
Verifying Concurrent Stacks by Divergence-Sensitive BisimulationI

Xiaoxiao Yanga, Joost-Pieter Katoenb, Huimin Lina, Hao Wub

aState Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences
bSoftware Modeling and Verification, RWTH Aachen University, Germany

Abstract

The verification of linearizability – a key correctness criterion for concurrent objects – is based on trace refinement whose checking
is PSPACE-complete. This paper suggests to use branching bisimulation instead. Our approach is based on comparing an abstract
specification in which object methods are executed atomically to a real object program. Exploiting divergence sensitivity, this also
applies to progress properties such as lock-freedom. These results enable the use of polynomial-time divergence-sensitive branching
bisimulation checking techniques for verifying linearizability and progress. We conducted the experiment on the lock-free stacks
to validate the efficiency and effectiveness of our methods.

Keywords:
Linearizability, Progress Properties, Bisimulation, Divergence, Concurrency

1. Introduction

Linearizability is a standard correctness condition for the
implementation of concurrent objects [1]. Checking lineariz-
ability amounts to verify that a concurrent object is imple-
mented correctly by establishing a certain correspondence be-
tween the object and its sequential specification. In a multi-
threaded environment, however, we also expect that concurrent
systems satisfy liveness properties [2], which guarantee that
certain ”good” events can eventually happen. This includes
progress properties [12] such as lock-freedom, wait-freedom
and obstruction-freedom, which are introduced to capture the
essence of the progress guarantee of non-blocking concurrent
algorithms [3]. These algorithms employ fine-grained synchro-
nisations instead of mutex-locks to provide high-performance
concurrent implementations of objects, such as Michael-Scott
lock-free queue, lock-free stacks [13, 16] and Harris lock-free
list (see the java.util.concurrent package). Nevertheless,
the progress property of an object can affect the progress of the
execution of a client program that uses the object. As Filipovié
et al. point out ”programmers expect that the behaviour of
their program remains the same regardless of whether they use
highly efficient data structures or less-optimized but obviously
correct data structures.[11]” For optimal use of concurrent ob-
jects, it is essential that the basic properties of objects involving
linearizability and progress properties are ensured. This em-
phasizes the importance of developing (automated) techniques
for verifying linearizability and progress properties.

The main work on verifying linearizability of concurrent
objects is using trace refinement checking [5, 8, 10, 11, 21].
This means that a concrete implementation refines an abstract

IThis research was supported by NSFC 61100063 and by a Humboldt Fel-
lowship (X.Y.) from Alexander von Humboldt Foundation.

specification if and only if the set of execution traces of the
implementation is a subset of those of the specification. Al-
though this approach can be used well to verify linearizability,
it is not suitable for verifying progress properties. For exam-
ple, [8] verifies linearizability based on refinement checking
of finite-state systems specified as concurrent processes with
shared variables. However, that refinement relation cannot be
used to prove progress properties. By the standard definition
of linearizability [1], a sequential object specification is em-
ployed as the abstract specification, to which any implemen-
tation should conform. However, the sequential specification
cannot specify liveness. To remedy this, [7] proposes a gen-
eralisation of linearizability that can specify liveness while [6]
uses atomic blocks to describe the abstract specification where
each method body of an object method should be atomic. Al-
though [6, 7] discuss progress properties of objects based on
some termination-sensitive contextual refinement, they need to
define different refinement relations for progress properties.

Instead of the refinement relation between two objects with
different granularities of an atomic operation, an alternative per-
spective is to capture the relationship by means of appropriate
equivalence relation. This is justified by the fact that client pro-
grams expect that the observable behaviour of concrete object
programs is equivalent to that of abstract ones. The main issue
is that whether there exists a proper equivalence relation for the
object implementation, and if there exists, what kind of equiv-
alence is needed. On the one side, it needs to abstract from
internal steps of concrete objects as they typically contain im-
plementation details that are not present in abstract objects. On
the other side, we expect that such equivalence preserves some
desired properties such that for equivalent abstract and concrete
programs, the properties can be checked on the – simpler – ab-
stract program rather than on the concrete program.

We are therefore motivated to explore the equivalence rela-

January 24, 2017

ar
X

iv
:1

70
1.

06
10

4v
1

 [
cs

.P
L

]
 2

1
Ja

n
20

17

tion on the externally behavior of objects, and investigate a con-
venient and efficient method to verify both linearizability and
progress properties of concurrent objects. Our method employs
a tailored version of branching bisimulation [17, 18, 19] to an-
alyze the behaviour of concurrent objects. Branching bisimula-
tion is an action-based version of stutter bisimulation [18, 19]
that basically allows to abstract from sequences of internal
steps. This idea was first proposed in our technical report [9]. In
this paper, we present the inspiration and motivation of the idea
in [9], and shows the verification method on the non-blocking
stacks in detail by directly establishing the divergence-sensitive
branching bisimulation between the stack and its specification.
Our main contributions are summarized as follows:

• We use the atomic block to specify an abstract object pro-
gram. We observe that the effect of the method call of con-
crete (fine-grained) objects can be abstracted into the high-
level atomic block of the abstract object program such that
the fine-grained implementation takes the same effect as
the abstract atomic operation. Since the effects of method
calls can be equivalently characterized by the observable
actions call and return, we show that branching bisimula-
tion is a precise notion to capture the externally observable
equivalence between the concrete (fine-grained) object and
the abstract (atomic) object. We further show that branch-
ing bisimulation preserves linearizability.

• To verify progress properties, we explore the divergence-
sensitive equivalence for the abstract and concrete objects.
Divergence-sensitive branching bisimulation implies the
preservation of LTL © (the next-free LTL) equivalence, so
it preserves various desirable progress properties.

• Instead of trace refinement technique which is computed in
PSPACE-complete, our method enables the use of branch-
ing bisimulation checking techniques and tools for proving
correctness and progress of objects, which can be com-
puted in polynomial time for finite systems.

