1" "Disk2";
"Disk1" lambda=0.01;
"Disk2" lambda=0.01;

Figure 2: The RAID1 DFT
in Galileo formatBoudali, Crouzen and Stoelinga show how the failure probability of a

DFT can be calculated using I/O-IMCs. [BCS07] Their approach con-
sists of three stages. The first stage translates each node in the DFT to
the process algebra Lotos (Language Of Temporal Ordering Specifica-
tion) [BB87], which is then compiled to an IMC . In stage two these FIXME

io imc or
imc?

FIXME
io imc or
imc?

separate IMCs are then parallel composed together into one IMC. In
the final stage the failure probability of the DFT is calculated using
this IMC. They implemented their approach in the tool Coral.

1.2 Lotos NT
dft2lntc

DFT

EXPDFT SVLDFT

CADP

IMCDFT

IMCC

imc2ctmdp

CTMDPDFT
Mission
Times

mrmc

P (fail)

Figure 3: The dftcalc
toolchain, means new

Coral translates nodes into the process algebra Lotos. While this lan-
guage is very expressive, it is not the most readable language. This
is one of the rationale behind Lotos NT: to make the language more
readable. [Sig08]

Lotos NT defines a clean syntax in which modules can be defined.
These modules may be thought of as being similar to Java packages:
they group functionality and modules may depend on other modules.
In these modules, processes, function, variables and so on may be de-
fined. Lotos NT is used to describe

EXP and SVL are two other languages that are used. EXP is a language
to denote a network of processes. It is used to describe how the indi-
vidual components of the DFT can be glued together to represent the
actual DFT. The Script Verification Language (SVL) is used to describe
and execute the tasks of generating individual components and the
glueing together.

The rest of this paper will be layed out as follows. In section 2 we
will introduce the new DFTCalc tools and how they fit in the existing
tool chains. In section 3 the tool is compared to existing tools and in
section 4 we conclude this paper.

1Redundant Array of Independent Disks, level 1 (mirroring)

1

2 DFTCALC

2 DFTCalc

DFTCalc serves as the successor to Coral. It shares the same goal as Coral: to calculate the failure
probability of a DFT. The main differences between the two are that 1) DFTCalc uses the newer
Lotos NT to describe the building blocks; 2) DFTCalc generates EXP to glue the building blocks
together; 3) DFTCalc is built to support future dynamic additions such as repair rates.

The tool is separated in three distinct tools:

1. dft2lntc handles the generation and conversion of individual nodes in the DFT to IMCs. It
also generates the script that glues the components together to form the IMC representing
the specified DFT. It does not create this IMC however.

2. dftcalc handles the glueing of individual nodes (IMCs) together to form the IMC that repre-
sents the DFT, and handles the calculation of the resulting IMC. All tasks are out sourced to
other tools, including dft2lntc. See Figure 3 for an overfiew of the dftcalc tool.

3. dfttest provides a test suite handler for DFTs with multiple backends (e.g. coral, dftcalc) and
keeps track of all statistics like resources (time, memory) and resulting faulure rate.

2.1 dft2lntc

The tool dft2lntc handles the generation and conversion of individual nodes in the DFT to IMCs.
As input, one specifies the DFT of which the individual nodes are to be transformed into Lotos
NT and IMC components. It then checks a global archive (e.g. in /share/dft2lnt) for the IMC
representing this node. If it is not there, it will generate this and put it in the global archive. This
avoid recalculating each component every time any DFT is calculated.

The tool also generates the script that glues the components together to form the IMC representing
the specified DFT. This is done by generating an EXP script that specifies how each component
should communicate with the other components. Smart composition will determine the optimal FIXME

optimal?
FIXME
optimal?order of composition and apply it. The composition is performed when the generated SVL script

is called. The SVL script is called by dftcalc. Figure 4 shows the generated EXP and SVL files for
the RAID example.

