
Appears in the 43rd Annual IEEE/ACM International Symposium on Microarchitecture, 2010 (MICRO 2010)
 Atlanta, Georgia, December, 2010

 1

Fractal Coherence: Scalably Verifiable Cache Coherence

Meng Zhang
Dept. of ECE

Duke University
Durham, NC, USA
mz28@duke.edu

Alvin R. Lebeck
Dept. of Computer Science

Duke University
Durham, NC, USA
alvy@cs.duke.edu

Daniel J. Sorin
Dept. of ECE

Duke University
Durham, NC, USA
sorin@ee.duke.edu

Abstract—We propose an architectural design methodology for
designing formally verifiable cache coherence protocols, called
Fractal Coherence. Properly designed to be fractal in behavior,
the proposed family of cache coherence protocols can be
formally verified correct for systems with an arbitrary number
of cores, using existing, automated formal tools. We show, by
designing and implementing a specific Fractal Coherence
protocol, called TreeFractal, that Fractal Coherence protocols
can attain comparable performance to traditional snooping
and directory protocols.

Keywords: multicore, cache coherence, formal verification

I. INTRODUCTION
A buggy cache coherence protocol might lead to a

catastrophic failure of the shared-memory system that
employs this protocol. Carefully designing and inspecting
the protocol is necessary. However, this method is
insufficient to ensure the correctness of a modern cache
coherence protocol. To achieve high performance, current
cache coherence protocols allow multiple outstanding
requests and concurrent operations. This concurrency implies
numerous transient states and nondeterministic behavior due
to race conditions. To ensure the reliability of the protocol,
design verification (also known as “design validation” or
“pre-silicon validation”) must be done as part of
implementing cache coherence protocols for real systems.

Traditionally, the verification of cache coherence
protocols is mostly performed via simulations [5, 33]. The
system is simulated while running benchmarks, stress tests,
and random code sequences, and the output is checked to see
whether the cache coherence protocol is correct. However,
testing is extremely unlikely to reach all possible states no
matter how long it runs, especially when testing a complex
cache coherence protocol with many caches, each of which
can have cache blocks in many different states. This inability
to reach all system states limits the ability of simulation
methods to find subtle bugs. Previous work [7, 9, 11, 28]
shows cache coherence protocols can still have bugs even
after extensive simulations.

Formal verification can be used to overcome the
incompleteness of simulation. Formal verification falls into
two categories [10]: 1) model checking, which employs
automated tools to verify the design and 2) theorem proving,
which relies heavily on the user’s guidance to complete the
proof. We constrain our focus in this paper to the first
category because theorem proving is not widely used; the

user effort to guide a theorem prover through a non-trivial
proof is generally impractical. Automated formal verification
tools have been used to help verify the correctness of cache
coherence protocols. The tools traverse all possible states in
the system and thus the method is complete. Despite this
completeness advantage over simulation, formal verification
has its own unavoidable problems. The most obvious is the
“state explosion problem”; as an exhaustive method, the state
space explodes exponentially as the number of cores
increases. Despite efforts to optimize these tools, even
configurations with only a few cores saturate state-of-the-art
formal verification tools and only small systems can be
formally verified. Unfortunately, there is currently no
guarantee that the correctness of a small system implies the
correctness of a much bigger system [3]. In this sense, even
if we have a formally verified cache coherence protocol with
4 cores, we cannot trust that it is bug-free if we implement it
for a 64-core system. Our work seeks to provide this
guarantee by changing the way we design coherence
protocols.

We propose, from the perspective of architects, a new
methodology for designing cache coherence protocols, called
Fractal Coherence. Our goal is to design cache coherence
protocols for large, many-core systems such that the
protocols are verifiable using existing, automated, easy-to-
use formal tools. Fractal Coherence protocols originate from
fractal theory and leverage the self-similarity characteristic
of fractals. The smallest complete system, called the
minimum system, is small enough to be easily verified
coherent using existing formal verification tools without
incurring the state explosion problem. Larger systems can be
verified fractal in behavior by showing that any scale of the
system behaves exactly the same with regard to coherence.
The whole system can then be proved coherent using
induction, and thus the verification of a Fractal Coherence
protocol can be scaled to any arbitrary N-node system.
Fractal Coherence eliminates the burdensome and error-
prone user work to abstract the system and fit it into the
verification tools.

We design a concrete example of a Fractal Coherence
protocol, called TreeFractal, based on the proposed
methodology. The primary difference between TreeFractal
and traditional protocols is that TreeFractal introduces an
interface component to maintain the fractal behavior at each
scale. TreeFractal connects the interfaces, the cores, the
caches and the memories to construct a shared-memory
system. We present the straightforward steps to verify cache

 2

coherence on this system. We then evaluate TreeFractal with
full system simulation and show that it achieves comparable
performance to typical snooping and directory protocols.

Previous research pursued optimized methods to verify
the cache coherence protocol of a system after the protocol is
designed. In contrast, we incorporate verifiability of the
cache coherence protocol into the early design stage. This
idea corresponds to the concept of “design for verifiability”
presented by Milne [24], which is a counterpart to the
“design for testability” in the formal verification area.
Taking formal verification effort as a design constraint can
ease verification effort, improve product quality, and reduce
a product’s time to market. In all, we make the following
contributions:

● We propose Fractal Coherence: a design methodology
for formally verifiable cache coherence protocols based on
fractal theory. Fractal Coherence ensures each scale of the
system has the same behavior with regard to coherence.
Then the verification of cache coherence for the minimum
system can be scaled to larger systems. We show that
through straightforward verification with existing tools, any
arbitrary N-node system can be proved cache coherent.

● We implement a specific Fractal Coherence protocol,
TreeFractal, and present the verification process for any
arbitrary N-node system with this protocol. This process
includes formal verification of the minimum system and an
equivalence check showing that the whole system has fractal
behavior.

● We experimentally evaluate TreeFractal using full
system simulation and show it has comparable performance
to traditional snooping and directory protocols without
adding significant implementation costs.

II. FRACTAL COHERENCE
Our goal is to design a coherence protocol that is within

the capability of existing, automated verification tools, yet
still scales to many-core systems. Considering the two
systems in Fig. 1, we assume that System A is a shared-
memory system that is small enough to be verified coherent
by existing formal tools. System A is part of a much larger
System B. We want to formally verify that System B is
cache coherent, but System B is large and way beyond the
capability of existing tools. Intuitively, if there is a certain
kind of similarity between System A and System B, we may
be able to extend the verification of System A to the scale of
System B.

This intuition inspires us to use fractal theory. A fractal is
a shape that can be split into parts in which each part is a
reduced-size copy of the whole [18]. At any scale, the fractal
appears exactly identical. We focus on the cache coherence
behavior of each scale instead of only the structure. Thus, if
System B has fractal behavior and System A is a reduced-
size copy of System B, then we can prove the cache
coherence of B based on the cache coherence of A.

