
Efficient Operational Semantics for EB3 for
Verification with CADP

Dimitris Vekris and Catalin Dima

LACL, Université Paris-Est
61 av. du Général de Gaulle

94400 Créteil, France
{dimitrios.vekris,dima}@u-pec.fr

Abstract. EB3 is a specification language tailored for information sys-
tems. The core of the EB3 language consists of process algebraic spec-
ifications describing the behaviour of the entity types in a system, and
attribute function definitions describing the entity attribute types. The
verification of EB3 specifications against temporal properties is of great
interest to users of EB3.
We give here an operational semantics for EB3 programs in which at-
tribute functions are computed during program evolution and their val-
ues are stored into program memory. By assuming that all entities have
finite domains, this gives a finitary operational semantics which can be
better handled by model-checking tools. We then demonstrate how this
new semantics facilitates the translation of EB3 specifications to LOTOS
NT (LNT for short) for verification with the use of the CADP toolbox.

Keywords: Information Systems, EB3, Process Algebras, Operational
Semantics, Bisimulation, Verification, Model Checking

1 Introduction

The EB3 [10] method is an event-based paradigm tailored for information sys-
tems (ISs). A typical EB3 specification defines entities, associations, and their
respective attributes. The process algebraic nature of EB3 permits the explicit
definition of intra-entity constraints. Yet its specificity against common state-
space specifications, such as the B method [1] and Z, lies in the use of attribute
functions, a special kind of recursive functions on the system trace, which com-
bined with guards, facilitate the definition of complex inter-entity constraints in-
volving the history of events. The use of attribute functions is claimed to simplify
system understanding, enhance code modularity and streamline maintenance.

In this paper, we present part of our work regarding the verification of EB3,
i.e. the detection of errors inherent in EB3 specifications. Specification errors in
EB3 can be detected with the aid of invariants also known as static properties or
temporal properties known as dynamic properties. From a state-based point of
view, an invariant describes a property on state variables that must be preserved
by each transition or event. A dynamic property relates several events. Tools such



as Atelier B [7] provide methodologies on how to define and prove invariants. In
[12], an automatic translation of EB3’s attribute functions with B is attempted.
Although the B Method [1] is suitable for specifying static properties, dynamic
properties are very difficult to express and verify in B. Hence, in our attempt
to verify dynamic properties of EB3 specifications we move our attention to
model-checking techniques.

The verification of EB3 specifications against temporal properties with the
use of model checking has been the subject of some work in the recent years.
[9] compares six model checkers for the verification of IS case studies. The spec-
ifications used in [9] derive from industrial case studies, but the prospect of a
uniform translation from EB3 program specifications is not studied. [6] summa-
rizes the fundamental difficulties for designing a compiler that would translate
a given EB3 specification to process algebra LOTOS NT (LNT for short) [5],
an approach that would make use of the verification suite CADP (Construction
and Analysis of Distributed Processes) [11] to verify properties against the source
system. In short, the majority of these works treat specific case studies drawn
from the information systems domain leading to ad-hoc verification translations,
but nonetheless lacking in generalization capability.

In the absence of model-checking tools for the verification of EB3 specifi-
cations, translating EB3 to LNT is a reasonable approach. LNT is a process
algebra specification that derived from LOTOS [4]. As a process algebra, it
shares many common features with EB3 and it is one of the input languages of
CADP, a toolbox with state-of-the-art verification features. CADP permits the
verification of system specifications against action-based temporal properties.

Translating EB3 specifications to LNT is not evident, because LNT does not
feature global variables. In addition, accesses to local variables is restricted in
parallel processes of the form “par proc1 || proc2 end par”, so that every vari-
able written in proc1 cannot be accessed in proc2. Although, EB3 programmers
cannot define global variables explicitly, EB3 permits the use of a single state
variable, the system trace, in predicates of guard statements. Attribute functions
can express the evolution of entity attributes in time, option which introduces
an indirect notion of state to the language. As a result, EB3 expressions of the
form “p ⇒ E” can be written, where p is a predicate that refers to the system
trace (the history of events) and E is a valid EB3 expression.

We propose a formal semantics for EB3 that treats attribute functions as
state variables (we call these variables attribute variables). This semantics will
serve as the basis for applying a simulation strategy of state variables in LNT.
Intuitively, coding attribute functions as part of the system state is beneficial
from a model-checking point of view as the new formalisation dispenses with
the system trace. Our main contribution is an operational semantics in which
attribute functions are computed during program evolution and stored into pro-
gram memory. We show that this operational semantics is bisimilar with the
original, trace-based operational semantics, in the sense that, for each EB3 spec-
ification, the transition system corresponding with its memory-based semantics
is bisimilar with the transition system corresponding with its trace-based se-

2



mantics. We then present how EB3 specifications can be translated to LNT for
verification with CADP through an intuitive example and give some conclusions
and lines for future work.

2 EB3

The EB3 method has been specially designed to specify the functional behaviour
of ISs. A standard EB3 specification comprises:

1. a class diagram representing entity types and associations for the IS being
specified;

2. a process algebra specification, denoted by main, describing the IS, i.e. the
valid traces of execution describing its behaviour;

3. a set of attribute function definitions, which are recursive functions on the
system trace; and

4. input/output rules, to specify outputs for input traces, or SQL used to spec-
ify queries on the business model

We limit the presentation to the process algebra and the set of attribute functions
used in the IS. By means of a simple case study, we report on the expressive
power of EB3 and namely the use of attribute functions to express complex
inter-process constraints. We then give three operational semantics for EB3.
The first, named Trace Semantics (SemT ), is the standard semantics defined in
[10]. The second, called Trace/Memory Semantics (SemT/M ), is the alternative
semantics, where attribute functions are computed during program evolution
and their values are stored into program memory. By removing the trace from
each state in SemT/M , we obtain the third semantics for EB3 specifications,
which we name Memory Semantics, SemM .
Case Study. In Fig.1, we give the functional requirements of a library man-
agement system and the corresponding EB3 specification. Function main is the
parallel interleaving between m instances of process book and p instances of pro-
cess member. Process book stands for a book acquisition followed by its eventual
discard. The attribute function borrower(T, bId), where T is the current trace,
returns the current borrower of book bId or ⊥ if the book is not lent, by looking
for events of the form Lend(mId, bId) or Return(bId) in the trace. In process
book, action Discard(bId) is thus guarded to guarantee that book bId cannot be
discarded if it is currently lent.

The use of attribute functions is not adherent to standard process algebra
practices as it may naively trigger the complete traversal and inspection of
the system trace. Alternatively, one may come up with simpler specifications
based solely on process algebra operations (without attribute functions) when
the functional requirements imply loose interdependence between entities and
associations. For instance, if all books are acquired by the library before any
other event occurs and are eventually discarded (given that there are no more
demands), main’s code can be modified in the following manner:

main = ( ||| bId : BID : Acquire(bId) ). ( ||| mId : MID : member(mId)∗ ).
( ||| bId : BID : Discard(bId) )

3



1. A book can be acquired by the library. It can be discarded, but only if it has not been lent.
2. An individual must join the library in order to borrow a book.
3. A member can relinquish library membership only when all his loans have been returned.
4. A member cannot borrow more than the loan limit defined at the system level for all users.