2.2 dftcalc

The tool dftcalc performs the actual calculation of the failure probability of the fault tree. It first
calls dft2ltnc to make sure individual components are available as their IMC counterpart and to
generate the SVL glue script. It then calls this SVL glue script to create the IMC representing the
DFT. This IMC is converted to a CTMDP (Continuous time Markov decision process), which is fed
to mrmc together with the mission time. The output of mrmc is the failure probability.

Figure 4 Generated raid.exp and raid.svl by dft2lntc
raid.exp

1 (* Number of rules: 6*)
2 hide
3 a_and0_be1,
4 a_and0_be2,
5 f_be1,
6 f_be2
7 in
8 label par
9 (* and0 be1 be2 *)

10 "ACTIVATE !0 !FALSE" * _ * _ -> ACTIVATE,
11 "ACTIVATE !1 !TRUE" * "ACTIVATE !0 !FALSE" * _ -> a_and0_be1,
12 "ACTIVATE !2 !TRUE" * _ * "ACTIVATE !0 !FALSE" -> a_and0_be2,
13 "FAIL !0" * _ * _ -> FAIL,
14 "FAIL !1" * "FAIL !0" * _ -> f_be1,
15 "FAIL !2" * _ * "FAIL !0" -> f_be2
16 in
17 "and_p1_c2.bcg"
18 ||
19 total rename "RATE_FAIL !1 !2" -> "rate 0.01" in "be_p1_cold.bcg" end rename
20 ||
21 total rename "RATE_FAIL !1 !2" -> "rate 0.01" in "be_p1_cold.bcg" end rename
22 end par
23 end hide

raid.svl
"raid.bcg" = smart stochastic branching

reduction of "raid.exp"

how to generate:
$ dft2lntc raid.dft -oraid

2

2.3 dfttest 2 DFTCALC

raid.result
raid.dft:
dft: raid.dft
failprob: 9.9e-05

Figure 5: Result of dftcalc
in YAML5 format, con-
taining one DFT calcula-
tion

The entire process is logged and statistics are kept. In the event of an
error in any of the links in the tool chain, the error log is presented.
The resulting output is written in YAML5 format to a specified file or
to stdout. Figure 5 shows an example output in YAML format.

2.3 dfttest

The tool dfttest provides a test suite handler for DFTs with multiple
backends (e.g. coral, dftcalc). It gives the ability to execute one or
more DFTs specified in the test suite. All data of every execution is
kept in the test suite file. Data includes failure probability, statistics
about the generated IMC (states, transitions), and resource statistics
(time, memory). Tests in the test suite that have been done are not
executed again but their result is cached. Running these tests can be
forced if desired. Forcing the tool to only output cached results is also
supported. Figure 7 shows an example output when dfttest is run with
raid.test in Figure 6 as input.

raid.test
- general:

fullname: RAID1 Array, two disks
dft: /opt/dftroot/raid.dft
timeunits: 1
verified:

manual:
failprob: 9.9e-05

results:
- 2012-03-17 20:35:16:

coral:
stats:
time_monraw: 15.4715

failprob: 9.9e-05
bcginfo:
states: 6
transitions: 11

dftcalc:
stats:
time_monraw: 3.93587

failprob: 9.9e-05
bcginfo:
states: 5
transitions: 8

Figure 6: Test suite in
YAML format, containing
one test

The timing of the executions are done by using hardware timers.
This avoids inaccuracies caused by programs altering the sys-
tem clock, such as NTP. On Unix-like OSes this is achieved
by using CLOCK_MONOTONIC_RAW and on Windows by using
QueryPerformanceCounter. Memory statistics are given by SVL
when called to generate the IMC representing the DFT.

2.4 Package

The tool set can be downloaded from its Git1 repository2. Bug reports, feature requests, comments
or general praises can be proclaimed on the project management site3.