We propose Fractal Coherence, a class of coherence
protocols that leverages the self-similarity characteristic of
fractal theory to enable the verification of large scale systems.
A system with Fractal Coherence is architected in a manner

 Verifiable small system: A unverifiable large system: B
Figure 1. Scalability problem in verification of cache coherence

that is formally verified to be fractal in behavior with regard
to coherence.

In the rest of this section, we first introduce the fractal
system architecture (Section II.A). We then describe the two
steps needed to verify that a given system with a Fractal
Coherence protocol is correct (i.e., maintains coherence) for
any arbitrary number of cores. The first step is to verify that
the smallest scale of the system is coherent (Section II.B).
The second step is to show that the system is fractal with
respect to coherence (Section II.C). We then present an
inductive proof that these two verification steps are the only
formal verification steps needed (Section II.D). Unlike the
two verification steps, which are part of the design flow for
each Fractal Coherence protocol developed, the inductive
proof need only be performed once to show that the two
verification steps are sufficient.

A. System Architecture
To ensure fractal behavior, Fractal Coherence requires a

hierarchical logical structure. However, Fractal Coherence
does not place any requirements on the physical topology of
the system. The hierarchical logical structure can be
implemented on any kind of physical topology, such as a 2D
mesh, torus, ring, etc. Hereafter, when we refer to a system’s
structure, we are referring to its logical structure. In this
paper, we confine our discussion to the tree structure with a
consistent degree at each level, but we believe our
methodology can also apply to other hierarchical logical
structures.

The tree structure in Fractal Coherence can be either a
balanced tree or an unbalanced tree, because Fractal
Coherence does not rely on the fractal structure; instead, it
relies on the fractal behavior. Fig. 2 shows several possible
binary tree structures for Fractal Coherence. The shadowed
square components are basic nodes (corresponding to the
leaf nodes in the tree structure), which may have a number of
caches, cores and memories. The elliptical shape components
are the interfaces (corresponding to the internal nodes in the
tree structure) that support the fractal behavior. Depending
on its position in the system, an interface can be categorized
as a top interface (corresponding to the root node in the tree
structure) or an internal interface (corresponding to internal
nodes except the root node in the tree structure). Two or
more basic nodes and a top interface or an internal interface
compose a level_1 node. Iteratively, two or more level_n-1
nodes and a top interface or an internal interface compose a
level_n node, where “n” is the height of the node’s tree. For
a tree structure with a given degree, we can determine the
minimum system. It is the smallest complete system that

 3

includes all the different types of components used in larger
systems. The minimum system consists of a top interface, an
internal interface with all its children, and other basic node(s)
directly beneath the top interface. Fig. 3 shows the minimum
system for a binary tree, a ternary tree, and any D-degree tree.
To formally verify that a fractal system is cache coherent
with any arbitrary number of nodes, two verification steps
are needed. First, the minimum system must be verified
cache coherent (Section II.B). Second, the whole system
must be verified fractal in behavior so that we can leverage
the self-similarity (Section II.C). We discuss these two
verification steps next, before proving that these two steps
are sufficient.

B. Formal Verification of Minimum System
To formally verify the minimum system, we need a

description of the system (modeling) and a specification of
correctness properties (specification). Regardless of the kind
of language the verification tool accepts for describing the
models and properties, the modeling has to accurately
capture the behavior of the cache coherence protocol, and the
specification has to precisely state the properties that the
protocol must satisfy in order to maintain coherence among
all caches and memories. Then, the tool performs the
verification by walking through each possible state of the
entire system (i.e., including the states of all coherence
controllers) to ensure that all states adhere to the specified
properties. We discuss several key points in the modeling
and specification processes.

Modeling. To model the cache coherence protocol,
several reduction techniques have been widely used. For
example, modeling only one block in the cache and memory
instead of all the blocks is sufficient to verify the cache
coherence protocol; the data values themselves can also be
abstracted away since they have no impact on coherence [29].
These optimizations can all be employed in modeling the
minimum system of Fractal Coherence. It is worth pointing
out that these techniques cannot eliminate the state explosion
problem, because the number of states still explodes
exponentially with the number of cores. Moreover, the more
complicated the cache coherence protocol, the more states it
has. Therefore, although we claim the minimum system can
have arbitrary configurations, the architects must ensure that
the system is within the capability of existing verification
tools in order to avoid the state explosion problem.

Specification. The correctness properties of a cache
coherence protocol are usually specified in invariants or
temporal logic. More specifically, the tool needs to verify the
following properties: 1) each block can have either one
writer or multiple readers at any given time, 2) no state
machines will ever enter deadlock, and 3) the system is
making forward progress at all times (i.e., there is no
livelock).

This verification process is straightforward. It can be
automatically completed by a wide range of existing tools
without requiring the user to abstract away system details or
implement complicated optimizations. We show the detailed
verification process of the minimum system of a specific
fractal system in Section IV.A.

Figure 2. Possible binary tree structures

 (a) binary tree (b) ternary tree (c) arbitrary D-degree tree
Figure 3. Minimum systems of different degree trees

C. Verification of Fractal Behavior
After verifying that the minimum system is coherent, we

need to show that the whole system has fractal behavior in
order to leverage the self-similarity to prove that larger scale
systems are coherent. By fractal behavior, we mean that a
system scales in a manner such that the behavior of the larger
system is always the same as the smaller system. Fractal
behavior ensures that coherence is maintained while scaling
the system.

We need “equivalence checking” to verify that each scale
of the system behaves the same. Because the system is
constructed by iteration, it is sufficient to verify only the
equivalence between the level_1 node and the level_2 node.
We take the binary tree in Fig. 3(a) as an example and show
in Fig. 4 the two relationships needed to be verified
equivalent. We construct a 4-node binary tree, shown in Fig.
4(b), by expanding node A in Fig. 4(a) to node A’ in Fig.
4(b). To satisfy fractal behavior requirements, two
verification steps must be performed. First, we must verify
that A and A’ have the same behavior as observed at point
O1 in Figure 4(a) and Figure 4(b). This verification enables
the system to scale based on substituting A with A’. The rest
of the system cannot tell the difference after the substitution
and has the same behavior as before. Second, we must verify
that B and B' have the same behavior as observed at point O2
in Figure 4(c) and Figure 4(d). This equivalence means that
C in Fig. 4(c) and A’ in Fig. 4(d) have the same environment
and thus they behave the same. This verification ensures that
the two basic nodes in A’ behave the same as they do in a
coherent system (Fig. 4(c)). The two verifications together
ensure that the new system (Fig. 4(b)) has the same behavior
as the previous one (Fig. 4(a)).