• We successfully apply branching bisimulation with ex-
plicit divergence to verify linearizability and lock-free
property of non-blocking stacks [16, 27], and reveal a
new bug violating the lock-freedom in the revised stack
[30]. Thus divergence-sensitive branching bisimulation
provides us a unified framework to verify linearizability
while preserving progress properties that are specified in
LTL ©.

Overview. Section 2 defines the object system. Section 3 intro-
duces linearizability and the trace refinement. Section 4 shows
branching bisimulation for concurrent objects. Section 5 ex-
plores the divergence-sensitive branching bisimulation to verify
progress properties. Section 6 conducts the experiment on veri-
fying the non-blocking stacks. Section 7 makes the conclusion.

2. Preliminaries

2.1. Abstract and Concrete Objects

We use two kinds of descriptions for concurrent objects: ab-
stract and concrete. Abstract objects can be regarded as a con-
current specification, where each method body of every object
method is a single atomic operation. Concrete objects involves
more intricate interleavings that refines the implementation of
abstract objects by replacing the single atomic operation of each
method body with fine-grained lock (or lock-free) synchroniza-
tion technique. For abstract and concrete objects, each method
starts with a method call, and ends with a return action.

For instance, an abstract counter with method inc() is given
in Figure 1 (i), where t is a local variable and c a shared vari-
able, statements embraced by atomic{ } is an atomic operation.
A concrete counter with the CAS instruction is given in Fig-
ure 1 (ii). The CAS instruction allows synchronization between
threads at a finer grain.

(i) int inc()

atomic {t:=c;

c:=t+1;}

return;

(ii) int inc()

do t := c;

while(CAS(c,t,t+1))

return;

Figure 1: Abstract counter (i) and concrete counter (ii).

2.2. Lock-Freedom and Wait-Freedom

Lock-free and wait-free properties are non-blocking progress
conditions. Informally, an execution of object methods is lock-
free if it guarantees that some thread can complete any started
operation on the shared data structure in a finite number of steps
[12]. An execution is wait-free if it guarantees that every thread
will complete an operation in a finite number of steps [12].

Suppose that the counter object provides a unique method
inc() for incrementing a shared variable c. Figure 1 (i) shows a
wait-free implementation in which the increment is done atomi-
cally. Figure 1 (ii) presents a lock-free implementation by using
the CAS instruction.

Example 1. Consider the following client program:

while (1) do inc(); || inc(); print(z:=0);

where || denotes the parallel composition. If the client employs
the wait-free counter in Figure 1 (i), then the right thread can
always terminate and prints z := 0 since the wait-freedom of
inc() guarantees the termination. But if the client uses the
lock-free counter in Figure 1 (ii), the execution of inc() by the
right thread may be non-terminating, since the CAS instruction
in Figure 1 (ii) may continuously fail such that the left thread
can continuously update shared variable c. Thus the right thread
never prints z := 0. ut

In practice, to achieve the desired progress properties of con-
current objects, the garbage collection mechanism with a proper
progress condition also needs to be considered.

2

Example 2. Consider the concurrent stack with hazard point-
ers [27], where function Retire Node reclaims the released
nodes to avoid the ABA-error. To guarantee the lock-free prop-
erty of the stack, the garbage collector Retire Node needs to
be wait-free. However, if pop invokes another garbage collec-
tor in [30], which is not wait-free and not lock-free, then it will
result in the unexpected non-terminating execution of pop such
that the implementation of the concurrent stack in [30] violates
the lock-free property. The detail is shown in Section 6. ut

2.3. Object Systems
For analysing concurrent objects, we are interested in the im-

plementation of objects (i.e., object internal actions) and the
possible interactions (i.e., call and return) between the client
and the object. For clients, object actions are internal and usu-
ally regarded as invisible actions, denoted by τ.

LetC be a fixed collection of objects. We have a set of actions
Act in the form of:

Act ::= τ | (t, call, o.m(n)) | (t, ret(n′), o.m)

where o ∈ C and t is the thread identifer. Silent action τ is invis-
ible and the other two actions are visible, where (t, call, o.m(n))
means thread t invokes method call method m(n) of object o
with parameter n; and (t, ret(n), o.m) means thread t returns the
value n′ for method m of object o.

We assume there is a underlying programming language to
describe the object program. The language equipped with the
operational semantics can generate a state transition system,
which is called the object system. As in [7, 5], to generate the
object behaviour, we assume the most general client that re-
peatedly invokes the object’s methods in any order and with all
possible parameters.

Definition 2.1 (Object systems). Let C be a fixed collection of
objects. An object system ∆ is a labelled transition system
(S ,−→, Act, ς), where

• S is the set of states;
• Act = {τ, (t, call, o.m(n)), (t, ret(n′), o.m) | o ∈ C, t ∈
{1 . . . k}}, where k is the number of threads, Act is the set
of actions;

• −→ ⊆ S × Act × S is the transition relation;
• ς ∈ S is the initial state.

Further, we have the following:

• Abstract object system, denoted by Θ, is an object sys-
tem of an abstract object, where the method body of each
method is specified by an atomic operation atomic{}.

• Concrete object system, denoted by O, is an object sys-
tem of a concrete object, where the method body of
each method is specified by the low level synchronization
mechanism.

• Linearizable specification: for a concrete object system O,
we use an abstract object system by turning each method
body of O into an atomic block [6, 8], as the corresponding
specification, which is called linearizable specification.

In the context, we sometimes use ∆ to denote an (abstract or
concrete) object system or the corresponding object program.