BID = {b1, . . . , bm}, MID = {m1, . . . ,mp}
main = ( ||| bId : BID : book(bId) ) ||| ( ||| mId : MID : member(mId)∗ )

book(bId : BID) = Acquire(bId). borrower(T, bId) = ⊥ ⇒ Discard(bId)

member(mId : MID) = Register(mId). ( ||| bId : BID : loan(mId, bId)∗ ). Unregister(mId)

loan(mId : MID, bId : BID) = borrower(T, bId) = ⊥ ∧ nbLoans(T,mId) < NbLoans

⇒ Lend(bId, mId). Return(bId)

nbLoans(T : tr, mId: MID): Nat⊥= borrower(T : tr, bId: BID): MID =
match T with match T with

[ ] → ⊥ [ ] → ⊥
| T ′. Lend(bId,mId) → nbLoans(T ′,mId) + 1 | T ′. Lend(bId,mId) → mId
| T ′. Register(mId) → 0 | T ′. Return(bId) → ⊥
| T ′. Unregister(mId) → ⊥ | → borrower(T ′, bId)
| T ′. Return(bId) ∧ mId = borrower(T, bId)
→ nbLoans(T ′,mId)− 1
| → nbLoans(T ′,mId)

Fig. 1. EB3 Specification and Attribute Function Definitions

Note that the functional requirements are not contradicted, though the system’s
behaviour changes dramatically. Programming naturally in a purely process-
algebraic style without attribute functions in EB3 may not always be obvious.
In some cases, ordering constraints involving several entities are quite difficult to
express without guards and lead to less readable specifications than equivalent
guard-oriented solutions in EB3 style. For instance, writing the specification
without the use of the guard:

borrower(T, bId) = ⊥ ∧ nbLoans(T,mId) < NbLoans ,

that illustrates the conditions under which a Lend can occur (notably when the
book is available and nbLoans is less than the fixed bound NbLoans), is not
trivial.
EB3 Syntax and SemT. We proceed with the formal definition of EB3. We
define a set of attribute function names AtFct={f1, . . . , fn} and a set of process
function names PFct = {P1, . . . , Pm}. Let ρ∈Act stand for an action of either
form α(p1 : T1, . . . , pn : Tn), where α ∈ lab 1 is the label of the action and
pi, i ∈ 1..n are elements of type Ti, or λ, which stands for the internal action. To
simplify the presentation, we assume that every attribute functions fi have the
same formal parameters x. An EB3 specification is a set of attribute function
definitions, AtF and a set of process definitions, ListPE.

The trace semantics of EB3, SemT [10], are given in Fig.2 as a set of rules
named RT−1 to RT−11. Each state is represented as a tuple (E, T ), where E
stands for an EB3 expression and T for the current trace. An action ρ is the
simplest EB3 process, whose semantics are given by rules RT−1, 1′. Note that λ
is not visible in the EB3 execution trace, i.e., it does not impact the definition of
attribute functions. The symbol

√
denotes successful execution. EB3 processes

1 we assume lab={α1, . . . , αq}

4



EB3 ::= AttrF ; ListPE

ListPE ::= Pl(xl) = E Pl(xl) = E ; ListPE, l ∈ 1..m

AtF ::= AtFDef AtFDef ; AtF

AtFDef ::= fi(T, x) =


exp0i if T = [ ]
q∨
j=1

mj∨
k=1

hd(T ) = αj(xj) ∧ condj,ki ⇒ exp
j,k
i otherwise

, i ∈ 1..n

E ::=
√

λ α(v) E.E E|E E∗ E|[∆]|E |x :V :E |[∆]|x :V :E GE ⇒ E P (t)

RT−1 :
(ρ, T )

ρ−→ (
√
, T ·ρ)

ρ 6= λ RT−1′ :
(λ, T )

λ−→ (
√
, T )

RT−2 :
(E1, T )

ρ−→ (E′1, T
′)

(E1.E2, T )
ρ−→ (E′1.E2, T ′)

RT−3 :
(E, T )

ρ−→ (E′, T ′)

(
√
.E, T )

ρ−→ (E′, T ′)

RT−4 :
(E1, T )

ρ−→ (E′1, T
′)

(E1|E2, T )
ρ−→ (E′1, T

′)
RT−5 :

(E∗, T )
λ−→ (
√
, T )

RT−6 :
(E, T )

ρ−→ (E′, T ′)

(E∗, T )
ρ−→ (E′.E∗, T ′)

RT−7 :
(
√
|[∆]|

√
, T )

λ−→
√
, T )

RT−8 :
(E1, T )

ρ−→ (E′1, T
′), (E2, T )

ρ−→ (E′2, T
′)

(E1|[∆]|E2, T )
ρ−→ (E′1|[∆]|E′2, T ′)

in(ρ,∆)

RT−9 :
(E1, T )

ρ−→ (E′1, T
′)

(E1|[∆]|E2, T )
ρ−→ (E′1|[∆]|E2, T ′)

¬in(ρ,∆)

RT−10 :
(E, T )

ρ−→ (E′, T ′)

(GE ⇒ E, T )
ρ−→ (E′, T ′)

‖GE‖

RT−11 :
(E[x := t], T )

ρ−→ (E′, T ′)

(P (t), T )
ρ−→ (E′, T ′)

P (x) = E ∈ ListPE

Fig. 2. EB3 Syntax and SemT

can be combined with classical process algebra operators such as the sequence
(RT −2, 3), the choice (RT −4) and the Kleene Closure (RT −5, 6) operators.
Rules (RT −7, 8, 9) refer to the parallel composition E1|[∆]|E2 of E1, E2 with
synchronization on ∆ ⊆ lab. The condition in(ρ,∆) is true, iff the label of ρ
belongs to ∆. The symmetric rules for choice and parallel composition have been
omitted. Expression E1|||E2 is equivalent to E1|[∅]|E2 and E1||E2 to E1|[lab]|E2.

In RT−10, the guarded expression process GE⇒E can execute E if the pred-
icate GE holds. GE contains calls to attribute functions, i.e. functions defined
on the system trace. Concretely, the truth value of GE depends on the executed
actions. Quantification is permitted for choice and parallel composition. If V is
a set of attributes {t1, . . . , tn}, |x :V :E and |[∆]|x :V :E stand respectively for
E[x := t1]| . . . |E[x := tn] and E[x := t1]|[∆]| . . . |[∆]|E[x := tn], where E[x := t] de-

5



notes the replacement of all occurrences of x by t. For instance, ||x :{1, 2, 3} :a(x)
stands for a(1)||a(2)||a(3). By convention,|x :∅ :E = |[∆]|x :∅ :E=

√
.