Building the tool suite is a matter of running cmake with your desired generator (only makefiles
were tested) and then executing the build process. Under Windows, MSYS4 can be used to build
makefiles. The package includes the source of all library dependencies (YAML5) and should be
buildable provided the following tools are present on the system:

• CMake, v2.8+, tested with v2.8.7
• GNU Make, tested with v3.82
• GCC, v4.6+, tested with v4.6.{1,2,3}
• GNU Bison, tested with 2.5.35
• Flex, tested with v2.5

Note that to actually perform calculations you need mrmc, Coral and CADP. MISSING
download
location

MISSING
download
location

MISSING
redmine
location

MISSING
redmine
location

1Git is a free & open source, distributed version control system, http://git-scm.com/
2DFTCalc’s Git repository, http://...
3DFTCalc’s project management site, http://...
4MSYS is a collection of GNU utilities, it is intended to supplement MinGW, http://www.mingw.org/wiki/MSYS
5YAML Ain’t Markup Language, http://yaml.org/

Figure 7 Running dfttest on raid.test
raid.exp

1 $ dfttest raid
2 :: Test RAID1 Array, two disks
3 Iteration | Time (s) | Memory (MiB) | P(fail) | States | Transitions | Speedup
4 manual | - | - | 9.9e-05 | - | - | -
5 o coral | 15.428 | 13.477 | 9.9e-05 | 6 | 11 | 1
6 o dftcalc | 4.210 | 16.242 | 9.9e-05 | 5 | 8 | 3.66456
7 Test OK

3

http://git-scm.com/
http://...
http://...
http://www.mingw.org/wiki/MSYS
http://yaml.org/

4 CONCLUSIONS

3 Results

Figure 8 shows results for the same dynamic fault trees used in [BNS09] and [BCS07]. They are in-
cluded in the git repository. The DFT ftpp_weibull was not tested because, like Coral, DFTCalc
does not support the Weibull distribution.

The tests were performed in a virtual machine, running on two cores of an AMD Phenom(tm) II X6
1090T Processor. The maximum amount of memory available was 2GB.

The results show that DFTCalc is a significant improvement performance-wise over Coral. It is
roughly twice as fast. The memory difference could not be measured as Coral does not seem to
lend itself for this. From manual monitoring the processes it seemed that DFTCalc peaks at about
twice as much memory as Coral.

The reason for this speed up can be attributed to a few things. First of all the caching of IMCs of
individual nodes speeds up the process if the IMC for a node has already been built earlier. Sec-
ondly DFTCalc directly generates an EXP file, without first generating an SVL file which generates
the EXP file. This probably yields only a minor increase. Lastly a major difference is the use of
smart composition. This optimizes the composition of the individual IMCs to the complete IMC
representing the DFT.

Figure 8 Results
Iteration Time (s) Memorypeak (MiB) P(fail) States Transitions Speedup

cps coral 102.988 15.027 0.0013567 39 108 1
dftcalc 44.571 13.348 0.0013567 39 108 2.31066

cas coral 161.902 17.676 0.6579 16 50 1
dftcalc 57.809 13.348 0.6579 30 106 2.80064

mdcs coral 134.829 16.449 0.0666448 22 69 1
dftcalc 51.393 16.242 0.0666448 28 86 2.62347

ftpp_standard coral 613.531 40.461 0.0192186 142 923 1
dftcalc 200.355 220.309 0.0192186 72 386 3.06222

ftpp_large coral 881.926 54.414 0.0030616 2167 27438 1
dftcalc 505.156 490.953 0.0030616 400 3369 1.74585

ftpp_complex coral - - - - - -
dftcalc 1527.950 598.441 0.0213576 20750 339718 -

4 Conclusions

We have introduced a new tool: DFTCalc. This tool is meant as the successor to Coral and we
have shown that the new tool is about twice as fast as Coral. By using Lotos NT as the language to
model individual nodes we obtain clean code, without sacrificing in expressiveness.

The current implementations of dft2lntc and dftcalc are easily adaptable for future extensions, such
as repair rates. The code for the individual nodes was implemented with exactly this in mind. The
tool itself is implemented in well-documented C++, providing both extensibility and optimized
binaries. The test suite manager dfttest provides an easy way to manage test specifications and test
results.