These two verification steps are both “equivalence
checking.” Intuitively, A’ has more state machines than A,
and B’ has more state machines than B. They cannot have
exactly the same transitions. However, for verifying fractal
behavior, we need to show only that they behave in a manner
that is “observationally equivalent” [25], which means the
external world cannot tell the difference between the two
systems. The observational equivalence allows several
transitions in the more complex system to match one
transition in the simple system. For example, considering a

 4

Figure 4. Observational equivalence for maintaining fractal behavior

simple MSI protocol without transient states, if A is in state
S, the observationally equivalent states in A’ are S:S, S:I and
I:S, where the state before the colon is the state of the left
child in A’, and the state after the colon is the state of the
right child in A’. The transitions between S:S, S:I and I:S are
considered “internal” because they have no impact on the
external world. The three states S:S, S:I and I:S are collapsed
to one. We can say that A’, taken as a “node as a whole,” is
in state S, meaning the external world considers A’ to be a
single node in state S. By this collapsing, A’ can be
simplified to have the same states and transitions as A, and
B’ can be simplified to have the same states and transitions
as B. The external world cannot tell apart A and A’ or B and
B’.

This equivalence checking is also a formal method
because it explores all possible states in the system.
Therefore, the tool used for this verification should be an
exhaustive tool. Many formal tools are able to do
equivalence checking and they accept different kinds of
description languages. We will show a detailed verification
process of the fractal behavior of TreeFractal in Section IV.B.

D. Proof of Cache Coherence for Arbitrary N-node System
We claimed that the formal verification steps described

in Section II.B and Section II.C are the only steps the
architect of a Fractal Coherence protocol must perform to
verify the correctness of an arbitrary N-node system with
Fractal Coherence. In this section, we prove by induction
why these two steps are sufficient.
Definition 1. We use F (L, D, N) to denote a system that has
L levels, D degrees for each level, and N basic nodes in all.
The subscript “s” in Fs (L, D, N) denotes that the system is a
sub-system inside a larger system and not a complete system
itself. In F (L, D, N) and Fs (L, D, N), L={1,2, …, m},
D={2,3, …, n}, and N={(D-1)*L+1, (D-1)*(L+1)+1, …,
DL}.

From Definition 1, we know that the minimum system
can be written as F (2, D, 2*D-1). Note that only when we
use a binary tree (D=2), the number of basic nodes can be
contiguous; otherwise we can have only discrete increments
of (D-1) for the number of basic nodes, because we assume
each level of the tree structure has the same degree. We
could relax this constraint, since the missing children can be

considered as always in state I and have no impact on
coherence.
Definition 2. Given two systems A and B, where A is larger
than B, we use the symbol “≈” to represent observational
equivalence, and we use the symbol “–” to represent the
subtraction of a subsystem from a larger system. So A ≈ B
means A is observationally equivalent to B, and A – B
represents the rest of the system after removing a subsystem
B from System A.

We now present five lemmas that we use in our proof.
Each lemma is illustrated in Fig. 5.
Lemma 1 (Fig. 5a). Basic node ≈ Fs (1, D, D) by the
verification result of Section II.C.
Lemma 2 (Fig. 5b). F (2, D, 2*D-1) – Fs (1, D, D) ≈ F (3,
D, 3*D-2) – Fs (1, D, D) by the verification result of Section
II.C.
Lemma 3 (Fig. 5c). F (2, D, N) – Fs (1, D, D) ≈ F (3, D, N)
– Fs (1, D, D) by a generalization of Lemma 2 based on
using Lemma 1 to do substitution.
Lemma 4 (Fig. 5d). Basic node ≈ Fs (1, D, D) ≈ Fs (2, D, N)
≈ Fs (3, D, N) … ≈ Fs (L, D, N) by iteration on Lemma 1.
Lemma 5 (Fig. 5e). F (2, D, N) – Fs (1, D, D) ≈ F (3, D, N)
– Fs (1, D, D) ≈ F (L, D, N) – Fs (1, D, D) by iteration on
Lemma 3 and by using Lemma 4 to do substitution.
Theorem. Any N-node system is coherent.
Proof.

1) Base case: when N = 2*D -1, it is the minimum
system. The cache coherence of the minimum system is
formally proved (Section II.B). Note that when N<2*D-1,
the system can be formally proved coherent by just using
Lemma 1 to do substitutions.

2) Inductive step: We assume that, when N=k*(D-1),
the system is coherent. We must prove that, when N=
(k+1)*(D-1), the system is still coherent. To expand the
k*(D-1) node system into the (k+1)*(D-1) node system, we
substitute a basic node in the k*(D-1) node system with a Fs
(1, D, D) that we call A’.
Proposition 1. For the other N-1 nodes and the A’ subsystem,
coherence is still maintained. Based on Lemma 1, after
substituting a basic node with A’, the rest of the system
cannot see the difference and maintains the same behavior.
At the same time, A’ as a whole maintains the same
coherence states as the previous basic node does.
Proposition 2. A’ maintaining coherence indicates that all of
its children maintain coherence. Based on Lemma 5, the rest
of the system after subtracting A’ from the N=(k+1)*(D-1)
node system is observationally equivalent to the rest of the
system after subtracting A’ from the N=k*(D-1) node system.
Thus A’ behaves the same in the two systems. We know that,
in the N=k*(D-1) node system, A’ as a whole as well as each
basic node of A’ maintain coherence, because the N=k*(D-1)
node system is cache coherent (the inductive assumption).
Therefore, in the N=(k+1)*(D-1) node system, A’ as a whole
maintaining coherence is sufficient to ensure that each basic
node in A’ maintains coherence.

Based on Proposition 1 and Proposition 2, we can
conclude that any N-node system is coherent.■

 5

…
…

……

…

……

……

…

……

…

…

… …

…

Figure 5. Lemmas for proof of cache coherence in any N-node system

III. IMPLEMENTATION OF A SPECIFIC FRACTAL
COHERENCE PROTOCOL

There are many different possible Fractal Coherence
protocols. We implemented a specific protocol, which we
call TreeFractal, to show that the fractal design methodology
is viable. TreeFractal uses a binary tree as both the logical
structure and network topology, although this is not required.
In TreeFractal, each interface that maintains fractal behavior
(see Fig. 2) contains duplicate cache tags for all cache blocks
beneath it in the tree. We call these interfaces Tags. We now
discuss the two-node system design (Section III.A), the
scaled design (Section III.B) and the implementation costs of
TreeFractal (Section III.C).