We stipulate that attribute functions are defined as in AtFDef 2 in Fig.2,
where expj,ki are expressions, condj,ki are boolean expressions, hd(T ) denotes the
last element of the trace, and tl(T ) denotes the trace without its last element.
Expressions can be constructed from objects and operations of user-defined do-
mains, such as integers, booleans and more complex domains that we do not
give formally. We also assume that for each 1≤ i≤n, every calls to an attribute
function fj occurring in expj,ki or condj,ki are parameterized by T if l ≤ i or
by tl(T ) if l > i. Such an ordering can be constructed if the EB3 specification
does not contain circular dependencies between function calls, which would lead
to infinite attribute function evaluation. This restriction on AtFct is satisfied
in Fig.1 as both nbLoans and borrower contain calls to nbLoans and borrower
parameterized on tl(T ). Also, nbLoans makes call to borrower parameterized on
T . Hence, f1 =borrower and f2 =nbLoans.
SemT/M. SemT/M is given in Fig.3 as a set of rules named TT/M−1 to TT/M−11.
Each state is represented as a tuple (E, T,M). Mi(x) is the variable that keeps
the current valuation for attribute function fi with parameter vector x. Mi

refers to attribute function fi. Given that the EB3 specification is valid, there
is at least one condj,ki that is evaluated true on every run. The event ρj to

occur “chooses” the corresponding condj,ki non-deterministically (in the sense

that there may be many k that make condj,ki evaluate to true). Function next
updates Mi by making use of Ml for l≥ i and the freshly computed next(Ml)(ρj)
for l<i. GE contains calls to attribute functions parameterized on T only. The
classic intepretations for Peano arithmetics, set theory and boolean logic suffice
to evaluate them. In (TT/M−10), GE[fi ←Mi] denotes replacing all calls to fi
in GE by Mi.
SemM. SemM

3 derives from SemT/M by simple elimination of T from each
tuple (E, T,M) in rules TT/M−1 upto TT/M−11. Intuitively, this means that
the information on the history of executions is kept in M , thus rendering the
presence of trace T redundant.
Case Study Revisited. We show how the EB3 specification above is eval-
uated w.r.t. SemT and SemM . Provided that BID={b1, b2}, MID={m1,m2},
we take state variables M=(bor[bId1], bor[bId2], nbL[mId1], nbL[mId2]), where
bor stands for borrower and nbL for nbLoans, respectively. More formally, if
f(T, a1 : T1, . . . , ar : Tr) is an attribute function, we construct |T1| × . . . × |Tr|
state variables, where |Ti|, i ∈ 1..r stands for Ti’s cardinality. Intuitively, coding
attribute functions as part of the system state is beneficial from a model-checking
point of view as it avoids keeping (potentially huge) trace in memory.

We set NbLoans=2. Fig.4 shows how main is modified for the valid trace:
TD =Lend(bId1,mId1).Reg(mId2).Reg(mId1).Acq(bId2).Acq(bId1) 4.

2 this notation is different from the standard pattern-matching notation for attribute
functions [10], but still more compact

3 SemM can be found in the appendix for referee’s eyes only
4 Acq stands for Acquire and Reg for Register, respectively

6



M0
i (x) = ‖exp0i (x)‖

next(Mi)(ρj)(x) = ‖expj,ki (x)[fl ← if l < i then next(Ml)(ρj) else Ml]‖,
if ‖condj,ki (x)[fl ← if l < i then next(Ml) else Ml]‖, i ∈ 1..n 1, k ∈ 1..mj

TT/M−1 :
ρ 6= λ

(ρ, T,M)
ρ−→ (
√
, T ·ρ, next(M)(ρ))

TT/M−1′ :
(λ, T,M)

λ−→ (
√
, T,M)

TT/M−2 :
(E1, T,M)

ρ−→ (E′1, T
′,M ′)

(E1.E2, T,M)
ρ−→ (E′1.E2, T ′,M ′)

TT/M−3 :
(E, T,M)

ρ−→ (E′, T ′,M ′)

(
√
.E, T,M)

ρ−→ (E′, T ′,M ′)

TT/M−4 :
(E1, T,M)

ρ−→ (E′1, T
′,M ′)

(E1|E2, T,M)
ρ−→ (E′1, T

′,M ′)
TT/M−5 :

(E∗, T,M)
λ−→ (
√
, T,M)

TT/M−6 :
(E, T,M)

ρ−→ (E′, T ′,M ′)

(E∗, T,M)
ρ−→ (E′.E∗, T ′,M ′)

TT/M−7 :
(
√
|[∆]|
√
, T,M)

λ−→
√
, T,M)

TT/M−8 :
(E1, T,M)

ρ−→ (E′1, T
′,M ′), (E2, T,M)

ρ−→ (E′2, T
′,M ′)

(E1|[∆]|E2, T,M)
ρ−→ (E′1|[∆]|E′2, T ′,M ′)

in(ρ,∆)

TT/M−9 :
(E1, T,M)

ρ−→ (E′1, T
′,M ′)

(E1|[∆]|E2, T,M)
ρ−→ (E′1|[∆]|E2, T ′,M ′)

¬in(ρ,∆)

TT/M−10 :
(E, T,M)

ρ−→ (E′, T ′,M ′)

(GE ⇒ E, T,M)
ρ−→ (E′, T ′,M ′)

‖GE[fi ←Mi]‖

TT/M−11 :
(E[x := t], T,M)

ρ−→ (E′, T ′,M ′)

(P (t), T,M)
ρ−→ (E′, T ′,M ′)

P (x) = E ∈ ListPE

Fig. 3. SemT/M

The intermediate states A, B, C and D for SemT and SemM are given
in Fig. 5. The first column corresponding to SemT keeps track of the system
trace, whereas SemM gives a finite state system since the domains of its at-
tribute functions are finite and bounded. All variables are equal to ⊥ 5 for
T = [ ]. Focussing on transition C → D, in order to check borrower(T, bId1) =
⊥∧nbLoans(T,mId1) < 2, SemT evaluates borrower(T, bId1) and nbLoans(T,
mId1) by traversing the trace and applying their corresponding attribute func-
tion formulas. On the contrary, SemM evaluates M based solely on the current
memory and the event to occur i.e. Lend(bId1,mId1). We get borD[bId1] =
next(borC [bId1])(Lend(bId1,mId1)) = mId1 6, borD[bId2] = borC [bId2] = ⊥,

5 see borrower’s and nbLoans’s script for T = [ ] in Fig.2
6 see borrower’s script for T = T ′.Lend(bId,mId) in Fig.2

7



main (A)

Acq(bId2).Acq(bId1)−−−−−−−−−−−−−−−→
borrower(T, bId1) = ⊥ → Discard(bId1) |||
borrower(T, bId2) = ⊥ → Discard(bId2) |||
( ||| mId : MID : member(mId)∗ ) (B)

Reg(mId2).Reg(mId1)−−−−−−−−−−−−−−−−→
borrower(T, bId1) = ⊥ → Discard(bId1) |||
borrower(T, bId2) = ⊥ → Discard(bId2) |||
( ||| bId : BID : loan(mId1, bId)∗ ). Unregister(mId1). member(mId1) ∗ |||
( ||| bId : BID : loan(mId2, bId)∗ ). Unregister(mId1). member(mId2) ∗ (C)