The next step for this tool is to add repair rates to dft2lntc, by extending the implementation of the
individual nodes and the EXP glue-code. For dftcalc the next step is to add more options for the
user to specify what is to be calculated, e.g. averages and evidence1 (specifying that certain Basic
Events fail right at the start). The test suite manager dfttest can be improved by parameterizing
the test specifications and specifying the concrete values in concrete results. For example a list of
mission times could be specified and for each mission time a different concrete result is calculated.

The tool can be freely downloaded and executed from []. You also need mrmc and Coral binaries MISSING
download
location

MISSING
download
location

as well as a licensed installation of CADP.

1In the most recent implementation evidence is implemented

4

REFERENCES REFERENCES

References

[BB87] Bolognesi, T. and E. Brinksma
Introduction to the ISO specification language LOTOS. Comput. Netw. ISDN Syst.,
14(1):25–59, March 1987.

[BCS07] Boudali, H., P. Crouzen, and M. I. A. Stoelinga
A compositional semantics for Dynamic Fault Trees in terms of Interactive Markov
Chains. In 5th International Symposium on Automated Technology for Verification and Analysis
(ATVA’07), Tokyo, Japan, volume 4762 of Lecture Notes in Computer Science, pages 441–456,
Berlin/Heidelberg, October 2007. Springer.

[BNS09] Boudali, H., A. P. Nijmeijer, and M. Stoelinga
DFTSim: a simulation tool for extended dynamic fault trees. In SpringSim, 2009.

[Sig08] Sighireanu, M.
LOTOS NT User’s Manual (Version 2.6). http://vasy.inria.fr/traian/
manual.html. INRIA projet VASY, February 2008.

5

http://vasy.inria.fr/traian/manual.html
http://vasy.inria.fr/traian/manual.html

A APPENDIX A

A Appendix A

Help output of the three tools.

A.1 dft2lntc

:: dft2lntc [INPUTFILE.dft] [options]
Compiles the inputfile to EXP and SVL script. If no inputfile was specified,
stdin is used. If no outputfile was specified, ’a.svl’ and ’a.exp’ are used.

:: General Options:
-h, --help Show this help.
--color Use colored messages.
--no-color Do not use colored messages.
--version Print version info and quit.

:: Debug Options:
-a FILE Output AST to file. ’-’ for stdout.
-t FILE Output DFT to file. ’-’ for stdout.
--verbose=x Set verbosity to x, -1 <= x <= 5.
-v, --verbose Increase verbosity. Up to 5 levels.
-q Decrease verbosity.

:: Output Options:
-o FILE Output EXP to <FILE>.exp and SVL to <FILE>.svl.
-x FILE Output EXP to file. ’-’ for stdout. Overrules -o.
-s FILE Output SVL to file. ’-’ for stdout. Overrules -o.
-b FILE Output of SVL to this BCG file. Overrules -o.
-e evidence Comma separated list of BE names that fail at startup.
--warn-code Return non-zero if there are one or more warnings.

A.2 dftcalc

:: dftcalc [INPUTFILE.dft] [options]
Calculates the failure probability for the specified DFT file, given the
specified time constraints. Result is written to the specified output file.
Check dftcalc --help=output for more details regarding the output.

:: General Options:
-h, --help Show this help.
--color Use colored messages.
--no-color Do not use colored messages.
--version Print version info and quit.
-O<s>=<v> Sets settings <s> to value <v>. (see --help=settings)

:: Debug Options:
--verbose=x Set verbosity to x, -1 <= x <= 5.
-v, --verbose Increase verbosity. Up to 5 levels.
-q Decrease verbosity.

:: Output Options:
-r FILE Output result to this file. (see --help=output)
-p Print result to stdout.
-t x Calculate P(DFT fails in x time units), default is 1
-m <command> Raw MRMC Calculation command. Overrules -t.
-C DIR Temporary output files will be in this directory

:: Settings
Use the format -Ok=v,k=v,k=v or specify multiple -O

:: Output
The output file specified with -r uses YAML syntax.
The top node is a map, containing one element, a mapping containing various
information regarding the DFT. E.g. it looks like this:
b.dft:
dft: b.dft
failprob: 0.3934693
stats:
time_user: 0.54
time_system: 0.21
time_elapsed: 1.8
mem_virtual: 13668
mem_resident: 1752

The MRMC Calculation command can be manually set using -m. The default is:
P{>1} [tt U[0,x] reach]

where x is the specified number of time units using -t, default is 1.