Each path of the object system is an execution of the object.
An execution fragment ρ (also called a path fragment) is a finite
or infinite alternating sequence of states and actions starting in
the initial state s0 that is ρ= {s0α0s1α1 · · · | (si, αi, si+1) ∈ −−→},
where αi ∈ Act, s0 = ς. A trace is a finite or infinite sequence
of observable actions obtained from a path by abstracting away
the states and τ-transitions. We shall write s

a
−→ s′ to abbreviate

(s, a, s′) ∈−→. A state s′ is reachable if there exists a finite
execution fragment such that s0

α0
−−→ s1

α1
−−→ · · ·

αn
−−→ sn = s′.

3. Linearizability

We briefly introduce the standard linearizability definition
[1]. We use a history H, which is a finite sequence of ac-
tions call and return, to model an execution of an object sys-
tem. Given an object system ∆, its set of histories is denoted by
H(∆). Subhistory H | t of H is the subsequence of all actions in
H whose thread name is t. The key idea behind linearizability
is to compare concurrent histories to sequential histories.

A history is sequential if (1) it starts with a method call, (2)
calls and returns alternate in the history, and (3) each return
matches immediately the preceding method call. A sequential
history is legal if it respects the sequential specification of the
object. A call is pending if it is not followed by a matching
return. Let complete(H) denote the history obtained from H by
deleting all pending calls if the method call has not taken effect
yet or adding the corresponding return action if the method call
has taken effect.

We use e.call and e.ret to denote, respectively, the invocation
and response events of an operation e. An irreflexive partial
order <H on the operations is defined as: (e, e′) ∈ <H if e.ret
precedes e′.call in H. Operations that are not related by <H are
said to be concurrent (or overlapping). If H is sequential then
<H is a total order. We first define the linearizability relation
between histories.

Definition 3.1 (Linearizability relation between histories).
H vlin S , read “H is linearizable w.r.t. S ”, if (1) S is sequen-
tial, (2) H|t = S |t for each thread t, and (3) <H ⊆ <S . ut

Thus H vlin S if S is a permutation of H preserving (1) the
order of actions in each thread, and (2) the non-overlapping
method calls in H. Let Γ denote the sequential specification
and H(Γ) the set of all histories of Γ. For each S ∈ H(Γ), S is
a legal sequential history. The linearizable object is defined as
follows.

Definition 3.2 (Linearizability of object systems). An object
system ∆ is linearizable w.r.t. a sequential specification Γ, if
∀H1 ∈ H(∆). (∃S ∈ H(Γ). complete(H1) vlin S). ut

Linearizability can be casted as the trace refinement [5, 8].
Trace refinement is a subset relationship between traces of two
object systems, an implementation and a linearizable specifica-
tion. Let trace(∆) denote the set of all traces in ∆. Formally, for

3

two object systems ∆1 and ∆2, we say ∆1 refines ∆2, written as
∆1 vtr ∆2, if and only if trace(∆1) ⊆ trace(∆2).

Theorem 3.3. [8] Let ∆ be an object system and Θ the corre-
sponding specification. All histories of ∆ are linearizable if and
only if ∆ vtr Θ.

The above theorem shows that trace refinement exactly cap-
tures linearizability. A proof of this result can be found in [8].

Remark: Abstract objects with the high-level construct, i.e.,
atomic blocks, provide us a concurrent specification [6, 7, 8].
Using a sequential specification standard for linearizability, it is
necessary to map the concurrent executions to sequential ones
limiting our reasoning to these sequential executions [14]. The
permutation of concurrent executions to sequential ones is not
convenient and even some highly-optimized objects, such as
the collision array in the elimination stack [13], do not have
the intuitive sequential sequences corresponding to them. Con-
current specification has a more direct and natural relationship
with the concurrent implementation. It allows method calls not
to terminate (e.g., never return) and the execution of methods to
overlap with the executions of others. It adequately models that
any method non-termination and overlapping execution inter-
val in the implementation (i.e., concrete object systems) can be
reproducible in the specification (i.e., abstract object systems).

4. Branching Bisimulation for Concurrent Objects

By observing the external behavior call and return, when the
abstract object system Θ performs an operation in an atomic
step (t, τ) that takes effect for the abstract stack, the concrete
one O may take several τ-steps to complete the operation with
the same effect as the atomic operation of Θ. This phenomenon
results in that the atomic step of Θ can be mimicked by a path
with stutter steps of O and a step that takes effect and these stut-
ter steps are exactly right the implementation details of the con-
crete object, which do not change the state of the object. Vice
versa, a path fragment of concrete object system O can also be
mimicked by the atomic step of Θ. Such the corresponding re-
lation between Θ and O can be well characterized by a natural
equivalence relation, which is an instance of branching bisimu-
lation [17] for concurrent objects. Branching bisimulation is an
action-based version of stutter bisimulation [18, 19].

Definition 4.1. Let ∆i = (S i,−→i, Acti, ςi) (i = 1, 2) be object
systems (abstract or concrete). A symmetric relation R ⊆ S 1 ×

S 2 is a branching bisimulation for concurrent object, if for any
(s1, s2) ∈ R, the following holds:

1. if s1
a
−−→ s′1, then there exists s′2 such that s2

a
−−→ s′2 and

(s′1, s
′
2) ∈ R, where a is a visible action (t, call, o.m(n)) or

(t, ret(n′), o.m);

2. if s1
τ
−−→ s′1, then (i) either (s′1, s2) ∈ R, (ii) or there exists a

finite path fragment s2l1 . . . lk s′2 (k ≥ 0) such that s2
τ

==⇒ lk
τ
−−→ s′2 and (s1, li) ∈ R (1 ≤ i ≤ k) and (s′1, s

′
2) ∈ R;

where s2
τ

==⇒ lk denotes state lk is reachable from s2 by perform-
ing zero or more τ-transitions. ∆1 and ∆2 are called branching
bisimilar, denoted ∆1 ∼B ∆2, if there exists a branching bisim-
ulation R such that (ς1, ς2) ∈ R. ut

Note that the definition of ∼B can alternatively be given by:

∼B=
⋃
{R | R is a branching bisimulation with (ς1, ς2) ∈ R}

By standard means, we can prove that ∼B is an equivalence
relation, i.e., ∼B is reflexive, symmetric and transitive.

