
International Journal of Computer Applications (0975 – 8887)

Volume 56– No.11, October 2012

16

A Specific-domain Design Tool for FPGA-based Image
and Video Processing System

Noureddine ZHAR
Lab. SIR - Mohammadia

School of Engineers

Rabat, Morocco

Mohamed AIT ALI
Lab. SIR - Mohammadia

School of Engineers

Rabat, Morocco

Amine RAJI
LabSTICC–ENSTA-Bretagne

Brest, France

Mohsine ELEULDJ
National School of Applied

Sciences

Oujda, Morocco

ABSTRACT
The complexity of image processing algorithms using

mathematical calculations grows from the nature of the image

to be processed and the desired result. A hardware

implementation of these algorithms for the needs of real-time

and embedded systems improves performances. In this paper

we present some existing approaches used for hardware

systems modeling. We propose a new graphical tool for

designing image and video processing embedded systems

called VIP DESIGN (Video and Image Processing Design).

The novelty of our approach is that we bypass the

shortcomings of existing languages by providing a high level

of abstraction through two kinds of diagrams: structural

diagram and filter edition diagram. It also allows formal

verification and automatic code generation for ASIC and

FPGA implementation.

General Terms

FPGA, Image processing, embedded system, real-time.

Keywords

VIP DESIGN, Structural diagram, filter editing diagram

1. INTRODUCTION
The growth of images resolution, the nature and diversity of
associated applications require implementation of complex
image processing algorithms. Sequential implementation of
these algorithms has quickly shown its limitations,
particularly for real-time applications, due to the important
quantity of data to be processed and the strong temporal
constraints that characterize such systems [1]. A hardware
implementation, which allowsparallelizing some parts of the
processing and reducing the execution time and consumption
of resources, seems to be the best solution to meet time and
budget requirements.

FPGA (Field Programmable Gate Arrays) is the suited
platform to achieve this goal[2]. The implementation of image
processing applications on FPGAs differs significantly from
the one used on platforms using conventional processors and a
large space of memory. For FPGAs, we have to define the
algorithm itself and the hardware architecture on which it will
be implemented.

In this context, the development and implementation of image
processing algorithms on FPGAs, using descriptive language,
is an arduous, difficult and costly task in terms of
development time, readability and maintainability.

The development of a graphical language for designing image
processing algorithms would reduce development effort,
improve the clarity of the solution and serve as a reliable
communication tool. It will provide an opportunity to
represent graphically the solution which will be automatically
translated into a low-level hardware describing language.

This paper presents a graphical language for image and video
processing for embedded systems design called VIP DESIGN.
We developed this tool to allow design at high level of
abstraction while providing an opportunity to detail designed
system behavior and automatic generation of code that can be
synthesized for hardware implementation needs. The time
constraints paradigms integrated in VIP DESIGN make it
appropriate for modeling real-time [1] applications.

2. RELATED WORKS
In this section, we will discuss some related works and tools
and present their advantages and inconveniences.

2.1. Handel-C
Handel-C [3] is a low-level programming language to design
hardware component such as FPGAs. It is a C-like language
with extensions to control the hardware aspects of mixed
systems. It integrates features to parallelize processes and can
be compiled to multiple design languages (VHDL, EDIF) and
then synthesized to the target hardware platform. Handel-C
allows the designer to break away from the physical structure
of the system and focus on its behavior. Closed to the C
language, widely used, this language is easily mastered and
does not require a great effort for its handling which greatly
reduces the design and development time of hardware systems.
However, this gain in terms of time and simplicity is combined
with losses in performance due to the automatic translation
from Handel-C to VHDL or EDIF. In this case, the produced
code requires a manual refinement to optimize the solution
implementation on hardware.

2.2. UML profiles for embedded systems

designs
UML profile defines a "Domain Specific Modeling Language"
without contradicting the semantics of UML by:

 adding concepts relating to a particular field,

 changing the representation of these concepts,

 defining constraints applied to the associations
between these concepts,

International Journal of Computer Applications (0975 – 8887)

Volume 56– No.11, October 2012

17

 adding constraints on the use of certain concepts or
not depending on the context and the identification
of semantic variation points.

SysML [4] is a UML profile for modeling systems. It
incorporates additional concepts adapted to the design of
embedded and real-time systems. These concepts are
sometimes inadequate to the spirit of UML and suitable to the
representation of hardware systems. However, they remain
inapplicable in the case of a complete automated development
flow [5].