Lend(bId1, mId1)−−−−−−−−−−−−−→
borrower(T, bId1) = ⊥ → Discard(bId1) |||
borrower(T, bId2) = ⊥ → Discard(bId2) |||
(Return(bId1). loan(mId1, bId1) ∗ ||| loan(mId1, bId2)∗).Unregister(mId1). member(mId1) ∗ |||
( ||| bId : BID : loan(mId2, bId)∗ ). Unregister(mId1). member(mId2) ∗ (D)

Fig. 4. Execution

T M = (bor[bId1], bor[bId2], nbL[mId1], nbL[mId2])

A [ ] (⊥,⊥,⊥,⊥)

B Acq(bId2).Acq(bId1) (⊥,⊥,⊥,⊥)

C TB .Reg(mId2).Reg(mId1) (⊥,⊥, 0, 0)

D TC .Lend(bId1, mId1) (mId1,⊥, 1, 0)

Fig. 5. States

nbLD[mId1] = nbLC [mId1] + 1 = 1 and also nbLD[mId2] = 0, if the event
Lend(bId1,mId1) is to be executed.

3 Bisimulation Equivalence of SemT , SemT/M and
SemM

We present the theoretical proof of the bisimulation equivalence for SemT ,
SemT/M and SemM .
LTSs. We consider finite labeled transition systems (LTSs) as interpretation
models, which are particularly suitable for action-based description formalisms
such as EB3. Formally, an LTS is a triple (S, {→a}a∈Act, I), where:

1. S is a set of states;
2. →a⊆ S × S, for all a ∈ Act;
3. I ⊆ S is a set of initial states.

Bisimulation. Bisimulation is a fundamental notion in the framework of con-
current processes and transition systems. A system is bisimilar to another sys-
tem if the former can mimic the behaviour of the latter and vice-versa. In this
sense, the associated systems are considered indistinguishable. Given two LTSs

8



TSi = (Si, {→a}a∈Act, Ii), where i = 1, 2 and a relation R ⊆ S1 × S2, systems
TSi are said to be equivalent w.r.t. bisimulation iff

1. ∀ s1 ∈ I1 ∃s2 ∈ I2 such that (s1, s2) ∈ R
2. ∀ s2 ∈ I2 ∃s1 ∈ I1 such that (s1, s2) ∈ R
3. ∀(s1, s2) ∈ R :

(a) if s1 →a s′1 then ∃s′2 ∈ S2 such that s2 →a s′2 and (s′1, s
′
2) ∈ R

(b) if s2 →a s′2 then ∃s′1 ∈ S1 such that s1 →a s′1 and (s′1, s
′
2) ∈ R

LTS Construction. For given EB3 process E, we need to construct the corre-
sponding LTSs w.r.t. SemT , SemT/M and SemM respectively. The construction
is given by structural induction on E. We show here how to construct:

TSE = (SE , δE , IE)

w.r.t. SemM only. We refer to the initial memory as M0 ∈M (M is the set of
memory mappings in the IS) defined upon the fixed body of attribute function
definitions. It is IE = {(E,M0)}. More precisely,

1. S√ =
{

(
√
,M0)

}
, δ√ = ∅

2. Sρ =
{

(ρ,M0)
}⋃{

(
√
, next(M0))

}
, δρ =

{
(ρ,M0)→ρ

(√
, next(M0)

)}
,

where ρ 6=λ

3. Sλ =
{

(λ,M0)
}⋃{

(
√
,M0)

}
, δλ =

{
(λ,M0)→ρ

(√
,M0

)}

4.



SE1.E2
=
{

(E′1.E2,M) | (E′1,M) ∈ SE1

}⋃⋃
(
√
,M1)∈SE1

{
(E′2,M) | (E′2,M) ∈ SM1

E2

}
,

δE1.E2
=
{

(E′1.E2,M)→ (E′′1 .E2,M
′) | (E′1,M)→ρ (E′′1 ,M

′) ∈ δE1

}⋃⋃
(
√
,M1)∈SE1

{(E′2,M)→ρ (E′′2 ,M
′) | (E′2,M)→ρ (E′′2 ,M

′) ∈ δM1
E2
}

5.

{
SE1|E2

=SE1
\ {(E1,M

0)}
⋃
SE2

\ {(E2,M
0)}
⋃{

(E1|E2,M
0)
}
,

δE1|E2
=δE1

[E1 ← E1|E2]
⋃
δE2

[E2 ← E1|E2]

6. TSE∗ = lfpF , where F (TSEx) = TSE · Ex ∪ TSλ, E∗
.
= E.E∗|λ

7. TSE1|[∆]|E2
= TS r∑

i=1

GEi⇒ρi(ai).Ei
,

where E1|[∆]|E2
.
=

r∑
i=1

GEi ⇒ ρi(ai).Ei

8.


SGE⇒E =

{
{(GE → E,M0)}

⋃
SE \ {(E,M

0)}, if ‖GE[fi ←M0
i ]‖

{(GE → E,M0)}, otherwise

δGE⇒E =

{
δE [(E,M0) ← (GE ⇒ E,M0)], if ‖GE[fi ←M0

i ]‖
∅, otherwise

9. TSP (t) = TSE[x := t], where P (x)
.
= E

9



The difference between 2 and 3 lies in the fact that λ does not affect the memory.
In 4, it is (E′1.E2,M) ∈ SE1·E2 if (E′1,M) ∈ SE1 . For (

√
,M1) ∈ SE1 , we obtain

(E′2,M)∈SM1

E2
, where SM1

E2
stands for state space SE2 with initial memory M1. In

6, we need to compute the least fix point of function F :TS→TS w.r.t. the lattice
T S = (TS,⊆), where TS is the possibly infinite set of LTSs simulating EB3

specifications w.r.t. SemT/M and ⊆ denotes inclusion. In 7, E1|[∆]|E2 is written
as a sum (

∑ .
= [ ] . . . [ ]) of EB3 expressions. The first action of each summand

would be ρi(ai) for all possible execution paths picking this summand. This
action would be taken under condition GEi (=true in the absence of condition):

E1|[∆]|E2
.
=
∑r
i=1GE

i ⇒ ρi(ai).Ei

This form is known as head normal form (HNF) in the literature. The construc-
tion of HNFs for process algebra expressions is discussed in [2]. It is a common
practice developed principally in the context of the Algebra of Communicating
Processes (ACP) [3] as a means to analyse the behaviour of recursive process
algebra definitions. In 8 for ‖GE[fi ←M0

i ]‖ true, we need to construct SE and
replace (E,M0) with (GE⇒E,M0).

For the rest, we denote TST , TST/M and TSM for TSE w.r.t. SemT , SemT/M

and SemM respectively.

Theorem 1. TST and TST/M are bisimilar.

Proof . We consider relation R = {〈(E, T,M), (E, T )〉 | (E, T,M) ∈ ST/M ∧
(E, T ) ∈ ST }. It is 〈(E0, [ ],M0), (E0, [ ])〉 ∈ R. We demonstrate that for any
〈(E, T,M), (E, T )〉∈R and (E, T,M)→ρ (E′, T ′,M ′)∈δT/M , we obtain (E, T )→ρ

(E′, T ′)∈δT and vice-versa. We proceed with structural induction on E. We show
the proof for some cases.