Relating to the implementation of concurrent objects, the in-
tuitive meaning of Definition 4.1 is explained as follows. Con-
dition (1) states that every outgoing transition of s1 labelled
with a visible action must be matched by an outgoing transi-
tion of s2 with the same visible action. Condition (2) has two
cases: (i) for each transition s1 → s′1 labelled with τ, either
(s′1, s2) ∈ R, which means the step from s1 to s′1 is a stutter step
that does not change the state of the shared object; (ii) or the
transition is matched by a path fragment s2l1 . . . lk s′2 such that
(s′1, s

′
2) ∈ R and s2l1l2 . . . lk are a series of stutter steps and for

each li, (s1, li) ∈ R (a path is written as s0s1 . . . sn for short).
Note that stutter steps from s2 to lk do not change the object
to a new state, but the last step from lk to s′2 is an atomic step
at which point the entire effect of the method call takes place,
which corresponds to the execution of the atomic block in the
abstract object. After the step that takes effect, the method call
may continue to take zero or more stutter steps to complete the
remaining method call. Since R is symmetric, the symmetric
counterparts of cases (1)-(2) also apply.

As we see, Definition 4.1 reveals an equivalence relation
∼B between (concurrent) abstract object Θ and concrete object
O, which shifts the linear-time paradigm to a branching-time
paradigm. The key point is the condition (2). It is easy to un-
derstand the former case that Θ simulates O. For the latter case
that O simulates Θ, condition 2-(ii) (k ≥ 0) in Definition 4.1 is
required, which provides that for each state in Θ, there can be
matched by a stutter sequence of τ-steps in O.

Theorem 4.2. Let Θ be an abstract object system. If O ∼B Θ,
then O is linearizable.

Proof: Because O ∼B Θ, from Definition 4.1, it is easy to
see ∼B preserves trace equivalence, i.e., trace(O) = trace(Θ).
Therefore, O vtr Θ. By Theorem 3.3, O is linearizable. ut

The result shows that linearizability can be proven if we can
establish the branching bisimulation equivalence ∼B between
an abstract object and a concrete object.

5. Progress Properties

5.1. Divergence-sensitive branching bisimulation

Divergence means the infinite τ-path of a system. If an object
system includes an infinite internal path, i.e., path that only con-
sists of stutter τ-steps, then the path will stay forever in a loop
without performing any observable action such as (t, ret(n),m).

4

We call the stutter path divergent. To distinguish infinite se-
ries of internal transitions from finite ones, we treat divergence-
sensitive branching bisimulation [14, 17].

Definition 5.1. Let ∆i = (S i,−→i, Act, ςi) be object systems
and R ⊆ S 1 × S 2 an equivalence relation (such as ∼B) on the
states of ∆1 and ∆2.

• A state u is R-divergent if there exists an infinite path frag-
ment uu1u2 . . . such that (u, ui) ∈ R for all i > 0.

• R is divergence-sensitive if for any (u, v) ∈ R: if u is diver-
gent if and only if v is divergent.

Definition 5.2. If two states s1 and s2 in an object system ∆

is divergence-sensitive branching bisimilar, denoted by s1 ∼
div
B

s2, if there exists a divergence-sensitive branching bisimulation
relation R on ∆ such that (s1, s2) ∈ R. ut

Two systems ∆1 and ∆2 are divergence-sensitive branching
bisimilar, if their initial states are related by ∼div

B
in the disjoint

union of ∆1 and ∆2.

5.2. Discussions on divergence of object systems

The notion ∼div
B

is a variant of ∼B, only differing in the treat-
ment of divergence. We discuss the ability of these notions ∼B,
∼div
B

and vtr on identifying the divergence of object systems.
Consider the following three counters in Figure 2 associated

with methods inc and dec, where inc are the same, whereas
dec are implemented with distinct progress conditions.

Counter ∆1:

int inc()

atomic {c := c+1;}

return;

int dec()

atomic {c := c-1;}

return;

Counter ∆2:

int inc()

atomic {c := c+1;}

return;

int dec()

while (1) do {skip;}

return;

Counter ∆3:

int inc()

atomic {c := c+1;}

return;

int dec()

while (1) do {

if (c>0) then c:=c-1;}

return;

Figure 2: Different progress properties of methods dec().

The dec of object ∆1 is wait-free (and also lock-free) which
always guarantees each computation makes progress. The dec
of ∆2 does nothing and never makes progress. The dec of ∆3
is a dependent progress condition that makes progress only if
c > 0. This progress condition of ∆3 is dependent on how the
system schedules threads, which is different from the lock-free
and wait-free properties of ∆1.

Assume that thread t1 invokes dec and t2 invokes inc once
concurrently. The transition systems for ∆1, ∆2 and ∆3 are
partly presented in Figure 3 respectively, where we show the

full transition relations from r3, s3 and u3; and other transi-
tions which are not relevant to our discussion are omitted. For
convenience, we write ”i” to denote τ, and (t1, call, dec) and
(t1, ret, dec) by dec1 and ret1 respectively (it is the same to
inc2). Initially, the counter c = 0. Figure 3 (a) shows the ex-
ecutions of ∆1, where each call by threads t1 and t2 can finish
the execution in a finite number of steps. In (b), the execution
of dec1 is a self-loop and never returns. In (c), the execution
of dec1 is dependent, where at u1 and u3 it is a selp-loop that
makes no progress, but after u4 that the atomic operation τ2 up-
dates c = 1, t1 evetually returns.

In Figure 3 (b), the self-loop of ∆2 does not generate the
return action ret1, whereas ∆1 in (a) can always do the re-
turn action ret1. Therefore, by condition (1) of Definition 4.1,
r3 �B s3. That is, ∼B can distinguish the divergent state s3 in
(b) and non-divergent state r3 in (a).