A. Two-Node System Design
We start our design from a two-node system, illustrated

in Fig. 6(a). It consists of two basic nodes and a Top Tag.
The basic node, shown in Fig. 6(b), consists of a core, a
private L1 cache, a private L2 cache, a portion of the shared
memory and a coherence controller. The coherence
controller is responsible for communicating with the core,
the cache, the memories and its parent Tag. The coherence
controller also has MSHRs to allow for multiple outstanding
requests. The Top Tag holds copies of the cache tags and
coherence states of its two children, and it serves as the
serialization point for coherence transactions in the two-node
system. In the two-node system, the Tag is called the “Top”
Tag to distinguish it from “Internal” Tags in larger systems.

The TreeFractal coherence protocol is a MOSI protocol
with numerous transient states that is neither snooping nor
directory, although it has some features in common with
both of those well-known classes of protocols. The
coherence controller responds to load and store requests from
the core. If the coherence controller cannot satisfy a load or

Figure 6. System architecture of TreeFractal

store, it issues a coherence request up to the Top Tag. When
the Top Tag receives a coherence request from one of its
children cores, it looks up the state of the block in both of its
children. We denote this state using X:Y notation, where X is
the state of the block in the left child and Y is the state of the
block in the right child. For example, the Top Tag state S:O
denotes that the left child has the block in state S and the
right child has the block in state O. Based on the states in the
children, the Top Tag forwards the request down to either
one or both of them (similar to directory protocols). Because
the Top Tag is the serialization point for all transactions, it
always forwards a request back to the requestor, so that the
requestor knows when its request is ordered with respect to
other coherence requests (similar to snooping protocols).
We now present three examples to illustrate how this
protocol works:1

1) If the Top Tag receives a Get-Shared (GetS)

1 The whole specification of TreeFractal can be found online:
http://arch.cs.duke.edu/micro2010/TreeFractal/

 6

coherence request for a block that is in state I:I (invalid in
both children), it forwards the GetS down to the requestor
and to the home node for the block (i.e., the node that has
the portion of the memory space including this block) based
on the block’s address. The home sends its reply up to the
Top Tag, and the Top Tag forwards the reply down to the
requestor. If the requestor is the home, the reply does not
need to go up to the Top Tag and then back down to itself.

2) If a GetS request from the left child reaches the Top
Tag in the state I:M, the Top Tag forwards the GetS to both
the left and right children and changes its state to S:O. The
right child’s coherence controller replies to the Top Tag
with the data and changes its state to O, and the Top Tag
forwards the reply to the left child to complete the
transaction.

3) This third example highlights an important feature of
TreeFractal. If a GetS from the left child reaches the Top
Tag in state I:S, the Top Tag forwards the request to both
children, and the right child replies to the Top Tag, which
forwards the reply to the left child. In this example, a node
in state S responds to a coherence request, which is not
typical in snooping or directory protocols.

To avoid deadlock due to circular dependences among
coherence messages of different types, TreeFractal requires
four virtual networks. Requests from the basic nodes to the
Top Tag go into the request network. The Top Tag forwards
the requests to one or both basic nodes through the
forwarded request network. Replies from the basic nodes to
the Top Tag go into the reply network. The Top Tag
forwards the replies to the requestor through the forwarded
reply network.

B. Scaled System Design
The two-node system can scale to any arbitrary N-node

system by adding Internal Tags between the Top Tag and the
basic nodes and making the system structure a binary tree, as
shown in Fig. 6(c). In the scaled system, just as in the two-
node system, requests and replies go up the tree and
forwarded requests and forwarded replies go down the tree.
However, the requests and replies in the scaled system do not
need to go all the way up to the Top Tag each time as the
two-node system requires, because the requests and replies
need only go up to the highest common ancestor Tag of all
destinations. For example, consider a 4-node system in
which the cores are numbered starting from the left as 1, 2, 3,
4, and the block is in states M, I, I, I in these four cores. If
Core 2 issues a Get-Modified (GetM) request to its Internal
Tag, that Internal Tag is in state M:I and forwards the GetM
to both children (Core 1 and Core 2). The Internal Tag does
not need to send the request up to the Top Tag in this
situation. Core 1 replies to the Internal Tag and the Internal
Tag forwards the reply to Core 2. This entire transaction is
invisible to the Top Tag (and Core 3 and Core 4), which
views the node as a whole consisting of Core 1, Core 2, and
their Internal Tag as being in state M the entire time. As an
example of a request that the Internal Tag must send up,
consider a GetM that reaches an Internal Tag in state I:I. The

 (a) (b)
Figure 7. An example of naïve design which violates the fractal behavior

Internal Tag must send the request up to its parent Tag in
case there is a node elsewhere in the system that is in a valid
coherence state and needs to observe the GetM. One might
think we can scale the system by simply expanding the two-
node system. However, if not carefully designed, the Internal
Tag can break the fractal behavior. We show a specific case
to illustrate how a naïve design would violate the fractal
behavior.

A Non-Fractal Design. As shown in Fig. 7(a), for a
single block, the Internal Tag has a left child in state M, and
a right child in state I, so the state in the Internal Tag is M:I.
Observed from the external world, the node as a whole (i.e.,
the Internal tag and its two children) should appear in M for
the block to maintain fractal behavior. Therefore, the Top
Tag is in state M:I, too. Then the right child issues a Get-
Shared (GetS) coherence request. The GetS request arrives at
the Internal Tag, and then the Internal Tag needs to decide
where and how to send the request. Intuitively, the Internal
Tag has two options. First, as in snooping protocols, it could
issue a GetS up to the Top Tag. Second, as in directory
protocols, it could issue a Forward_GetS to the owner (the
left child) and then change state to O:S, which is equivalent
to state O as observed by the external world. However, both
options result in the violation of fractal behavior. As shown
in Fig. 7(b), if a basic node has a block in state M, for that
block, it will neither issue a GetS to the Top Tag nor silently
change to state O. In Section II.C, we have shown that to
ensure fractal behavior, a necessary observational
equivalence relationship is that the basic node and the
level_1 node behave the same as seen by the external world.
But in this example we do not make them have the same
behavior, which violates the foundation of our methodology.

A Fractal Design. Our method to deal with the above
problem is to add some new states and message types. For
this case, the correct implementation is shown in Fig. 8. In
Fig. 8 (a), The Internal Tag issues a Put-From-M-to-O
(PutMtoO) request up to the external world, meaning the
node as a whole (the subsystem outlined by the dashed box)
would like to change from M to O. After receiving the
acknowledgment of the PutMtoO from the external world,
the Internal Tag forwards the GetS to both the left child and
the right child. The forwarded GetS is sent to both children
because the Internal Tag is the ordering point. Then the state
of the Internal Tag changes to O:ISD, meaning the right child
is in I, trying to go to S, and waiting for the data. After the
data comes back from the left node, the Internal Tag

 7

 (a) (b)
Figure 8. Correct implementation to ensure fractal behavior

transfers the data to the right node and changes to O:S. The
node as a whole appears to be in state O. To ensure the
observational equivalence, there must also be a PutMtoO
action in the basic node, as shown in Fig. 8(b). The basic
node is allowed to generate a PutMtoO request and change to
MOA, meaning it is in M, trying to go to O, and waiting for
the acknowledgment. After receiving the acknowledgment
from the Top Tag, the basic node changes to state O. This
scenario is impossible for a single node in a real system since
a core will not choose to change from M to O. However, to
ensure the fractal behavior, we need to incorporate such
transitions in the basic node state machine in the minimum
system design and formally verify it.