For (TT/M−1), we get (ρ, T,M)→ρ (
√
, T · ρ, next(M)(ρ))∈ δT/M . By elim-

ination of M and next(M), we get that (ρ, T )→ρ (
√
, T · ρ)∈ δT . Inversely, we

imagine (ρ, T )→ρ (
√
, T · ρ)∈δT . Every state (E, T,M)∈ST/M is of the form:

(E, T, next′(T,M0)), where
next′(T,M) = match T with [ ]→ M | T · ρ→ next′(T ′, next(M,ρ))

,

As a result, there exists (ρ, T, next′(T,M0))→ρ (
√
, T · ρ, next′

(
T · ρ,M0)

)
∈

δT/M which establishes (TT/M−1) by replacing next′(T,M0) withM and next′(T ·
ρ,M0) with next (M) (ρ).

For (TT/M−2), we have (E1.E2, T,M)→ρ (E′1.E2, T
′,M ′) ∈ δT/M , that as-

sumes (E1, T,M)→ρ (E′1, T
′,M ′)∈ δT/M . By induction hypothesis, (E1, T )→ρ

(E′1, T
′) ∈ SemT and by (RT − 2), we get (E1.E2, T ) →ρ (E′1.E2, T

′) ∈ δT .
Vice-versa, by virtue of (RT −2) a transition (E1.E2, T ) →ρ (E′1.E2, T

′) ∈ δT
gives (E1, T )→ρ (E′1, T

′) ∈ δT . Using the induction hypothesis, (E1, T,M)→ρ

(E′1, T
′,M ′). Finally, by (TT/M−2) we obtain (E1.E2, T,M)→ρ (E′1.E2, T

′,M ′).
For (TT/M−4), we have (E1|E2, T,M)→ρ (E′1, T

′,M ′)∈δT/M , that assumes
(E1, T,M)→ρ (E′1, T

′,M ′)∈δT/M . By induction hypothesis, we have (E1, T )→ρ

(E′1, T
′) ∈ δT and by (RT − 4), we get (E1|E2, T ) →ρ (E′1, T

′). Vice-versa, a

10



transition (E1|E2, T )→ρ (E′1, T
′) gives, by virtue of (RT−4), (E1, T )→ρ (E′1, T

′).
Using the induction hypothesis, (E1, T,M)→ρ (E′1, T

′,M ′). Finally, by (TT/M−4)
we obtain (E1|E2, T,M)→ρ (E′1, T

′,M ′).

Theorem 2. TST/M and TSM are bisimilar.

Proof . The proof is straightforward, because the effect of the trace on the
attribute functions and the program execution is coded in memory M . Hence,
intuitively the trace is redundant.

Corollary 1. TST and TSM are bisimilar.

Proof . Combining the two Theorems and with transitivity, we prove the lemma.

4 Demonstration in LNT

We show how SemM facilitates the translation of EB3 specifications to LNT
for verification with the toolbox CADP. We translate the library management
system (Fig.1) in LNT for BID={b1} and MID={m1,m2}.
LNT. LNT combines the best features of imperative and functional program-
ming languages and value-passing process algebras. It has a user friendly syntax
and formal operational semantics defined in terms of labeled transition systems
(LTSs). LNT is supported by the LNT.OPEN tool of CADP, which allows the
on-the-fly exploration of the LTS corresponding to an LNT specification. We
present the fragment of LNT that is useful for this translation. Its syntax is
given in Fig.6. LNT terms denoted by B are built from actions, choice (select),
conditional (if), sequential composition (;), breakable loop (loop and break)
and parallel composition (par). Communication is carried out by rendezvous
on gates G with bidirectional transmission of multiple values. Synchronizations
may also contain optional guards (where) expressing boolean conditions on re-
ceived values. The special action δ is used for defining the semantics of sequential
composition. The internal action is denoted by the special gate i, which cannot
be used for synchronization. The parallel composition operator allows multiway
rendezvous on the same gate. Expressions E are built from variables, type con-
structors, function applications and constants. Labels L identify loops, which
can be stopped using ”break L” from inside the loop body. Offer O can be either
a send other (!) or a receive offer (?). Processes are parameterized by gates and
data variables. The semantics of LNT are formally defined in [5].
Formalization. We explicitly model in LNT a memory, which stores the at-
tribute variables and is modified each time an action is executed. We model the
memory as a process Memory placed in parallel with the rest of the system (a
common approach in process algebra). To read the values of attribute variables,
processes need to communicate with the memory M , and every action must have
an immediate effect on the memory (so as to reflect the immediate effect on the
execution trace). To achieve this, the memory process synchronizes with the rest
of the system on every possible action of the system, and updates its attribute

11



B ::= stop null G(O1, . . . , On) where E B1;B2 if E then B1 else B2 end if

var x :T in B end var x := E loop L in B end loop break L

select B1[ ] . . . [ ]Bn end select par G1, . . . , Gn in B1|| . . . ||Bn end par
P [G1, . . . , Gn](E1, . . . , En)

O ::=!E ?x

Fig. 6. Syntax of LNT

process memory[ACQ, DIS, REG, UNREG, LEND, RET: ANY] is

var mId : MEMBERID, bid : BOOKID, borrower : BOR, nbLoans : NB in

(* attribute variables initialized *)

mId := m_bot; borrower := BOR(m_bot); nbLoans := NB(0);

loop select

ACQ(?bid)

[] DIS(?bid, ?borrower)

[] REG(?mid)

[] UNREG(?mid)

[] LEND(?bid, ?mid, !nbLoans, !borrower); borrower[ord(bid)] := mid;

nbLoans[ord(mid)] := nbLoans[ord(mid)] + 1

[] RET(?bid); mId := borrower[ord(bid)]; borrower[ord(bid)] := m_bot;

nbLoans[ord(mid)] := nbLoans[ord(mid)] - 1

end select

end loop

end var

end process

Fig. 7. Memory in LNT

variables accordingly. Additional offers are used on each action, so that the cur-
rent value of attribute variables can be read by processes during communication,
and used to evaluate guarded expressions wherever needed.

Process Memory is given in Fig. 7. It runs an infinite loop, which “listens”
to all possible actions of the system. We define two instances of the attribute
variable nbLoans (one for each member) and one instance for borrower (one
book). In the LNT expression nbLoans[ord(mid)], ord(mid) denotes the ordinate
of value mid, i.e., a unique number between 0 and the cardinal of mid’s type
minus 1. nbLoans[ord(mid)] is incremented after a Lend and decremented after
a Return 7. The action Lend(mId,bId) takes, besides mid and bid, nbLoans and
borrower as parameters, because the latter are used in the evaluation of the
guarded expression preceding Lend (where statement in Fig.8). Note how upon
synchronisation on Lend, nbLoans and borrower are offered (!) by the Memory
and received (?) by loan (Fig.8).