Other works have attempted to use the standard notation of
UML, particularly those of the activity, composition and
deployment diagram, in order to model the behavior,
composition and functional block for hardware systems [5].
The model thus produced can be subject to transformation and
generation rules to obtain a descriptive code.

This language does not provide sufficient flexibility to define
other specific concepts such as data types (pixel, raw,…).

2.3. VERTIPH
VERTIPH [6] (Visual Environment for Real-Time Image
Processing in Hardware) is a design environment for image
processing applications for real-time systems.

It offers three views covering different aspects of an image
processing system: An architectural view, a computational
view and a scheduling and resource sharing view. This
language attempts to meet the specificity of image processing
applications to be implemented on FPGAs in terms of data
types, reuse of primitive functions specific to this area and the
graphical representation of competitive and sequential
execution of different functional blocks of the designed
system. However, although it is considered as a high-level
design environment which don’t require hardware knowledge,
this tool requires a perfect mastery of resource sharing
concepts and a good ability to handle and define data types at a
very low-level of abstraction. This specific knowledge makes
the use of this tool inaccessible to a large developer
community unaccustomed to such concepts. VERTIPH doesn’t
integrate verification and validation of the designed model
before the implementation phase considered expensive in
terms of time and cost.

3. VIP DESIGN
In order to dispel difficulties associated with the use of textual
languages and provide answers to the limits of visual
languages described in the previous section, we propose a new
graphical language called VIP DESIGN. This section presents
our approach to develop this tooland both of its structural and
filter edition diagrams.

3.1. Approach
VIP DESIGN, a graphical language for image and video
processing embedded systems design, proposes an approach
based on a graphical representation of structural and behavioral
aspects of designed system while abstracting details about the
physical architecture.

This is possible through two types of diagrams. Embedded and
real-time image processing system has input interfaces for data
acquisition and an output interface to deliver its returned
results.

The processing can be described as a sequence of several
sequential or competitive filters which communicate through
channels or shared memory.

The first diagram we use is called Structural Diagram. Its
purpose is to model the structural description of the system
through a hierarchical composition of all necessary functions.

A second diagram can describe each basic element of this
hierarchical structure. This diagram called Filter Editing
Diagram details the processing functions through a description
of elementary operations and their scheduling.

3.2. Structural Diagram
 The definition of the metamodel of this diagram is

based on the following rules:

 An image processing system consists of a set of
input interfaces, a set of output interfaces, a series of
filters applied to a data stream, clocks and
communication channels;

 One or several filters run at a specified speed set by a
clock;

 Each filter consists of an input stream of data, an
output, one or more parameters and a computing
entity;

 A computing entity contains instruction blocks
executed in parallel or sequentially,

Fig. 1 : Partial view of VIP DESIGN metamodel

3.3. Filter Diagram
The behavior of an embedded and real-time image processing
system can be described by defining three basic aspects:

 An accurate expression of structural (conditional
branches, loops), arithmetic and/or logic operations
executed by the system;

 Scheduling of these operations;

 Defining rules to manage competitive access to
shared resources;

3.3.1. Expression of filter operation:
A clear expression of the system operations requires an action
language using a concrete syntax with a sufficient level of
accuracy to enable an unambiguous code generation. To meet
this need, we used the package "Action" of the intermediate
modeling language COCODEL [7]. It includes all the basic
actions defined in [8] and [9]required to design embedded

VIP_SYS

Clock

Time_Line

Element

Filter

Flow_Ctrl

Data_Flow

Parameter

Behavior_Act

Filter_Param

DF_Param

1..*

clocks

1..*
TLS

1..*
elements

0..*
Ctrl_block

0..* actions

0..*

params 0..* params

International Journal of Computer Applications (0975 – 8887)

Volume 56– No.11, October 2012

18

systems. This package allows describing the body of all
actions, expressions or operations of the computing entity.