However, in Figure 3 (c), which is a dependent progress con-
dition, it is easy to see r7 ∼B u5, so r3 ∼B u3. Thus, for this
case, ∼B is not sufficient to distinguish the self-loop of state u3
in (c) from the state r3 in (a). However the notion of divergence-
sensitive branching bisimulation ∼div

B
can distinguish any diver-

gent state from non-divergent state, that is, u3 �div
B

r3.
For the refinement relation vtr, we found that it cannot dis-

tinguish any divergent states, even when the simplest case in
Figure 3 (a) and (b), where trace(s0) vtr trace(r0). Therefore
relation vtr is not suitable for checking any progress properties.

5.3. Checking progress properties via bisimulation

There are various progress properties of concurrent objects,
such as lock-freedom and wait-freedom for non-blocking con-
currency, and starvation-freedom and deadlock-freedom for
blocking concurrency. These progress properties can all be
specified in LTL © (LTL without next) [15, 24].

Because the linearizable specification Θ should allow all pos-
sible interleavings and be able to terminate the execution of its
atomic block at any state, there always exists some thread that
can make progress and perform the return action in any execu-
tion of Θ. This implies that any execution of abstract object
system Θ is lock-free, i.e., any abstract object system Θ is lock-
free. Therefore, obtaining a lock-free abstract model is straight-
forward directly from the concurrent specification.

Lemma 5.3. The linearizable specification Θ is lock-free.

Proof: Θ consists of a single atomic block (see Section 3.2), of
which the internal execution corresponds to the computation of
the sequential specification that by assumption is always termi-
nating. Hence for any run of Θ, there always exists one thread
to complete its method call in finite number of steps. ut

To obtain wait-free abstract object systems, we need to en-
force some fairness constraints to the transition systems to rule
out the undesirable paths. The common fair properties (such as
strong fairness) can be expressed in next-free LTL [14].

It is known that divergence-sensitive branching bisimulation
implies (next-free) LTL ©-equivalence [14]. This also holds for
countably infinite transition systems that are finitely branching.

5

0r

2r

2inc

1r

1dec

2inc

3r

7r

1t

2t

1ret

10r

5r
2ret

8r

1t

1ret 4r

6r

2t

2ret

9r

1t

1ret2ret
11r

2t

(a) System ∆1.

0s

2s

2inc

1s

1dec

2inc

3s

4s

2t

2ret

5s

1t

1t

1t

1t

(b) System ∆1.

0u

2u

2inc

1u

1dec

2inc

3u

4u

2t

2ret

5u

1t

1t

1t

6u
1ret

8u7u

2ret

1t

2ret
1ret

9u
(c) System ∆1.

Figure 3: Divergence-sensitivity of bisimulation for object systems.

Thus, O ∼div
B

Θ implies the preservation of all next-free LTL
formulas. Since the lock-freedom (and other progress proper-
ties [15, 24]) can be formulated in next-free LTL, for abstract
object Θ and concrete object O, the lock-free property can be
preserved by the relation O ∼div

B
Θ.

Theorem 5.4. Let O be a concrete object system, and Θ the
linearizable specification of O.

1. If O ∼div
B

Θ, then O is linearizable and lock-free.
2. If O ∼div

B
Θ and Θ is wait-free, then O is linearizable and

wait-free.

Proof: Because O ∼div
B

Θ, from Definitions 5.1 and 5.2, it is
easy to see ∼div

B
preserves trace equivalence, i.e., trace(O) =

trace(Θ). Therefore, O vtr Θ. By Theorem 3.3, O is lineariz-
able. Further, because divergence-sensitive branching bisimu-
lation implies next-free LTL formula [14], the lock-free prop-
erty can be preserved by ∼div

B
. By Lemma 5.3, Θ is a lock-free

abstract object, so if O ∼div
B

Θ, then O is lock-free. The case of
wait-free property can be proved similarly. ut

6. Experiments on Verifying Lock-Free Stacks

To show the efficiency and effectiveness of our method for
proving linearizability and progress properties, we conduct the
experiment on verifying non-blocking stacks [16, 27, 30]. We
employ the Construction and Analysis of Distributed Processes
(CADP) toolbox [20] to model and verify the algorithms.

6.1. Analyzing the concurrent stack with hazard pointers
Treiber stack. Figure 4 (Lines 1-21) shows the Treiber’s stack
algorithm [16], which involves two methods push and pop. The
stack is implemented as a linked-list pointed by the Top pointer
(shared variable). Both operations modify the stack by doing a
CAS. The linearization point of push is Line 7 if the CAS suc-
ceeds, and the linearization point of pop is either Line 14 if the
stack is empty; or Line 18 if the CAS succeeds.

Memory reclamation - hazard pointers. We further consider a
complicate concurrent stack that involves with hazard pointers,
which provides a memory reclamation mechanism to avoid the
ABA problem [27]. The hazard pointer variation is shown in
Figure 4 (Lines 22-45), which includes push HP and pop HP.
Method push HP is the same as push. Method pop HP involves
a hazard pointer before the ABA-prone code (Line 37), and
calls the method Retire Node(o) (Line 43) after the success-
ful CAS operation to determine which retired locations can be
freed. The codes of Retire Node(o) can be found in [27].
These operations are used to reclaim memory blocks safely,
which is not relevant to the effect of the method call. Further to
achieve the desired lock-freedom of the stack, it is required that
method Retire Node(o) should be wait-free.

Figure 5 presents an abstract stack as the specification, where
each method body of methods push spec and pop spec is im-
plemented by an atomic block.