7 see the definition of nbLoans in Fig.1

12



process MAIN [ACQ, DIS, REG, UNREG, LEND, RET: ANY] () is

par ACQ, DIS, REG, UNREG, LEND, RET in

par

loop L in select break L [] book[ACQ, DIS](b1) end select end loop

||

par

loop L in select break L [] member[REG, UNREG, LEND, RET](m1)

end select end loop

||

loop L in select break L [] member[REG, UNREG, LEND, RET](m2)

end select end loop

end par

end par

||

memory[ACQ, DIS, REG, UNREG, LEND, RET]

end par

end process

process loan[LEND, RET : ANY](mid: MEMBERID, bid : BOOKID) is

var borrower: BOR, nbLoans: NB in (* NbLoans is set to 1 *)

LEND(bid, mid, ?nbLoans, ?borrower) where

((borrower[ord(bid)] eq m_bot) and (nbLoans[ord(mid)] eq 1));

RET(bid) end var

end process

Fig. 8. Main Program and Loan in LNT

The main program is given in Fig.8. All parallel quantification operations
have been expanded as LNT is more structured and verbose than EB3. Making
use of the expansion rule E∗=E.E∗|λ, the Kleene Closure (as in member(mId)∗

in Fig.1) has been written accordingly. The full LNT program is in the appendix.
Case study. The case study examined here is the library management system
enhanced wih extra functionalities:

1. A book can always be acquired by the library when it is not currently acquired.
2. A book cannot be acquired by the library if it is already acquired.
3. An acquired book can be discarded only if it is neither borrowed nor reserved.
4. A person must be a member of the library in order to borrow a book.
5. A book can be reserved only if it has been borrowed or already reserved by some member.
6. A book cannot be reserved by the member who is borrowing it.
7. A book cannot be reserved by a member who is reserving it.
8. A book cannot be lent to a member if it is reserved.
9. A member cannot renew a loan or give the book to another member if the book is reserved.

10. A member is allowed to take a reserved book only if he owns the oldest reservation.
11. A book can be taken only if it is not borrowed.
12. A member who has reserved a book can cancel the reservation at anytime before he takes it.
13. A member can relinquish library membership only when all his loans have been returned and

all his reservations have either been used or canceled.
14. Ultimately, there is always a procedure that enables a member to leave the library.
15. A member cannot borrow more than the loan limit defined at the system level for all users.

Verification with CADP. All 15 requirements (that we name p1−15) to ver-
ify were expressed in MCL [15]. MCL is an extension of the alternation-free

13



µ-calculus [13] with ACTL-like [8] action formulas and PDL-like [14] regular
expressions, allowing a concise and intuitive description of safety, liveness, and
fairness properties without sacrificing the efficiency of verification. MCL com-
bines data handling mechanisms (quantified variables and fixed point parame-
ters), extended regular expressions, and constructs inspired from programming
languages.

We verified the LNT specification corresponding to the library management
system on an Intel(R) Core(TM) i7 CPU 880 @ 3.07GHz. All properties were
proven true as expected and the results can be found in Fig.9 8. In the first line,
(b,m) corresponds to the number of books and members of the IS. The second
line gives the time needed to generate the corresponding LTS to the LNT model
and the rest lines give the verification time for each requirement. Property p2 is
formalised by the following MCL formula:

[true*. { ACQ !”B1” }. (not { DIS !”B1” })*. { ACQ !”B1” }] false

This formula follows the standard safety pattern: “[α]false”. It evaluates to
true if no execution path matches the regular expression written inside the box
modality. The meaning of p2’s regular expression is that we cannot have a se-
quence of ACQUIRE operations for book B1, if there is no DISCARD operation
for B1 in the meantime. Notation true inside [ ] refers to all possible actions in
the IS. Property p12 is formalised in the following manner:

[ true*. { RES !”M1” !”B1” }.
( not ({ TAKE !”M1” !”B1” } or { TRANSFER !”M1” !”B1” } ))* ]

<( not ( { TAKE !”M1” !”B1” } or { TRANSFER !”M1” !”B1” } ))*.
{ CANCEL !”M1” !”B1” }> true

This formula is a liveness property. Liveness properties of the form “[α]〈β〉true”
state that every execution path matching the regular expression α (in this case,
book B1 has been reserved by member M1 and subsequently neither taken not
transfered) ends in a state from which there exists an execution path matching
the regular expression β (in this case, the reservation can be cancelled before
being taken or transfered).

5 Conclusion

In this paper, we presented an alternative semantics SemM for EB3 that we
proved equivalent to the standard semantics SemT . We showed how SemM fa-
cilitates the translation of EB3 specifications to LNT for verification of temporal
properties with CADP. The implementation of a compiler EB3toLNT that au-
tomates the translation is in progress. We plan to formalize theoretically the
translation and prove the strong equivalence of SemM with the standard se-
mantics of LNT.

We will also study abstraction techniques for the verification of properties
regardless of the number of components e.g. members, books that participate in
the IS (Parameterized Model Checking). We will observe how the insertion of
new functionalities to the ISs affects this issue. Finally, we will formalize this in
the context of EB3 specifications.

8 analytical explanations are found in the appendix

14



(b,m) (3,2) (3,3) (3,4) (4,3)
time 1.892s 14.421s 31m39.743s 140m22.734s
p1 0.328s 1.800s 5m19.108s 20m13.876s
p2 0.208s 2.960s 9m26.623s 36m7.443s
p3 0.236s 4.960s 12m52.984s 55m33.744s
p4 0.240s 1.716s 5m15.644s 18m40.526s
p5 0.268s 2.188s 6m46.537s 21m52.770s
p6 0.216s 1.900s 5m53.798s 19m40.458s
p7 0.232s 2.224s 6m45.353s 22m39.589s
p8 0.224s 2.240s 6m52.046s 22m27.872s
p9 0.244s 2.288s 6m38.593s 22m29.164s
p10 0.280s 13.345s 43m59.497s 62m7.837s
p11 0.260s 2.544s 6m36.161s 22m14.027s
p12 0.260s 4.060s 10m47.316s 45m9.069s
p13 0.380s 4.288s 11m46.216s 1m7.924s
p14 0.264s 3.616s 10m41.476s 37m33.689s
p15 0.220s 2.828s 7m53.570s 28m56.505s

Fig. 9. Experimental Results

References

1. J.-R. Abrial. The B-Book - Assigning programs to meanings. Cambridge University
Press, 2005.

2. J.A. Bergstra, A. Ponse, S.A. Smolka. Handbook of Process Algebra. Elsevier, 2001.

3. J.A. Bergstra, J. W. Klop. Algebra of Communicating Processes with Abstraction.
TCS, 37:77–121, 1985.

4. T. Bolognesi, E. Brinksma. Introduction to the ISO specification language LOTOS.
Computer Networks and ISDN Systems, 14(1):25–59, 1987.

5. D. Champelovier, X. Clerc, H. Garavel, Y. Guerte, C. McKinty, V. Powazny, F.
Lang, W. Serwe, G. Smeding. Reference Manual of the LOTOS NT to LOTOS
Translator – Version 5.4. INRIA/VASY, 2011.