Fig. 2: Package “ACTION”

3.3.2. Scheduling
The increasing complexity of algorithms and the large volume
of data handled in image processing present a serious
challenge which requires a considerable computation time to
perform this complex process. Parallelizing tasks represents an
effective solution to obtain more efficient in execution speed.
This parallelism cannot be designed without an associated
model of time. Therefore, VIP DESIGN language manages
different real-time constraints related to image processing via a
TIME package facilitating the addition of temporal
information to model elements. This package allows
manipulating the values of temporal parameters and markup
language elements with temporal information later used by
tools for simulation, performance analysis, verification,
validation and analysis of schedulability. In fact the
components of our language are related to time through one or
more clocks which give the possibility to use multiple
temporal repositories in the same VIP DESIGN model and
divide time into a succession of discrete instants for modeling
parallel processing, concurrency, and support the design of
distributed and multi-clocks electronic systems.

Fig.3: Partial view from VIP DESIGN time model

3.4. Formal analysis framework
We integrated real-time constraints modeling related to image
processing in the TIME package of our tool. To address these
constraints, formal techniques have gained much attention
since they provide fundamental techniques to analyze, validate
and transformsystems in a provably sound way. For that
reason, we provide a verification framework to ensure the
respect of time constraints at model level.

Our verification framework is based on an existing model
checking, named CADP-toolbox [10]. We opted for model
checking rather than theorem proving because of possibility to
automatically check behavioral and timed properties.

The question that we are answering is: “once we model our
image processing algorithm into the FPGA, how can we check
the respect of behavioral and timed requirements before going
any further and generating the implementation code?”

To answer this question, we integrated a formal verification
framework into our design tool. This framework takes as input
both the structural and the filter diagrams, and produces as a
result a formal model expressed in the form of a set of timed
automata. We defined an ad-hoc domain-specified
transformation language in terms of Ecore metamodel and
define a Model-to-Model transformation chain. From the
structural diagram, our verification framework generates a
timed automaton that represents the flow of data through
computing entities to check the absence of deadlocks and
process starvations. From Filter Diagram we generate a timed
automaton to check the respect of behavioral properties
according to structural and arithmetic and/or logic operations.

Model transformations used to generate formal artifacts from
Structural and Filter diagrams generate a trace model for each
transformation. The trace model is used later to trace back
verification result in order to give a diagnosis support for the
designer. Figure 4 shows an overview of the analysis process
of our verification framework.

TimedBased

Unit

Clock

Filter

ChronoClock

LogicalClock

Event

*

timed_base

*

acceptedUnit

1

Fil_clk

0..1
clkTick

0..1

Ref_clk

Behavior_Action

Loop

IfElse

Assignement

Action Block

Event

SendSigEvent

CallOpEvent

SendSig

CallOp

Communication

ifBlk 1

elseBlk

1

create 0..1 create 0..1

International Journal of Computer Applications (0975 – 8887)

Volume 56– No.11, October 2012

19

Fig. 4 : Formal analysis process overview

4. APPLICATION: DETECTION OF

AIMING DIRECTIONS IN A SHOOTING

SIMULATOR
This example concerns the implementation of a tracking
algorithm used in the development of an indoor small arms
shooting simulator. This simulator implements multi-firing
weapons. Each weapon has an infrared laser diode which
diffuses an invisible beam materializing the line of sight of
each shooter on the screen. An infrared camera delivers a
video stream to which we apply a complex image processing
algorithm to determine, with a sufficient precision and in real
time, the aiming direction of each shooter.

4.1. Initial solution
The processing algorithm to be applied to the video stream is
entirely deployed on a computer dedicated to managing the
whole simulation process. This algorithm can be decomposed
into two main phases. In the initialization phase we save a
grayscale reference image of the scene displayed on the screen.
During the second phase of processing each new image is
converted to grayscale and then subtracted from the reference
image before applying a threshold filter. The residual noise is
reduced through a smoothing filter. This sequence of filters
isolates highlight spots. At this stage, we proceed to the
detection of blobs to determine their sizes and coordinates on
the screen. All detected spots are injected to a tracking
algorithm to assign each spot to its corresponding shooter.

Fig. 5 : Description of the initial solution

The whole of this process was implemented on a computer
using a conventional processor (intel Pentium IV, 2,4 GHz).
Consequently, the system performances decrease significantly.
indeed, we were forced to limit the video rate at 10 frames /
second instead of a stream of 24 frames / second required for a
proper analysis of the stability of the weapon before, during
and after the shot as well as to reduce the image resolution
from 1028px × 768px to 600px × 400px, which amplifies
errors in calculating the coordinates of the points aimed at by
shooters.