The linearization point of push/push HP and pop/pop HP of
the concurrent stacks is independent of the dynamic execution,
which can be simply located on the implementation code such
that the effect of the method call always takes place at the static
linearization point between the method call and the correspond-
ing method return. Therefore, the effect of each mehtod call can
be abstracted into the atomic operation of the linearizable spec-
ification; and vice versa, the atomic operation of the specifica-
tion can be refined to several τ-steps including a linearization
point of the concurrent stack. Such the corresponding relation
can be naturally characterized by the branching bisimulation
equivalence defined in Definition 4.1. Our experiment confirms
the existence of the branching bisimulation equivalence relation
between the concurrent stack (with hazard pointers) in Figure 4
and the abstract stack in Figure 5. To check the progress con-
dition, the explicit divergence in branching bisimulation is also
need to be considered.

6

class Node { int value; Node next; Node (int value) { value = value; next = null; } } Node Top; // Top is a shared variable.
void init() { Top := null }

01 void push(v) {
02 bool done:=false;
03 Node x:= new_node(v);
04 while(!done) {
05 Node old:=Top;
06 x.next:=old;

07 done:=CAS(&Top,old,x);

08 }
09 return;
10 }

11 int pop() {
12 bool done:=false;
13 while(!done) {
14 Node old:=Top;

15 if (old==null)
16 then return EMPTY
17 Node x:=old.next;

18 done:=CAS(&Top,old,x);

19 }
20 return old.data;
21 }

22 void push_HP(v) {
23 bool done:=false;
24 Node x:= new_node(v);
25 while(!done) {
26 Node old:=Top;
27 x.next:=old;

28 done:=CAS(&Top,old,x);

29 }
30 return;
31 }

32 pop_HP () {
33 done:=false;
34 while(!done) {
35 Node old:=Top;
36 if(old=null) return EMPTY;
37 *hp:=old;

38 if(Top==old)
39 x:=old.next;
40 done:=cas(&Top ,old ,x);
41 }
42 v:=o.value;

43 Retire Node(o);
44 return v;
45 }

Figure 4: Treiber’s lock-free stack push/pop and the lock-free stack with hazard pointers push HP/pop HP, where the implementa-
tion of Retire Node(o) can be found in [27].

#th/#op ∆spec ∆Tr
Verification time (in s) (∆Tr)

∆HP
Verification time (in s) (∆HP)

Thm 5.4 (linearizability/lock-free) Thm 3.3 (linearizability) Thm 5.4 (linearizability/lock-free) Thm 3.3 (linearizability)

2/1 70 81 0.73 0.80 195 0.76 0.97

2/2 487 823 0.74 0.92 7493 0.80 2.93

2/3 1678 3673 0.81 2.15 93352 1.45 25.30

2/4 4237 10999 0.93 5.08 808079 6.67 232.02

2/5 8920 26101 1.04 11.04 5447816 101.11 10514.94

2/6 16651 53197 1.20 21.89 31953747 283.87 >16h

2/7 28516 97435 1.63 39.55 174455921 1528.88 >10h

2/8 45769 164881 2.14 63.14 M. O. - -

3/1 706 1036 2.25 2.92 8988 2.51 9.11

3/2 12341 40309 1.09 21.48 4937828 76.26 >10h

3/3 77850 411772 4.11 230.60 M. O. - -

3/4 314392 2247817 19.90 >10h M. O. - -

4/1 6761 15595 0.71 11.36 612665 9.36 807.35

4/2 304197 2351919 22.52 4665.74 M. O. - -

5/1 64351 261527 10.48 816 60598453 408.27 >10h

6/1 616838 4771785 141.86 81316.58 M. O. - -

Table 1: Experimental results on verifying the lock-free stacks with/without hazard pointers.

void push_spec(int x)
atomic {
Node node:=new Node(x);
node.next:=Top;
Top:=node;
}
return;

int pop_spec ()
atomic {
if (Top == null) b:=false
else
Node Curr_Top :=Top;
Top:= Curr_Top.next; b:=true
}
if (b== false)
then return EMPTY
else return Curr_Top.data

Figure 5: The linearizable specification of concurrent stacks.

6.2. Experimental results

To verify linearizability and lock-free property of concurrent
stacks, we check that the abstract object in Figure 5 and the two
concrete objects in Figure 4 are divergence-sensitive branching

bisimilar. For the automated verification, we conduct the exper-
iment on finite systems. All experiments run on a server which
is equipped with a 4 × 24-core Intel CPU @ 2.3 GHz and 1024
GB memory under 64-bit Centos 7.2.

The verification results of both versions of the concurrent
stacks are shown in Table 1, where M.O. means memory out.
The first column indicates the number of threads and opera-
tions. The second and third columns indicate the state space of
the specification ∆spec and Treiber’s stack ∆Tr respectively; the
fourth and the fifth columns indicates the verification time (in
seconds) of ∆Tr based on bisimulation technique (Theorem 5.4)
and trace refinement checking (Theorem 3.3). The next column
shows the state space of the variant stack with hazard pointers
∆HP. And the last two columns indicate the verification time (in
seconds) of ∆HP based on the two kinds of methods.

From the experimental results, we can see that, the branching
bisimulation method is much more feasible and efficient than
trace refinement checking for finite-state systems. For example,
based on the bisimulation equivalence checking, the verification
of ∆HP with about 5 million states (in the case 2/5) takes around
100 seconds, while trace refinement checking takes around 3

7

hours. For the most million states, the time of trace refinement
checking is greater than 10 hours.

6.3. Bugs hunting - the stack with revised hazard pointers [30]
While we verify the correctness of the concurrent stack with

the revised hazard pointers in [30], a counter-example (a trace
which witnesses the concrete object and the specification are
not divergence-sensitive branching bisimilar) is given by CADP
with just two concurrent threads. The revised version of the
hazard pointers shown in Figure 7 avoids the ABA problem at
the expense of violating the wait-free property of hazard point-
ers in the original algorithm [27]. The error-path ends in a self-
loop (at state 20 in Figure 6) in which one thread keeps read-
ing the same hazard pointer value of another thread in function
retireNode(t) without making any progress and causes the
divergent path of the stack. So the revised stack in [30] is not
lock-free.