6

A.3 dfttest A APPENDIX A

A.3 dfttest

:: dfttest [options] [suite.test]
Calculates the failure probability for the DFT files in the specified test
file. Result is written to stdout and saved in the test file.
Check dfttest --help=input for more details regarding the suite file format.
Check dfttest --help=output for more details regarding the output.

If the specified suite file does not exist, it will be created. If the suite
file is not writable, you will be asked to specify a suite file to save to.
If that suite file already exists, the suites will be merged in such a way
that nothing is overwritten.

:: Common usage:
dfttest <suite.test> -t <tree.dft> Run only <tree.dft>, adds <tree.dft>
dfttest <suite.test> -ct <tree.dft> Adds <tree.dft>, no test is performed

:: General Options:
-h, --help Show this help.
--help=x Show help about topic x.
--color Use colored messages.
--no-color Do not use colored messages.
--version Print version info and quit.
-O<s>=<v> Sets settings <s> to value <v>. (see --help=settings)

:: Debug Options:
--verbose=x Set verbosity to x, -1 <= x <= 5.
-v, --verbose Increase verbosity. Up to 5 levels.
-q Decrease verbosity.

:: Test Options:
-c Do not run tests, only show cached results.
-f Force running all tests, regardless of cached results
-t DFTFILE Add/Limit testing to this DFT. Multiple allowed.
-L Output is the content of a LaTeX tabular. Implies -c.
-C Output is in CSV. Implies -c.

:: Help topics:
input Displays the input format of a suite file
output Shows some considerations about the output (timing)
To view topics: dfttest --help=<topic>

:: Output
> Timing
Time measurements are done using platform specific implementations.
On Linux, CLOCK_MONOTONIC_RAW is used and on Windows the API call
QueryPerformanceCounter is used.
Both implementations aim to assure there is no influence from other
programs such as NTP. The measurement is as accurate as the clock of
the hardware is.

> Memory
Memory measurements are done by SVL itself, using the program specified in
CADP_TIME environment variable.

> BCG Info
Information of the generated BCG, like states and transitions, is obtained
by calling bcg_info.

:: Suite Input
A test suite file is a file in YAML format. It contains a list of tests, where
each test is a map with settings. Supported keys in this map:
- <key> : <value>
- general : a map containing general information about the test:
- fullname : a descriptive name of the test
- longdesc : a longer description of the test
- uuid : a unique identifier for the test
- format : a unique identifier for the test

- dft : relative or absolute path to the DFT file
- timeunits: result will reflect P("dft fails within timeunits")
- verified : a map containing verified results as value and motives as key
- results : a list of maps containing resultmaps

a resultmap’s key is the time the test was started
a resultmap’s value is again a map with the obtained results as
value and the origin of the results as key

A complete example:
- general:

fullname: Basic Event
uuid: 35896B7BE62877CD3255CA3E1579E976A2DDD9DDFEFC761A51075EBB97BD71A7
longdesc: ""
format: 1

results:
- 2012-02-29 17:36:11:

coral:
stats:

time_monraw: 5.78413
failprob: 0.3934693
bcginfo:

states: 4
transitions: 7

7

A.3 dfttest A APPENDIX A

dftcalc:
stats:

time_monraw: 3.15412
mem_virtual: 13668
mem_resident: 1752

failprob: 0.3934693
bcginfo:

states: 4
transitions: 6

verified:
manual:

stats:
{}

failprob: 0.3934693
bcginfo:
states: 0
transitions: 0

timeunits: 1
dft: /opt/dftroot/b.dft

:: Settings
Use the format -Ok=v,k=v,k=v or specify multiple -O

8

	Introduction
	Coral
	Lotos NT

	DFTCalc
	dft2lntc
	dftcalc
	dfttest
	Package

	Results
	Conclusions
	Appendix A
	dft2lntc
	dftcalc
	dfttest