Besides the given examples, the Internal Tag has many
other specifically designed transitions to maintain the fractal
behavior of TreeFractal. For example, we have a node in S,
instead of memory, respond to coherence requests with data.
Therefore, if a node in S would like to evict the shared block,
it must explicitly notify the Top Tag in order to update the
state. Another example is when the Internal Tag is in the
state S:S, meaning both the left and the right child are in S. If
either of them evicts the block and changes to I, the Internal
Tag does not issue any request to the external world since the
node as a whole is still in S. The Internal Tag state changes
to S:I or I:S. When the second eviction arrives, the Internal
Tag must issue an explicit Put-Shared (PutS) coherence
request to the external world and change state to I:I. In the
scaled system, an important decision is whether a certain
action should be visible to the external world and how it
should be displayed to the external world. With a properly
designed Internal Tag, we can scale the system to any
number of nodes while still maintaining the fractal behavior.

C. Implementation Cost
TreeFractal is a viable option for architects only if its

implementation cost is not far greater than the costs of
existing, non-fractal protocols. Consider a system with N
cores, a total number of B blocks that are cached on these N
cores, and a total number of M blocks that are distributed
evenly across the memories at the N cores. We now discuss
the implementation cost of TreeFractal and a full-map
directory, respectively.

TreeFractal. The implementation cost of TreeFractal
stems mainly from the storage overhead of the Tags at each
level. Since the Tag stores only the addresses and states of
the cache blocks beneath it, the storage overhead is much
less compared to a full-map directory structure that tracks the

states of all the blocks in the memory. The address of a block
is log2M bits long. For TreeFractal, which has fewer than 64
coherence states, 6 bits is enough for a Top Tag or Internal
Tag entry that stores the state of a block in one of its children.
For the Top Tag, which has B entries (i.e., the total number
of cached blocks in its children is B), the storage overhead is
(log2M+6)*B. The storage overhead of one of the two
Internal Tags just beneath the Top Tag is (log2M+6)*(B/2)
bits. Since there are two such Internal Tags at this level, the
storage overhead at this level is still (log2M+6)*B bits. For a
system with N cores, the total number of levels is log2N.
Thus, the total storage overhead for all Tags is
(log2M+6)*B*log2N bits.

Full-map Directory. An entry in the full-map directory
has an N-bit sharer list, a log2N-bit owner field, and a 2-bit
tag. Therefore, the total directory storage is (N+ log2N+2)*M.

For some common values of N (16), B (32MB cache/
64B block size), and M (64GB memory/64B block size), we
found TreeFractal’s storage overhead is less than 1/300 that
of a directory protocol’s storage overhead. TreeFractal uses
less storage because it can leverage multicasting as a
message comes down the tree. A Tag has greater
associativity than a direct-mapped directory, which means its
access time is longer and power consumption is larger
compared to an equal-sized directory. However, considering
the large difference in their sizes, we believe the Tag’s size
advantage outweighs its associativity disadvantage.

Caching Possibilities. Multicore chips encourage the use
of on-chip caching, which is applicable to both directory
protocols and TreeFractal. For directory protocols, on-chip
caching of the directories, a well-known optimization,
reduces the average latency of each directory
access. Caching does not reduce the total cost of storage,
though, since the full directory must still exist (off chip). For
TreeFractal, which already has its complete Tag storage
structures on chip, caching of Tags offers a similar
cost/benefit tradeoff. Caching of Tags reduces the average
latency of Tag accesses, although to a lesser degree than the
latency reduction for directory caching, while it increases the
total storage overhead.

IV. VERIFICATION PROCEDURE AND RESULTS
In Section II, we discussed the two verification steps

required to verify any Fractal Coherence protocol. Now we
explain how we use two widely-used automated verification
tools to perform these two verification steps for TreeFractal.
We note that, although we use two specific tools to verify
our implementation, there are numerous other verification
tools that can do this work. They accept different languages
and use different methods to specify the correctness of a
system.

A. Formal Verification of Minimum System.
We chose the well-known Murphi [11] checker to verify

the cache coherence of the minimum system. Murphi is
straightforward since it employs the explicit state
enumeration method to formally verify the system.
Compared to (symbolic) model checking and symbolic state
model methods, state enumeration expresses the system

 8

more intuitively and is less likely to diverge from the real
system. However, it is the most susceptible to the state
explosion problem since it uses fewer techniques to
overcome this problem. We seize the opportunity to use
explicit state enumeration because we have already broken
down the problem to small pieces and thus remove the state
explosion problem as a constraint. This is a significant
advantage over previous formal verification of cache
coherence. Most previous approaches seek a method to avoid
state explosion.

In Murphi, we model the minimum system shown in Fig.
4(a) which consists of one Internal Tag state machine, one
Top Tag state machine and three coherence controller state
machines. These state machines are simultaneously running
and interacting with each other. The parallelism and
interaction lead to the nondeterministic race conditions. The
model includes several components: the structure of caches
and Tags, the types of possible messages, the description of
the events and the rules for transitions. We also specify the
initial states of all the state machines to make sure Murphi
knows where to start its traversal.

The properties we need to verify make use of four forms:
in-line error statements, invariants, deadlock checking, and
liveness checking. The in-line error statements are useful for
finding common description errors and unused branches in
case statements. The invariants are used to specify certain
correctness properties. For example, we allow only one
writer in the system at any time for a given block. The
deadlock checking is inherent in Murphi when it traverses all
possible states. The liveness checking is expressed in linear
temporal logic to ensure the protocol is making progress.

Our results show that even such a small system took
Murphi three hours to verify and 12,031,400 states were
explored during this period. Increasing the number of cores
will soon lead to the state explosion problem since the
number of states increases exponentially.

B. Equivalence Checking for Fractal Behavior
To verify fractal behavior, we employ CADP’s [12]

equivalence checker, Bisimulator [6]. Bisimulator performs
an on-the-fly comparison of the two input state machines
modulo a given equivalence/preorder relation. In our case,
the relation is observational equivalence. We verified the two
kinds of observational equivalence discussed in Section II.C
to ensure the fractal behavior. In CADP, a single state
machine ─ like a basic node, a Top Tag, or an Internal Tag ─
is modeled as a process. A system with several state
machines is modeled as a process that consists of several
sub-processes running together and interacting with each
other through queues. In our verification, we associate all
these processes with a set of actions and parameters. We use
actions to represent the process’s interactions with other
processes and the parameters to represent the states of this
process. Since we do not care about the interactions between
the sub-processes as long as the interactions cannot be
noticed by the external world, we hide all these actions by
considering them as invisible actions in the equivalence
checking. The tool gives the results of the two equivalence
checkings as “true”, meaning the systems we are verifying

are observationally equivalent when observed by the external
world.