6. R. Chossart. Évaluation d’outils de vérification pour les spécifications de systèmes
d’information. Master’s thesis, Université de Sherbrooke, 2010.

7. ClearSy. Atelier B. http://www.atelierb.societe.com.

8. R. De Nicola, F. Vaandrager. Three logics for branching bisimulation (extended
abstract). In LICS, pages 118–129, 1990.

9. M. Frappier, B. Fraikin, R. Chossart, R. Chane-Yack-Fa, M. Ouenzar. Comparison
of model checking tools for information systems. In Proc. of ICFEM, Springer,
2010.

10. M. Frappier, R. St.-Denis. EB 3: an entity-based black-box specification method
for information systems. Software and System Modeling, 2003.

11. H. Garavel, F. Lang, R. Mateescu, W. Serwe. CADP 2010: A toolbox for the
construction and analysis of distributed processes. In Proc. of TACAS, Springer,
2011.

12. F. Gervais. Combinaison de spécifications formelles pour la modélisation des
systèmes d’information. PhD thesis, 2006.

13. D. Kozen. Results on the propositional mu-calculus. Theor. Comput. Sci., 27:333–
354, 1983.

14. C. Löding, O. Serre. Propositional dynamic logic with recursive programs. In Proc.
of FOSSACS, Springer, 2006.

15. R. Mateescu, D. Thivolle. A model checking language for concurrent value-passing
systems. In Proc. of FM, Springer, 2008.

15



6 Appendix

SM−1 :
ρ 6= λ

(ρ,M)
ρ−→ (
√
, next(M)(ρ))

SM−1′ :
(λ,M)

λ−→ (
√
,M)

SM−2 :
(E1,M)

ρ−→ (E′1,M
′)

(E1.E2,M)
ρ−→ (E′1.E2,M ′)

SM−3 :
(E,M)

ρ−→ (E′,M ′)

(
√
.E,M)

ρ−→ (E′,M ′)

SM−4 :
(E1,M)

ρ−→ (E′1,M
′)

(E1|E2,M)
ρ−→ (E′1,M

′)
SM−5 :

(E∗,M)
λ−→ (
√
,M)

SM−6 :
(E,M)

ρ−→ (E′,M ′)

(E∗,M)
ρ−→ (E′.E∗,M ′)

SM−7 :
(
√
|[∆]|
√
,M)

λ−→
√
,M)

SM−8 :
(E1,M)

ρ−→ (E′1,M
′), (E2,M)

ρ−→ (E′2,M
′)

(E1|[∆]|E2,M)
ρ−→ (E′1|[∆]|E′2,M ′)

in(ρ,∆)

SM−9 :
(E1,M)

ρ−→ (E′1,M
′)

(E1|[∆]|E2,M)
ρ−→ (E′1|[∆]|E2,M ′)

¬in(ρ,∆)

SM−10 :
(E,M)

ρ−→ (E′,M ′)

(GE ⇒ E,M)
ρ−→ (E′,M ′)

‖GE[fi ←Mi]‖

SM−11 :
(E[x := t],M)

ρ−→ (E′,M ′)

(P (t),M)
ρ−→ (E′,M ′)

P (x) = E ∈ ListPE

Fig. 10. SemM

16



module library is

type MEMBERID is m1, m2, m_bot with "eq", "ne", "ord" end type

type BOOKID is b1, b_bot with "eq", "ne", "ord" end type

type ACQUIR is array [0..1] of BOOL end type

type NB is array [0..2] of NAT end type

type BOR is array [0..2] of MEMBERID end type

process memory[ACQ, DIS, REG, UNREG, LEND, RET: ANY] is

var mId : MEMBERID, bid : BOOKID, borrower : BOR, nbLoans : NB in

(* attribute variables initialized *)

mId := m_bot; borrower := BOR(m_bot); nbLoans := NB(0);

loop select

ACQ(?bid)

[] DIS(?bid, ?borrower)

[] REG(?mid)

[] UNREG(?mid)

[] LEND(?bid, ?mid, !nbLoans, !borrower); borrower[ord(bid)] := mid;

nbLoans[ord(mid)] := nbLoans[ord(mid)] + 1

[] RET(?bid); mId := borrower[ord(bid)]; borrower[ord(bid)] := m_bot;

nbLoans[ord(mid)] := nbLoans[ord(mid)] - 1

end select

end loop end var

end process

process loan[LEND, RET : ANY](mid: MEMBERID, bid : BOOKID) is

var borrower: BOR, nbLoans: NB in (* NbLoans is set to 1 *)

LEND(bid, mid, ?nbLoans, ?borrower) where

((borrower[ord(bid)] eq m_bot) and (nbLoans[ord(mid)] eq 1));

RET(bid) end var

end process

process book[ACQ, DIS: ANY](bid: BOOKID) is

var borrower: BOR in

ACQ(bid); DIS(bid, ?borrower) where (borrower[ord(bid)] eq m_bot)

end var

end process

process member[REG, UNREG, LEND, RET: ANY](mid: MEMBERID) is

REG(mid);

loop L in select break L [] loan[LEND, RET](mid, b1)

end select end loop; UNREG(mid)

end process

process MAIN [ACQ, DIS, REG, UNREG, LEND, RET: ANY] () is

par ACQ, DIS, REG, UNREG, LEND, RET in

par

loop L in select break L [] book[ACQ, DIS](b1) end select end loop

||

par

loop L in select break L [] member[REG, UNREG, LEND, RET](m1)

end select end loop

||

loop L in select break L [] member[REG, UNREG, LEND, RET](m2)

end select end loop

end par

end par

|| memory[ACQ, DIS, REG, UNREG, LEND, RET]

end par

end process

end module

Fig. 11. LNT code for the Library Management System (2 members, 1 book)

17



P1 is a classical liveness P. The second conjunct expresses the eventuality that a book
be withdrawn from the library before it is reacquired.

macro P (B) =
(

(
[ ( not { ACQ !B } )* ] < { ACQ !B } > true

)
and
(

[ true*. { DIS !B }. ( not { ACQ !B } )* ] < { ACQ !B } > true
)

)
end_macro

P ("B1") and P ("B2") and P ("B3")

P2 is a safety P.

macro P (B) =
(

[ true*. { ACQ !B }. ( not { DIS !B } )*. { ACQ !B } ] false
)

end_macro

P ("B1") and P ("B2") and P ("B3")

P3.

macro P (B) =
(

(
[ true*. ( ({ LEND ?ANY : STRING !B } or { TAKE ?ANY: STRING !B }) ).

(not { RET !B })*. { DIS !B } ] false
)
and
(

[ true*. { RES ?ANY : STRING !B }.
(not ( { CANCEL ?ANY : STRING !B } or { RET !B } ))*. { DIS !B } ] false

)
)

end_macro

P ("B1") and P ("B2") and P ("B3")

P4. The first conjunct expresses the fact that a member cannot borrow a book if
(s)he has not registered to the library. The second conjunct expresses that if a member
relinquishes his/her membership, (s)he may not lend a book neither via the regular
loan process Lend nor the reservation action RES.

macro P (M) =
(

(
[ ( not { JOIN !M })*.