Figure 6: The counter-example of trace generated by CADP.

pop() {
local done ,next ,t,t1;
done:= false;
while(!done) {
t:=Top;
if(t==null)

return EMPTY;

HP[tid]:=t;
t1:=Top;
if(t==t1) {
next:=t.Next;
done:=cas(&Top ,t,next) }

}
retireNode(t);
HP[tid]:= null;
return t;
}

retireNode(t);
local i,t’;
i:=1;
while(i<= th_num) {
if(i!=tid) {

t’:=HP[i];
if (t’!=t) {
i:=i+1;}

}
else i:=1+1;
}
}

Figure 7: A buggy implementation of the lock-free stack [30].

Summary. Our experiment presents the following advantages:
(i) We provide a uniform notion ∼div

B
to verify both the lineariz-

ability and lock-freedom of the variant of concurrent stacks;
(ii) Our techniques are fully automated (for finite-state systems)
and rely on the efficient existing branching bisimulation algo-
rithms. (iii) In contrast to proof techniques [3, 5, 28] for lin-
earizabilty and progress, our method is able to generate coun-
terexamples in an automated manner.

Our method is built on the behaviour of objects, not on their
statically syntactic constructs. Thus, for any concurrent objects,
we do not care how the object algorithm is constructed, but only
concerns state transition relations between the abstract and con-
crete system models. Therefore, our method can be applied to
general concurrent object programs.

Finally, we like to point out that divergence-sensitive branch-
ing bisimulation implying LTL © equivalence applies to any
countable transition system. This implies that all progress prop-
erties of abstract object programs are carried over to bisimilar
concrete ones. For analysing infinite systems, branching bisim-
ulation can be done using standard proof techniques such as pa-
rameterised boolean equation systems [26]. For finite-state sys-
tems, polynomial-time algorithms can be employed [25]. Note
that in the latter setting, trace refinement is PSPACE-complete.

7. Related Work and Conclusion

As we mentioned in the introduction, almost all the work in
the literature on the verification of the correctness of concur-
rent objects are based on the refinement techniques. Our work
takes the first step to explore the divergence-sensitive bisimula-
tion equivalence technique to verify linearizability and progress
properties of concurrent objects 1.

Our transition system models are closely related to [8]. The
key idea of [8] is to construct a linearizable specification using
labeled transition systems (LTSs) and describe linearizability as
the trace refinement relation between the specification and the
concurrent algorithm. They also use abstract objects and state
transition systems as semantic models for describing the be-
haviour of concurrent objects, which correspond to our abstract
and concrete object systems. However, the trace refinement re-
lation they proposed is only suitable for checking linearizabil-
ity, not for checking other properties e.g., progress properties.
Moreover, they do not discuss the (bi)-simulation relations be-
tween an abstract program and a concrete object program.

In our work, we reveal that there exists a natural (branching)
bisimulation equivalence between the abstract and the concrete
object if we use a coarse-grained concurrent object as the spec-
ification. Moreover, when do model checking, for finite-state
systems, polynomial-time branching bisimulation checking al-
gorithms is provided [25] - in contrast to (classical) PSPACE-
complete trace refinement - for checking linearizability.

Different from [8], where the trace refinement is shown to be
equivalent to linearizability, our work (Theorem 4.2, Theorem
5.4) shows that (divergence-sensitive) branching bisimulation
implies linearizability. If an object system and the specification
are (divergence-sensitive) branching bisimilar, then the object is
linearizable; but if they are not (divergence-sensitive) branching
bisimilar, then it will generate a counterexample, which needs
to be analyzed to determine whether it violates the linearizabil-
ity (e.g., it may violate the lock-free property).

Other model checking methods on verifying linearizability
are [21, 22, 23]. Cerny et al. [21] propose an method automata

1This paper is a revised version of our technical report [9].

8

to verify linearizability of concurrent linked-list implementa-
tions, but only for the execution of two fixed operations. Vechev
et al. [22] use SPIN model checker to model and verify lineariz-
ability. Burckhardt et al. [23] present an automatic linearizabil-
ity checker Line-Up based on the model checker CHESS.

To verify progress properties, Gotsman etal. [7] first pro-
pose a generalisation of linearizability such that it can specify
liveness. Based on the definition, they reveal a connection be-
tween lock-free property and a termination-sensitive contextual
refinement, but they do not discuss other progress properties.
Liang etal. [6, 28] study five progress properties and show that
each progress property is equivalent to a specific termination-
sensitive contextual refinement. But they need to define dif-
ferent refinement relations for different progress properties. In
our work, divergence-sensitive branching bisimulation implies
LTL © equivalence and can preserve all progress properties that
are specified in LTL ©. So there is no need to define different
relations for different progress properties. Further, our recent
work [29] extends the proposed bisimulation method such that
it can verify more complicated concurrent objects as in [5, 28].

Conclusion. This paper proposes a novel and efficient method
based on divergence-sensitive branching bisimulation for ver-
ifying linearizability and lock-free property of concurrent ob-
jects. Instead of using trace refinement to check linearizabil-
ity, our approach enables the use of branching bisimulation
techniques for checking both the linearizability and progress
properties of concurrent objects. Our experiment presents that
(divergence-sensitive) branching bisimulation is an inherent
equivalence relation between the Treiber’s lock-free stack (and
the revised stack with hazard pointers) and the corresponding
concurrent specification. Our method also reveals a new bug
violating the lock-freedom.

References

[1] M. Herlihy and J. Wing. Linearizability: A Correctness Condition for
Concurrent Objects. ACM Trans. on Program. Lang. and Syst. 12(3):
463-492. 1990.

[2] S. Owicki and L.Lamport. Proving Liveness Properties of Concurrent
Programs. ACM Transactions on Programming Languages and Systems.
Vol.4(3):455-495. 1982.