V. EXPERIMENTAL EVALUATION

For TreeFractal to be viable, its verifiability advantage
must not come with significant performance degradation.
We performed a series of experiments to compare
TreeFractal with a typical MOSI snooping protocol (called
Snooping) and MOSI directory protocol (called Directory).
In Snooping, the memory controller implements an owner
bit to determine whether memory should respond with data
or broadcast the request to all the caches. Snooping has a
separate address network (ordered) and data network
(unordered). Directory is a typical directory-based protocol
with a typical full-map directory. An entry in the directory
includes the list of all sharers and the owner for one block.
We designed Snooping and Directory for high performance;
both protocols use many transient states in order to avoid
stalling when messages arrive at coherence controllers.

A. Target System and Configuration
We evaluate TreeFractal using a full-system simulator,

Virtutech Simics [17], extended with the Wisconsin GEMS
toolset [20]. GEMS enables us to model the timing of the
memory system. We compared TreeFractal to Snooping and
Directory. For all three protocols, we keep the common
architectural parameters the same: processor configuration,
L1/L2 cache size, memory size, link latency, link bandwidth
etc. We calculated the access latency of Tags and directories
using Cacti [31]. We simulate a CMP system with 2, 4, 8
and 16 cores. Each core is attached to a private L1 cache
and private L2 cache and part of the memory. The system
parameters are shown in Table 1.

B. Performance Results and Analysis
In this section, we quantitatively compare the

performance of TreeFractal to Snooping and Directory. We
use several benchmarks from the SPLASH-2 benchmark
suite [32] and two commercial benchmarks, Apache and
SPECjbb. All benchmarks have already been warmed up and
checkpointed to avoid cold cache misses. Because of the
inherent variability in parallel workload runtime [2], we ran
each benchmark multiple times with small pseudo-random
perturbations of the memory latency and averaged the
results of all runs. Fig. 9 shows the runtime (lower is better)
for the three protocols normalized to the runtime of
Directory. The error bars represent +/- one standard
deviation. From Fig. 9, we can see that TreeFractal performs
comparably to Snooping and Directory. For all the
benchmarks, the performance degradation is up to 11%
compared to Directory, and up to 13% compared to
Snooping.

We observe that for almost all benchmarks with 2 or 4
cores ─ except SPECjbb with 2 and 4 cores and volrend with
4 cores ─ TreeFractal outperforms Snooping and Directory.
The performance improvement of TreeFractal over Directory
can be as large as 65.3% (in Apache). This performance
improvement is due to two reasons. First, for smaller

 9

TABLE I. SYSTEM CONFIGURATION

Common Parameters for Three Protocols

Processor parameters

Number of cores 2, 4, 8, 16

Clock frequency 2 GHz

Cache parameters

Cache line size 64 byte

Split L1 I&D cache 32 KB, 2 way, 2 cycle

Private L2 cache 512 KB, 2 way, 6 cycle

L1 and L2 exclusive yes

Memory parameters

Memory 2 GB, 160 cycle

Network parameters

Link bandwidth 32 GB/s

Link latency 1 cycle

Specific Parameters for TreeFractal

Level_1 Tag 144 KB, 4 way, 6 cycle

Level_2 Tag 288 KB, 8 way, 8 cycle

Level_3 Tag 576 KB, 16 way, 14 cycle

Level_4 Tag 1152 KB, 32 way, 24 cycle

Topology Tree

Specific Parameters for Snooping

Topology Tree

Specific Parameters for Directory

Directory for 2 nodes 20 MB, direct-mapped, 45 cycle

Directory for 4 nodes 32 MB, direct-mapped, 55 cycle

Directory for 8 nodes 52 MB, direct-mapped, 65 cycle

Directory for 16 nodes 88 MB, direct-mapped, 85 cycle

Topology 2D Torus

configurations, it takes much less time for TreeFractal to
access the Tag than for Directory to access the directory
because the Tag is on chip and much smaller than the
directory. Second, as mentioned in Section III.B, in
TreeFractal, we have a node in S respond to coherence
requests with data instead of having the memory respond to
the requests as is done in both Snooping and Directory. This
method improves performance because the cache is much
smaller than the memory and it is on chip and takes less time
to access. To confirm this hypothesis, we compared the ratio
of the number of coherence requests arriving at state S to the
total number of coherence requests. The ratio for Apache
with 2 cores is 0.3, but the ratio for SPECjbb with 2 cores is
only 0.1. This statistic means that, for Apache with 2 cores,
TreeFractal has more chances to reduce the latency by
having a node in S respond to the requestor.

As the number of cores increases, the advantages of
having shorter Tag access latency and having a sharer
respond to the requestor are reduced by the greater number
of hops and larger Tag sizes in TreeFractal. However, even
at 16 cores, TreeFractal still maintains performance that is
comparable to Snooping and Directory. The results vary
across the benchmarks, and we discuss two situations in
which TreeFractal is outperformed. First, in Water,
TreeFractal is outperformed by Snooping. On this
benchmark, the root switch utilization of Snooping is only
1%, which is very low. Snooping is, unsurprisingly,
performing well in a system with ample bandwidth for the
given traffic. However, for other benchmarks that place
more demand on the interconnection network, Snooping’s
performance does not scale well. The second benchmark
we discuss is Apache. On Apache, TreeFractal performs
11% worse than Directory, but still 5% better than Snooping.
From the statistics, we found the root switch utilization for
Snooping is over 65%, which implies a possible bottleneck,
while the root switch utilization for TreeFractal is only 15%.
This data means that TreeFractal is less sensitive to the link
bandwidth compared to Snooping. Therefore, TreeFractal’s
performance may not scale as well as Directory but it is
more scalable than Snooping.

We further studied the impact of on-chip caching on
Directory and TreeFractal. We found that both of them
would benefit from on-chip caching of the storage structures
they use, the directories and Tags, respectively. Because
there are so many different possible caching schemes－
different sizes, associativities, and latencies－we explored
the potential of caching rather than any particular caching
implementations. For both Directory and TreeFractal, we
performed experiments in which we assumed perfect
caching of directories and Tags; every cache access is a 1-
cycle hit. The result is shown in Fig. 10. We see that the
improvement in performance varies across different
benchmarks and different numbers of cores. However, for
the same benchmark and number of cores, the ranges of
improvement for Directory and TreeFractal are similar. The
results confirm that caching can benefit both Directory and
TreeFractal and that their performances remain comparable
with caching.