( {LEND !M ? ANY: STRING } or { TAKE !M ?ANY : STRING } ) ] false
)
and
(

[ true*. { LEAVE !M }.
( not { JOIN !M })*. ({LEND !M ? ANY: STRING } or { TAKE !M ?ANY : STRING } ) ] false

)
)

end_macro

P ("M1") and P ("M2")

Fig. 12. Verifications of Requirements P1-P4

18



P5: The first conjunct expresses the obligation for a book not to be lent in order to be
added to the reservation list. The second conjunct complements the first in the sense
that at least one loan cycle is completed in the beginning of the transition sequence
via RET !B thus making the book available for loan again. The third conjunct denies
any reservation history for the book in question. All possible loan operations should
be excluded as well. Notably the P:

[ (not ( { RES ?ANY: STRING !B } ))*. { RES ?ANY: STRING !B } ] false

is false as the regular expression inside the box modality may trigger a loan before the
reservation.

macro P(B) =
(

[ ( not ( { LEND ?ANY: STRING !B } or { TAKE ?ANY: STRING !B } ))*.
{ RES ?ANY: STRING !B } ] false

)
and
(

[ true*. { RET !B }. ( not ( { LEND ?ANY: STRING !B } or { TAKE ?ANY: STRING !B } ))*.
{ RES !B } ] false

)
and
(

[ ( not ( { LEND ?ANY: STRING !B } or { TAKE ?ANY: STRING !B } or
{ TRANSFER ?ANY : STRING !B } or { RES ?ANY: STRING !B } ))*.

{ RES ?ANY: STRING !B } ] false
)

end_macro

P("B1") and P ("B2") and P("B3")

P6: The difficulty here lies in the fact that the borrower may transfer the book to
another member. For this reason, the specification

[ true*. { LEND !M !B }. (not ({ RET !B }))*. { RES !M !B } ] false

would be false as can be verified by the model checker. Note that we need the con-
junction of all instances of the macro Q for possible values of books and members.
Symmetry in the EB3 specification may lead us to consider one instance only e.g.
Q(”B1”, ”M1”) in the P thus reducing the time it needs to evaluate.

macro Q (B, M) =
(

[ true*. { LEND !M !B }. (not ({ RET !B } or { TRANSFER ?M2: STRING !B } ))*.
{ RES !M !B } ]

false
)
end_macro

Q("B1", "M1") and Q("B2", "M1") and Q("B3", "M1") and
Q("B1", "M2") and Q("B2", "M2") and Q("B3", "M2") and
Q("B1", "M3") and Q("B2", "M3") and Q("B3", "M3")

P7

macro Q (B, M) =
(

[ true*. { RES !M !B }. (not ({ TAKE !M !B } or { CANCEL !M !B }))*.
{ RES !M !B } ]

false
)
end_macro

Q("B1", "M1") and Q("B2", "M1") and Q("B3", "M1") and
Q("B1", "M2") and Q("B2", "M2") and Q("B3", "M2") and
Q("B1", "M3") and Q("B2", "M3") and Q("B3", "M3")

Fig. 13. Verifications of Requirements P5-P7

19



P8: In this case, exploiting the symmetry is crucial to avoid the exponential state space
explosion.

macro Q (B, M1, M2) =
(

[ true*. { RES !M1 !B }. ( not ({ TAKE !M1 !B } or { CANCEL !M1 !B }) )*. { LEND !M2 !B } ]
false

)
end_macro

Q("B1", "M1", "M2")

P9

macro Q (B, M) =
(

[ true*. { RES !M !B }. ( not ({ TAKE !M !B } or { CANCEL !M !B }) )*.
{ RENEW !B } ] false

)
end_macro

Q("B1", "M1")

P10: This P should be rephrased in the following way: It may not happen that a first
member reserves a book and another member that reserves the book later takes it
before the first member.

[
true*.
{ RES ?M1: STRING ?B: STRING }.
( not ( { TAKE !M1 !B } or { CANCEL !M1 !B } or { TRANSFER !M1 !B } ))*.
{ RES ?M2: STRING !B where M2 <> M1 }.
( not ({ TAKE !M1 !B } or { CANCEL !M1 !B } or {TRANSFER !M1 !B } ))*.
{ TAKE !M2 !B }

] false

P11 corresponds to the classical P pattern: α1 is not true between processes α2 and
α3, which is expressed by the formula:
[ true*. α2. (¬ α3)*. α1. (¬ α3)*. α3 ] false, where
α1 = ({ LEND !M !B } or { TAKE !M !B }) , α2 = ({ LEND !M !B } or { TAKE !M !B }) and
α3 = { RET !B }.

macro Q (B, M) =
(

[ true*. ({ LEND !M !B } or { TAKE !M !B }). ( not ( { RET !B } ) )*.
( { LEND !M !B } or { TAKE !M !B } ). ( not ( { RET !B } ))*.
{ RET !B } ] false

)
end_macro

Q("B1", "M1")

P12

macro Q (B, M) =
(

[ true*. { RES !M !B }. ( not ({ TAKE !M !B } or { TRANSFER !M !B } ))* ]
< ( not ( { TAKE !M !B } or { TRANSFER !M !B } ))*. { CANCEL !M !B } > true

)
end_macro

Q("B1", "M1")

Fig. 14. Verifications of Requirements P8-P12

20



P13

macro Q (B, M) =
(

(
[ true*.

( {LEND !M !B } or { TAKE !M !B } ).
( not ( {RET !B } or { TRANSFER !"M2" !B } or { TRANSFER !"M3" !B } ))*.
{ LEAVE !M }. ( not ( {RET !B } or { TRANSFER !"M2" !B } or { TRANSFER !"M3" !B } ))*.
( {RET !B } or { TRANSFER !"M2" !B } or { TRANSFER !"M3" !B }) ] false

)
and
(

[ true*. { RES !M !B }. ( not ( { TAKE !M !B } or { CANCEL !M !B } ))*.
{ LEAVE !M }. ( not ( { TAKE !M !B } or { CANCEL !M !B } ))*.
( { TAKE !M !B } or { CANCEL !M !B } ) ] false

)
)
end_macro

Q("B1", "M1")

P14

macro Q (M) =
(

[ true*. { JOIN !M }. ( not { LEAVE !M })* ] < ( not { LEAVE !M })*. { LEAVE !M } > true
)
end_macro

Q("M1")

P15: This P is dependent on the maximum number of books a member can have in his
possession at any time. Supposing that this number is set to two the P can be written:

macro Q (M) =
(

[ true*. let B1: STRING:= "B1", B2: STRING:= "B2" in
( { LEND !M !B1 } or { TAKE !M !B1 } ).
( not ({ TRANSFER ?M2: STRING !B1 } or { RET !B1 } ))*.
( { LEND !M !B2 } or { TAKE !M !B2 } ) end let ] false

)
end_macro

Q("M1")

Fig. 15. Verifications of Requirements P13-15

21