[3] Vafeiadis Victor. Modular Fine-Grained Concurrency Verification. Cam-
bridge University, Phd Thesis. 2008.

[4] H. Liang, X. Feng, M. Fu. A Rely-Guarantee-based Simulation for Veri-
fying Concurrent Program Transformations. In: POPL:455-468. 2012.

[5] H. Liang, X. Feng. Modular Verification of Linearizability with Non-
Fixed Linearization Points. In: PLDI, pages 459-470. 2013.

[6] H. Liang, J. Hoffmann, X. Feng, Z. Shao. Characterizing Progress Prop-
erties of Concurrent Objects via Contextual Refinements. In: CONCUR,
LNCS 8052, pages: 227-241. 2013.

[7] Alexey Gotsman, Hongseok Yang. Liveness-Perseving Atomicity Ab-
straction. In: ICALP, LNCS:6756: 453-465. 2011.

[8] Y. Liu, W. Chen, et al. Verifying Linearizabiity via Optmized Refinement
Checking. IEEE Trans. on Soft. Eng. 39(7): 1018-1039. 2013.

[9] X. Yang and J. -P. Katoen. Proving Linearizability and Progress of Con-
current Objects by Bisimulation. Technical Report ISCAS-SKLCS-14-
16. Sep. 2014.

[10] P. Cerny, A. Radhakrishna, et al. Model Checking of Linearizability of
Concurrent List Implementations. In: CAV, pages 465-479. 2010.

[11] I. Filipovic, P. O’Hearn, N. Rinetzky, H. Yang. Abstraction for Concur-
rent Objects. Theoretical Computer Science. Vol. 411(51-52): 4379-4398.
2010.

[12] M. Herlihy, N. Shavit. The Art of Multiprocessor Programming. Morgan
Kaufmann, April, 2008.

[13] D. Hendler, N. Shavit, L. Yerushalmi. A Scalable Lock-Free Stack Algo-
rithm. In: SPAA, pages 206-215. 2004.

[14] C. Baier and J.-P. Katoen. Principles of Model Checking. The MIT Press.
2008.

[15] E. Petrank, M. Musuvathi, et al. Progress Guarantee for Parallel Programs
via Bounded Lock-Freedom. In: PLDI, pages 144-154. 2009.

[16] R. K. Treiber. Systems Programming: Coping with Parallelism. Technical
Report RJ 5118, IBM Almaden Research Center, April 1986.

[17] Rob J. van Glabbeek and W. Peter Weijland. Branching Time and Ab-
straction in Bisimulation Semantics. Journal of the ACM. Vol.43(3):555-
600. 1996.

[18] M. C. Browne, E. M. Clarke and O. Grumberg. Characterizing Finite
Kripke Structures in Propositional Temporal Logic. Theoretical Com-
puter Science. Vol.59(1-2):115-131. 1988.

[19] Kedar S. Namjoshi. A Simple Characterization of Stuttering Bisimula-
tion. In: FSTTCS, LNCS 1346, pages 284-296. 1997.

[20] Radu Mateescu and Wendelin Serwe. Model Checking and Performance
Evaluation with CADP Illustrated on Shared-Memory Mutual Exclusion
Protocols. Vol.78(7):843-861. Science of Computer Programming. 2013.

[21] R. Colvin, L. Groves, V. Luchangco and M. Moir. Formal Verification of a
Lazy Concurrent List-Based Set Algorithm. In: CAV, LNCS 4144, pages
475-488. 2006.

[22] M. T. Vechev, E. Yahav, and G. Yorsh. Experience with model checking
linearizability. In: SPIN, pages: 261-278. 2009.

[23] S. Burckhardt, et al. Line-Up: A Complete and Automatic Linearizability
Checker. In: PLDI, pages 330-340. 2010.

[24] B. Dongol. Formalising Progress Properties of Non-Blocking Programs.
In: ICFEM, pages 284-303. 2006.

[25] J. F. Groote, F. Vaandrager. An Efficient Algorithm for Branching Bisim-
ulation and Stutter Equivalence. In: Automata, Language and Program-
ming, LNCS 443, pages 626-638. 1990.

[26] T. Chen, B. Ploeger, J. van de Pol and T. Willemse. Equivalence Checking
for Infinite Systems Using Parameterized Boolean Equation Systems. In:
CONCUR, vol.4703, pages: 120-135. 2007.

[27] M. M. Michael. Hazard Pointers: Safe Memory Reclamation for Lock-
Free Objects. IEEE Trans. Parallel Distrib. Syst., 15(6):491–504, 2004.

[28] H. Liang, X. Feng, Z. Shao. Compositional verification of termination-
preserving refinement of concurrent programs. CSL-LICS, 2014: 65:1-
65:10.

[29] X. Yang, J. -P. Katoen, H. Lin and H. Wu. Proving Linearizability via
Branching Bisimulation. CoRR abs/1609.07546. Sep., 2016.

[30] M. Fu, Y. Li, X. Feng, Z. Shao, and Y. Zhang. Reasoning about Op-
timistic Concurrency Using a Program Logic for History. In CONCUR
2010, LNCS vol.6269, pages 388–402. Springer, 2010.

9

	1 Introduction
	2 Preliminaries
	2.1 Abstract and Concrete Objects
	2.2 Lock-Freedom and Wait-Freedom
	2.3 Object Systems

	3 Linearizability
	4 Branching Bisimulation for Concurrent Objects
	5 Progress Properties
	5.1 Divergence-sensitive branching bisimulation
	5.2 Discussions on divergence of object systems
	5.3 Checking progress properties via bisimulation

	6 Experiments on Verifying Lock-Free Stacks
	6.1 Analyzing the concurrent stack with hazard pointers
	6.2 Experimental results
	6.3 Bugs hunting - the stack with revised hazard pointers DBLP:conf/concur/FuLFSZ10

	7 Related Work and Conclusion