VI. FRACTAL COHERENCE DESIGN SPACE
As mentioned in Section III, there are different methods

to design a Fractal Coherence protocol. One method is
leveraging existing protocols and making them fractal by
modifications. Note that existing snooping or directory
protocols are not inherently fractal. One might think of
connecting the nodes in an interconnection network that
appears fractal in structure and implementing an existing
protocol for it. However, these protocols do not have the
support for the self-similarity in fractal behavior since this
property is not a constraint in their designs. Consider a
directory protocol where a single node issues a Get-Shared
(GetS) coherence request. Making the protocol fractal by just
attaching more cores to the interconnection network will not

 10

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2
1.3

2n
od

es
4n

od
es

8n
od

es
16

no
de

s

2n
od

es
4n

od
es

8n
od

es
16

no
de

s

2n
od

es
4n

od
es

8n
od

es
16

no
de

s

2n
od

es
4n

od
es

8n
od

es
16

no
de

s

2n
od

es
4n

od
es

8n
od

es
16

no
de

s

2n
od

es
4n

od
es

8n
od

es
16

no
de

s

2n
od

es
4n

od
es

8n
od

es
16

no
de

s

Barnes Fmm Raytrace Volrend Water Apache SPECjbb

R
un

tim
e

no
rm

al
iz

ed
 to

 D
ire

ct
or

yi

TreeFractal
Snooping
Directory

Figure 9. Runtime normalized to Directory

0
0.2
0.4
0.6
0.8

1
1.2
1.4

2n
od

es
4n

od
es

8n
od

es
16

no
de

s

2n
od

es
4n

od
es

8n
od

es
16

no
de

s

2n
od

es
4n

od
es

8n
od

es
16

no
de

s

2n
od

es
4n

od
es

8n
od

es
16

no
de

s

2n
od

es
4n

od
es

8n
od

es
16

no
de

s

2n
od

es
4n

od
es

8n
od

es
16

no
de

s

2n
od

es
4n

od
es

8n
od

es
16

no
de

s

Barnes Fmm Raytrace Volrend Water Apache SPECjbbR
un

tim
e

N
or

m
al

iz
ed

 to
 D

ire
ct

or
y

TreeFractal w/caching
Directory w/caching
TreeFractal
Directory

Figure 10. Runtime of on-chip caching protocols normalized to Directory

Figure 11. Making a traditional Snooping protocol fractal

lead to the node as a whole issuing a GetS in the same
situation.

We now give an example of how to make a traditional
snooping protocol fractal. As shown in Fig. 11, three basic
nodes snoop on a level_1 bus. We attach an internal
interface to this bus. The internal interface monitors all the
transactions on this bus and determines which requests need
to be forwarded to the higher level bus above it and which
requests can be handled locally. Note that the internal
interface must function in a way that guarantees that the
three basic nodes beneath it behave the same as a single
node when seen from the level_2 bus. By adding a number
of internal interfaces and a top interface, we make the
system have fractal behavior. If we can formally verify the
coherence of the minimum system (by definition, composed
of a level_1 bus, a level_2 bus, and 5 basic nodes) and the

fractal behavior, we can prove the coherence for any
arbitrary N-node system.

VII. RELATED WORK
Fractal Coherence is based on a hierarchical structure and

aims to enable the formal verification of cache coherence
protocols via architectural innovation. Therefore, our work is
related to all these aspects.

A. Hierarchical coherence protocols
Wilson [1] designed a large scale multiprocessor

architecture based on hierarchies of shared snooping buses
and caches in order to improve performance. DASH [15]
employs both snooping protocols and directory protocols for
different levels. Marty et al. [22] used a two-level virtual
coherence hierarchy to support server consolidation. Fractal
Coherence differs from previous hierarchical protocols in
two important ways. First, as mentioned in Section VI,
hierarchical coherence protocols are not inherently fractal,
like Fractal Coherence, which makes them difficult to verify.
Hierarchical coherence protocols, in fact, exacerbate the state
explosion problem because they usually couple two
protocols and thus add more corner cases [21]. Second,
Fractal Coherence does not have different protocols for
different levels while normal hierarchical protocols usually
do. Applying one protocol for all levels simplifies the design.

 11

B. Formal verification of cache coherence protocols
Clarke et al. [9] used SMV to formally model and verify

a cache coherence protocol described in the IEEE
Futurebus+ standard and found non-trivial bugs, but their
largest configuration is only 8 processors. To make the
formal verification of cache coherence protocols more
scalable, researchers have pursued two paths.

One approach is optimizing automated tools to mitigate
state space explosion [8, 14, 23, 27, 30]. However, many of
them just postpone the state explosion problem instead of
solving it. Others need the designer’s experience in correctly
modeling the protocol and have the risk verifying a different
model from the real implementation. Moreover, some
methods can be used only for certain protocols and cannot
check liveness.

The other approach is using semi-automated theorem
proving methods [16, 26]. Theorem proving uses extensive
user guidance to perform a mathematical proof and is
theoretically more scalable than model checking, but it is
error-prone as a result of human intervention and not widely
used due to the laborious verification work.

Different from these approaches, we divert our attention
from the verification process, and instead focus on the
architectural design. We want to ease the verification effort
by designing architectures so that they can be verified with
existing, fully automated formal tools. In this way,
verification of cache coherence will not rely on the
development of formal verification tools, which has long
lagged behind architectural improvement.

C. Comparing the verification effort for different cache
coherence protocols
There is another kind of work that analyzes the

verification effort of existing or proposed protocols. Martin
[19] argues that directory protocols are superior to snooping
protocols with regard to formal verification effort. His
conclusion is based on qualitative analysis. Marty [21]
compared the formal verification efforts of different cache
coherence protocol designs and showed their protocol is
more amenable to formal verification. However, they did not
design the architecture to ease verification. Our work is
different from the above research in that we encourage
architects to consider verification effort as a design
constraint and incorporate it in early design stages.

VIII. CONCLUSION
Formal methods have gained importance in the

verification of cache coherence protocols because the use of
simulation to test protocols is unable to catch subtle bugs.
Existing automated verification tools cannot handle large
systems due to the state explosion problem. From the
architects’ perspective, we propose Fractal Coherence, a
class of scalably verifiable coherence protocols. Fractal
Coherence leverages the self-similarity of the fractal to
enable the verification of any arbitrary N-node system. The
verification of Fractal Coherence protocols is simplified to
two straightforward, automated steps and does not incur the
state explosion problem. We designed a Fractal Coherence

protocol, TreeFractal, and verified it. By comparison to
traditional snooping and directory protocols, we show that
TreeFractal has comparable performance while maintaining
the correctness guaranteed by formal methods.