4.2. Adopted solution
To find a solution to the shortcomings of the original
architecture described, we adopt a hardware implementation to
parallelize some of the processing and comply with the time
constraints required by this simulator.

The figure below describes the new reached solution. We
deploy a large part of the processing on a FPGA. After saving
the reference image, each new image will be subject to a
parallelized processing to extract a list of spots (blob List).
Conversion operations to grayscale and subtraction have
repetitive blocks which can be parallelized. The designed
system will provide in output a list containing the coordinates
and sizes of detected spots. This list will be injected into the
tracking algorithm deployed on the computer dedicated to
manage simulation.

C
o

m
p

u
te

r

L
o

o
p

Save reference

image

Subtraction

Lens distortion

Threshold

Smoothing

Blobs extraction

Blobs tracking

Structural
diagram

Filter diagram

Model
Transformation

Timed
automata

Trace model

Result

Deadlock and

process starvation

analysis

Behavioral and

timed

constraintsanalysis

Analysis

feedback

International Journal of Computer Applications (0975 – 8887)

Volume 56– No.11, October 2012

20

Fig. 6 : Description of the adopted solution

4.3. Hardware implementation
To implement the solution described above, we define a
system (SYSTEM). This system has an input stream Image
and a Boolean one called first injected into a conditional block
to redirect to the initialization phase or to the processing one.
The system provides a list of spots (Blobs list) in output. This
processing will run while the video stream is available in input.
We apply a succession of filters pipelined to perform a parallel
processing to improve the execution time.

The data stream split to five FIFO is injected into a pipelined
processing with five filters. Each stage of processing can be
parallelized internally while the computational tasks are
independent. Diagrams are produced using a graphical tools
created with eclipse GMF [11]. We use ACCELEO [12] to
define transformation and generation rules to produce Handel-
C code.

4.4. Results
This hardware implementation allowed us to circumvent the
limitations of a sequential implementation. We were able to
meet the requirements of our simulator by improving the
image stream at 23 images / second using a resolution of
1028px × 768px. Using VIP DESIGN allows us to minimize
development effort and to reduce prototyping time. The
following tables summarize the obtained results.

Fig.7 : Solution designed with VIP DESIGN

a. Reference image

b. Current image

c. result after blob detection filter

Fig.8 : Result of image processing

SYSTEM

While(frame)

rgb2gray

PAR

subtract

Lens_distor

smoothing

Blob_extract

Save frame

Image :streamin

BLOBS :blobList

C
o

m
p

u
te

r

F
P

G
A

L
o

o
p

Save reference

image

Subtraction

Lens distortion

Threshold

Smoothing

Blobs
extraction

Blobs tracking

International Journal of Computer Applications (0975 – 8887)

Volume 56– No.11, October 2012

21

Table 1. FPGA resource consumptions by filters

Filters

FPGA resource consumption

Configurable Logic

Blocks (CLB)
Block RAM’s

RGB2GRAY 454 1

LENSDISTORTION 1525 2

SUBTRACTION 326 1

THRESHOLD 294 1

SMOOTHING 652 2

BLOBDETECTION 1830 4

Table 2. Performances comparison

Performance

Platforms

PC Intel P4,

2,4GHz

FPGA,

Cyclone

II

Frequency(MHz) 6,25 16

Latency(ms) 16 4,34

Resolution(px×px) 600×400 1028×768

Stream rate(img/sec) 10 23

Developmenteffort
50h

3254 lines of code
8h

Obtained results confirm the suitability of hardware
implementation for image processing algorithms running under
severe time constraints. Thus, we could significantly improve
execution time to go from16msto 4,34ms. By using higher
resolution and frame rate, we decreased errors when
calculating shooter aiming directions. Being a visual tool,
placing designer at a high level of abstraction and promoting
the concept of reuse, VIP DESIGN reduces development time
and improves the clarity of the solution. Handel-C code
generated from the model created with VIPDESIGN is easy to
understand by software developers because of its similarity
with high level programming languages. However, the final
solution implemented on FPGA doesn’t reach a satisfactory
level of optimization, as shown in table I, particularly in terms
of occupation rate.