ACKNOWLEDGMENTS
This material is based upon work supported by the

National Science Foundation under grants CCF-0702434 and
CCF-0811290. We thank Steven German, Alan Hu, and Paul
Loewenstein for helpful consultations regarding formal
verification. We thank Milo Martin for helpful feedback on
an earlier draft of this paper.

REFERENCES
[1] J. A. W. Wilson. Hierarchical Cache/Bus Architecture for

Shared Memory Multiprocessors. In Proc. of the 14th Annual
Int’l Symposium on Computer Architecture, 1987.

[2] A. R. Alameldeen and D. A. Wood. Variability in
Architectural Simulations of Multi-Threaded Workloads. In
Proc. of the 9th Int’l Symposium on High-Performance
Computer Architecture, 2003.

[3] Arvind, N. Dave and M. Katelman. Getting Formal
Verification into Design Flow. In Proc. of Formal Methods,
2008.

[4] L. A. Barroso et al. Piranha: A Scalable Architecture Based
on Single-Chip Multiprocessing. In Proc. of the 27th Int’l
Symposium on Computer Architecture, 2000.

[5] B. Bentley. Validating the Intel® Pentium® 4 Microprocessor.
In Proc. of Int’l Conference on Dependable Systems and
Networks, 2001.

[6] D. Bergamini, N. Descoubes, C. Joubert, and R. Mateescu.
Bisimulator: A Modular Tool for on-the-Fly Equivalence
Checking. In Proc. of Tools and Algorithms for the
Construction and Analysis of Systems, 2005.

[7] S. Burckhardt , R. Alur, and M. M. K. Martin. Verifying
Safety of a Token Coherence Implementation by Parametric
Compositional Refinement. In Proc. of Verification, Model
Checking, and Abstract Interpretation, 2005.

[8] C. T. Chou, P. K. Mannava, and S. Park. A Simple Method
for Parameterized Verification of Cache Coherence Protocols.
In Proc. of Formal Methods in Computer-Aided Design, 2004.

[9] E. M. Clarke et al. Verification of the Futurebus+ Cache
Coherence Protocol. Computer Hardware Description
Languages and Their Applications, vol. 32, 1993.

[10] E. M. Clarke and J. M. Wing. Formal Methods: State of the
Art and Future Directions. ACM Computing Surveys, vol. 28,
1996.

[11] D. L. Dill, A. J. Drexler, A. J. Hu, and C. H. Yang. Protocol
Verification as a Hardware Design Aid. In Proc. of IEEE Int’l
Conference on Computer Design : VLSI in Computers &
Processors, 1992.

[12] H. Garavel, F. Lang, R. Mateescu, and W. Serwe. CADP
2006: A Toolbox for the Construction and Analysis of
Distributed Processes. In Proc. of Computer Aided
Verification, 2007.

[13] K. Gharachorloo, M. Sharma, S. Steely, and S. V. Doren.
Architecture and Design of Alphaserver GS320. In Proc. of

 12

the 9th Int’l Conference on Architectural Support for
Programming Languages and Operating Systems, 2000.

[14] C. N. Ip and D. L. Dill. Better Verification through Symmetry.
Computer Hardware Description Languages and Their
Applications, vol. 32, 1993.

[15] D. Lenoski, J. Laudon, K. Gharachorloo, A. Gupta, and J.
Hennessy. The Directory-Based Cache Coherence Protocol
for the Dash Multiprocessor. In Proc. of the 17th annual Int’l
symposium on Computer Architecture, 1990.

[16] P. Loewenstein. Verification of a Multiprocessor Cache
Protocol Using Simulation Relations and Higher-Order Logic.
Lecture Notes in Computer Science, vol. 531, 1991.

[17] P. S. Magnusson et al. Simics: A Full System Simulation
Platform. Computer, vol. 35, 2002.

[18] B. B. Mandelbrot. The Fractal Geometry of Nature: W.H.
Freeman and Company, 1982.

[19] M. M. K. Martin. Formal Verification and Its Impact on the
Snooping Versus Directory Protocol Debate. In Proc. of the
Int’l Conference on Computer Design, 2005.

[20] M. M. K. Martin et al. Multifacet's General Execution-Driven
Multiprocessor Simulator (Gems) Toolset. ACM SIGARCH
Computer Architecture News, vol. 33, 2005.

[21] M. R. Marty et al. Improving Multiple-Cmp Systems Using
Token Coherence. In Proc. of the 11th Int’l Symposium on
High-Performance Computer Architecture, 2005.

[22] M. R. Marty and M. D. Hill. Virtual Hierarchies to Support
Server Consolidation. In Proc. of the 34th Annual Int’l
Symposium on Computer Architecture, 2007.

[23] K. L. Mcmillan and C. B. Labs. Parameterized Verification of
the Flash Cache Coherence Protocol by Compositional Model
Checking. In CHARME 01: IFIP Working Conference on
Correct Hardware Design and Verification Methods, 2001.

[24] G. J. Milne. Design for Verifiability. Hardware Specification,
Verification and Synthesis: Mathematical Aspects, vol. 408,
1990.

[25] R. Milner. A Calculus of Communicating Systems. Journal of
Computer and System Sciences, vol. 28, 1984.

[26] S. Park and D. L. Dill. Verification of FLASH Cache
Coherence protocol by Aggregation of Distributed
Transactions. In Proc. of the 8th Annual ACM Symposium on
Parallel Algorithms and Architectures, 1996.

[27] F. Pong and M. Dubois. A New Approach for the Verification
of Cache Coherence Protocols. IEEE Transactions on
Parallel and Distributed Systems, vol. 6, 1995.

[28] F. Pong, A. Nowatzyk, G. Aybay, and M. Dubois. Verifying
Distributed Directory-Based Cache Coherence Protocols:
S3.mp, a Case Study. In Proc. of the 1st Int’l EURO-PAR
Conference, 1995.

[29] S. Srinivasan, P. S. Chhabra, P. K. Jaini, A. Aziz, and L. John.
Formal Verification of a Snoop-Based Cache Coherence
Protocol Using Symbolic Model Checking. In Proc. of the
12th Int’l Conference on VLSI Design, 1999.

[30] U. Stern and D. L. Dill. Improved Probabilistic Verification
by Hash Compaction. In Proc. of Advanced Research
Working Conference on Correct Hardware Design and
Verification Methods, 1995.

[31] S. Thoziyoor et al. Cacti 5.1. HP Technical Report, 2008.
[32] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta.

The SPLASH-2 programs: characterization and
methodological considerations. In Proc. of the 22nd Annual
Int’l Symposium on Computer Architecture, 1995.

[33] D. A. Wood, G. A. Gibson, and R. H. Katz. Verifying a
Multiprocessor Cache Controller Using Random Test
Generation. IEEE Design & Test, vol. 7, 1990.