5. CONCLUSION
Hardware implementation of image processing algorithms is
an adequate solution to improve execution time and to
optimize resource consumption. Several programming
languages such as VHDL and Handel-C, are used to describe
hardware systems. However, the increasing complexity and the
need to reduce development time motivate the rise of graphical
design tools to raise the abstraction level and overcome
difficulties related to hardware concepts. We proposed VIP
DESIGN, a new graphical language for embedded and real-
time image and video processing systems design. The
approach proposed by VIP DESIGN is based on the
description of the system through the scheduling of several
sequential or competitive filters communicating through
channels and running at a speed set by the same or different
clocks. This is possible by using two kinds of diagram that
allow the designer to define the functional structure and the
internal behavior of the system. The structural diagram
describes the functional hierarchy of the system. Filter edition
diagram is used to describe the internal behavior of each filter
using an action language. Time constraints are expressed by
integrating clauses adapted to real-time system design. For the
verification of these constraints we integrated a formal
verification framework that generates formal models from our
graphical diagrams. Generated code is puttedin the input of the
CADP-Toolbox for model checking behavioral and timed
properties. We illustrate, through a real case of study, that the

use of VIP DESIGN to design a real-time system allows a
graphical representation to increase the visibility of the
designed system and a rapid prototyping without hardware
knowledge.

However, VIP DESIGN does not cover the entire design and
development flow. To this end, the Handel-C code generated
automatically from the produced model must be submitted to a
verification and simulation process before its implementation.
Actually, we use a tool provided by Celoxica [13] to simulate
and compile generated code. Development of an owner
simulator will be subject to future works.

6. REFERENCES
[1] Venkateshwar,R., Patil,P., Naveen, A., Muthukumar,V.,

«Implementation and Evaluation of Image Processing

Algorithms on Reconfigurable Architecture using C-based

Hardware Descriptive Language,» International Journal of

Theoretical and Applied Computer Sciences, 2006.

[2] W. J. MacLean, «An Evaluation of the Suitability of FPGAs

for Embedded Vision Systems,» chez Computer vision and

pattern recognition, San Diego, CA, 2005.

[3] RG, Handel-C Language Reference Manual, Celoxica

Limited, 2005.

[4] S. Partners, "SysML Specification v. 1.0a," 2005. [Online].

Available: http://www.sysml.org.

[5] Tim Schattkowsky, Jan Hendrik Hausmann, Gregor Engels,

«Using UML Activities for System-On-Chip design and

synthesis,» Springer, 2006.

[6] C.T.Johnston, D.G.Bailey, P.Lyons, «A Visual Environment

for Real-Time Image Processing in Hardware (VERTIPH),»

EURASIP Journal on Embedded Systems, p. 1–8, 2006.

[7] M.AIT ALI, M.ELEULDJ, «An intermediate modelisation

Language for embedded system developemnt chain

COCODEL : Un Langage intermédiaire de modélisation

pour une chaine de développement des systèmes embarqués

COCODEL,» chez JODIC'2012, Rabat, 2012.

[8] E. Planas, J. Cabot et a. C. Gómez, «Verifying Action

Semantics Specifications in UML,» Springer-Verlag Berlin

Heidelberg, vol. CAiSE 2009, n° %1LNCS 5565, pp. 125-

140, 2009.

[9] OMG, OMG Unified Modeling Language Specifications

(Action Semantics), OMG, 2009.

[10] J.-C. Fernandez, G. Hubert , A. Kerbrat, L. Mounier , R.

Mateescu et M. Sighireanu, «CADP : A Protocol Validation

and Verification Toolbox,» chez CAV ’96 : Proceedings of

the 8th International Confe- rence on Computer Aided

Verification, London, UK, 2006.

[11] E. Foundation, «Graphical Modeling Framework,» The

Eclipse Foundation, [En ligne]. Available:

http://www.eclipse.org/modeling/gmp/.

[12] E. Foundation, «Acceleo,» Eclipse Foundation, [En ligne].

Available: http://www.eclipse.org/acceleo/.

[13] RG, Pixel Streams manual, Celoxica, 2005.

[14] Charest, L., Aboulhamid, E.M., «A VHDL/SystemC

Comparison in Handling Design Reuse,» 2008.

[15] OMG, OMG Unified Modeling LanguageTM (OMG UML),

Superstructure, Version 2.3, 2010.

[16] OMG, "Meta Object Facility (MOF) 2.0

Query/View/Transformation Specification _ Version 1.1,"

Object Management Group, 2011.

